Academic literature on the topic 'Plant'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Plant.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Plant":

1

Givnish, T. J. "From Plant to Planet." Science 261, no. 5117 (July 2, 1993): 115–17. http://dx.doi.org/10.1126/science.261.5117.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Usmonova, Gulshod Ibrohimovna, and Gulruxsor Azamatovna Ochilova. "Medicinal Plants - Big Plantago (Planto Major)." American Journal of Medical Sciences and Pharmaceutical Research 03, no. 02 (February 20, 2021): 10–12. http://dx.doi.org/10.37547/tajmspr/volume03issue02-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Matt Blois. "Wacker plans US silicone plant." C&EN Global Enterprise 100, no. 27 (August 8, 2022): 13. http://dx.doi.org/10.1021/cen-10027-buscon8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alex Scott. "Topsoe plans largest electrolyzer plant." C&EN Global Enterprise 100, no. 19 (May 30, 2022): 11. http://dx.doi.org/10.1021/cen-10019-buscon12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matt Blois. "Piedmont plans lithium chemical plant." C&EN Global Enterprise 100, no. 32 (September 12, 2022): 10. http://dx.doi.org/10.1021/cen-10032-buscon9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alex Tullo. "Röhm plans US methacrylate plant." C&EN Global Enterprise 99, no. 7 (March 1, 2021): 14. http://dx.doi.org/10.1021/cen-09907-buscon8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Derzaph, Tina L. M., and Howard J. Hamilton. "The Plani Plant Animation Framework." International Journal of Computer Graphics & Animation 7, no. 1/2 (April 30, 2017): 1–20. http://dx.doi.org/10.5121/ijcga.2017.7201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kintisch, E. "Plans for Nuclear Plant Proposed." Science 321, no. 5892 (August 22, 2008): 1029b. http://dx.doi.org/10.1126/science.321.5892.1029b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alex Tullo. "Futerro plans French PLA plant." C&EN Global Enterprise 101, no. 1 (January 2, 2023): 10. http://dx.doi.org/10.1021/cen-10101-buscon10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alex Tullo. "Velta plans US titanium plant." C&EN Global Enterprise 101, no. 28 (August 28, 2023): 12. http://dx.doi.org/10.1021/cen-10128-buscon9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Plant":

1

Lopez, Ashley Karisa. "Power Plant, Plant-Based Nutrition Services| A Business Plan." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10639050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:

Today, obesity has become the number one concern of kids and teens. About one in three Americans are overweight or obese. This in part is due to the consumption of highly commercialized and processed foods that lack the essential nutrients in maintaining a healthy weight in addition to normal cholesterol and blood pressure levels. Studies have shown that eating habits are learned early in life and are carried on throughout the rest of their lives. As children grow older into their adolescent years, they are more aware of their eating habits and have gained more autonomy in regards to food choices.

Plant-based foods have shown to drastically improve the overall health of individuals with high cholesterol, high blood pressure, and excess weight.

Power Plant is a facility that intends offer plant-based nutritional services in the form of informative lectures, interactive workshops, one-on-one nutritional guidance by appointment, with access to peer-mentors for additional support and guidance. Power Plant will dedicate their services to the Whittier Union high school district, surrounding community colleges, and universities in the Los Angeles County area.

Power Plant’s unique program design, physician referrals and the critical need of our generations to come, are all factors that will contribute to its success in the Los Angeles County community and for years to come.

2

Lucas, W. J. "Plant physiology : transport processes in plants /." Title page, preface and contents only, 1989. http://web4.library.adelaide.edu.au/theses/09SD/09sdl933.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (D. Sc.)--Faculty of Science, University of Adelaide, 1990.
Published works [representing] original research conducted during the various phases of [his] academic development--Pref. Includes bibliographical references.
3

Davison, Elisabeth, John Begeman, Jimmy Tipton, and Tom DeGomez. "Plant Selection and Selecting Your Plants." College of Agriculture, University of Arizona (Tucson, AZ), 2015. http://hdl.handle.net/10150/560978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Revised; Originally Published: 2000
8 pp.
Whether you are beginning a new landscape or renovating an existing one, planning ahead can prevent many problems. The majority of maintenance requirements and plant problems result from either selecting the wrong kind of plant for a location or planting an inferior specimen of the selected plant type. In other words, there are two decisions to be made: ▪ What species, or kind, of tree are you going to buy — an oak, pine, mesquite, or acacia? ▪ Assuming you decide on an oak, which one in the row of oaks at the nursery are you going to buy? The first decision is called Plant Selection and the second is Selecting Plants. Our goal is to install the right plant in the right place. This publication will cover the factors involved in making good decisions to achieve this goal.
4

Davison, Elizabeth. "Plant Selection and Selecting Your Plants." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/144757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
8 pp.
The majority of maintenance requirements and plant problems result from either selecting the wrong kind of plant for a location or from planting an inferior specimen of the selected plant type. The first decision is called Plant Selection and the second one is Selecting Plants. This publication covers the factors involved in making good decisions to install the right plant in the right place.
5

Grau, Fernàndez Oriol. "Interaccions planta-planta en gradients d'estrès en ecosistemes freds / Plant-plant interactions along stress gradients in cold ecosystems." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/101146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
En aquesta tesi presento quatre capítols, en els quals es discuteix com diferents espècies subarbustives interactuen amb plantes coexistents, sota règims variables d’estrès. Aquesta recerca ha estat centrada en ecosistemes de gran valor ambiental, ecològic i de conservació, i alhora sensibles als canvis ambientals, en quatre regions distintes situades en zones de latitud o altitud elevades. Per ordre latitudinal, els ecosistemes estudiats han estat: 1) el límit supraforestal dels Pirineus Centrals, situats en una zona temperada; 2) el gradient de successió primària d’un ecosistema situat en una zona boreal, a Finlàndia,; 3) el límit supraforestal situat a la zona subàrtica de Lapònia; i 4) la tundra situada en una zona de l’alt àrtic, al nord‐est de Grenlàndia . Els dos primers capítols es basen en una aproximació experimental i se centren en investigar com els subarbustos més comuns trobats prop del límit supraforestal interactuen amb plançons d’arbres de les espècies que formen el límit del bosc en dos ambients contrastats, i.e. el límit supraforestal subàrtic, i el límit supraforestal dels Pirineus Centrals. A més, donat que els arbres que viuen prop del límit de distribució són molt sensibles als canvis ambientals , especialment a l’augment de temperatures durant l’estació de creixement (Körner 2003), també s’ha investigat com podrien afectar el creixement dels plançons d’arbre i la seva supervivència al llarg de l’ecotò, diferents escenaris de canvis ambientals. El primer capítol es titula ‘Les interaccions arbre‐arbust i els canvis ambientals dirigeixen la dinàmica supraforestal a la zona subàrtica’, i s’hi exposa l’experiment de tres anys de durada que es va executar al ‘Parc Nacional d’Abisko’, en els Scandes subàrtics, al nord de Suècia; les plantes estudiades varen ser plançons de Betula pubescens i el subarbust Vaccinium myrtillus. En aquest estudi es va certificar la importància de les interaccions arbust‐arbre, tant facilitatives com competitives, com a elements clau en la dinàmica supraforestal subàrtica. A més, vàrem demostrar que la gran sensibilitat dels plançons a l’escalfament tenia fortes implicacions per la dinàmica supraforestal, tenint en compte l’escenari previst d’augment de temperatures en latituds elevades. També es va observar que les interaccions complexes entre arbusts i herbívors són claus per preveure canvis futurs. El segon capítol es titula ‘Els plançons d’arbres situats als límits supraforestals Pirinencs i subàrtics mostren respostes semblants a la presència d'arbustos i a les simulacions de canvis ambientals’. Aquí es presenta una comparació entre els resultats de l’experiment presentat en el primer capítol i els obtinguts en un experiment paral∙lel dut a terme durant un període de temps semblant prop del límit supraforestal en el ‘Parc Natural de l’Alt Pirineu’, als Pirineus Centrals catalans. Aquest experiment es va basar en el mateix disseny factorial que l’anterior estudi, però amb diferents espècies (i.e. plançons de l’arbre Pinus uncinata i l’arbust Rhododendron ferrugineum). Segons ens consta, és el primer estudi que avalua experimentalment les respostes de les plantes vers diferents escenaris ambientals en un ecosistema d’alta muntanya als Pirineus. En aquest capítol es presenten alguns mecanismes que ajudaran a comprendre la variabilitat recentment observada de les respostes locals de límits supraforestals de zones temperades i subàrtiques com a resultat del clima canviant, i també identifiquem alguns paral∙lelismes que poden utilitzar‐se per generalitzar les respostes a gran escala dels límits supraforestals al canvi climàtic. El tercer capítol se centra en els efectes d’un subarbust dominant (i.e. Empetrum nigrum) en plançons de Pinus sylvestris al llarg del gradient de successió primària en un ecosistema boreal en una illa emergent de la badia de Bòtnia, a Finlàndia. Aquest capítol s’anomena ‘Un arbust ericoide exerceix la doble funció de reclutar pins i els seus simbionts fúngics al llarg d’un gradient de successió primària’. Aquí hem mostrat que els efectes facilitadors i competidors dels subarbustos determinen fortament l’establiment de plançons i la seva colonització fúngica al llarg d’aquest gradient de successió. Segons ens consta, aquests són els primers resultats que demostren que un arbust ericoide micorrízic pot millorar tant el desenvolupament de l’arbre hoste ectomicorrízic com el dels simbionts fúngics de l’arbre. L’estudi presentat al quart capítol es va realitzar al llarg d’un gradient de nivositat en un ecosistema extrem de tundra àrtica al ‘Parc Nacional del nord‐est de Grenlàndia’, el Parc Nacional més gran del món. El capítol es titula ‘Interaccions vegetals i composició de la vegetació àrtica al llarg d’un gradient de nivositat al nord‐est de Grenlàndia’. Aquest ecosistema és probablement el més sensible i fràgil de tots els ecosistemes estudiats en aquesta tesi, donat que s’espera que a la costa est de Grenlàndia s’hi esdevinguin canvis substancials en el clima com a resultat de canvis destacables en els règims de precipitació de neu i de les temperatures (Brown i Mote 2009). Aquí es va avaluar la riquesa d’espècies de plantes, així com els patrons d’establiment i composició de diverses formes de creixement existents en comunitats vegetals àrtiques associades a una variació de la cobertura de neu durant els mesos d’hivern. Aquest estudi ajudarà a preveure la diversitat potencial i els canvis en la vegetació a la zona de l’alt Àrtic, si els règims de precipitació de neu canvien en el futur com es preveu.
In this thesis I present four chapters, and in all of them I discuss how dwarf shrubs interact with co‐occurring plants under varying regimes of stress. This research involved ecosystems of great environmental, nature conservation and ecological value, yet highly sensitive to environmental changes, in four contrasting cold regions at high altitude or high latitude. Following a latitudinal order, the selected ecosystems were: 1) a temperate alpine treeline in the Central Pyrenees; 2) a primary succession gradient in a boreal ecosystem in Finland; 3) a subarctic alpine treeline in Lapland; and 4) a high‐arctic tundra in north‐eastern Greenland. The first two chapters are based on an experimental approach and focus on how shrubs commonly found near the treeline interact with tree seedlings of treelineforming species in two contrasting environments, i.e. in a subarctic forest‐tundra ecotone in Lapland, northern Sweden, and in a more southern, temperate forestalpine pasture ecotone in the Central Pyrenees. In addition, since trees living near their limit of distribution are very sensitive to environmental changes, especially to increased temperature during the growing season (Körner 2003), we also assessed how distinct environmental change scenarios may affect tree seedling growth and survival across the ecotone. The first chapter is entitled ‘Shrub‐tree interactions and environmental changes drive treeline dynamics in the Subarctic’, where we explain the three‐year‐long experiment performed in the Abisko National Park, in the subarctic Scandes, Northern Sweden; the species studied were Betula pubescens tree seedlings and the shrub Vaccinium myrtillus. In this study we showed the importance of facilitative and competitive shrub‐tree interactions as drivers of subarctic treeline dynamics. Furthermore, we demonstrated that the great sensitivity of tree seedlings to warming had strong implications for treeline dynamics under the predicted warmer scenario at high latitudes, and we identified that complex interactions between shrubs and herbivores are critical to predicting future changes. The second chapter is entitled ‘Similar tree seedling responses to shrubs and to simulated environmental changes at Pyrenean and subarctic treelines’. Here we presented a comparison between the results obtained in the experiment presented in the first chapter and those obtained in a parallel experiment performed during a similar period near the treeline in the Alt Pirineu Natural Park, in the Central Pyrenees, Catalonia. This experiment was based on the same factorial design but with different species (i.e. Pinus uncinata tree seedlings and the shrub Rhododendron ferrugineum). To our knowledge, it is the first study which experimentally tests the responses of plants to distinct environmental scenarios in a high mountain ecosystem in the Pyrenees. In this chapter we presented some mechanisms for understanding the recently observed variability of local responses of both subarctic and alpine treelines to currently changing climate while identifying some commonalities that can be used to generalise large scale response of treelines to climate warming. The third chapter focuses on the effects of a dominant dwarf shrub (i.e. Empetrum nigrum) on Pinus sylvestris tree seedlings along a primary succession within a boreal ecosystem on an uplifting island in Bothnian Bay, Finland. This chapter is called ‘An ericoid shrub plays a dual role in recruiting both pines and their fungal symbionts along primary succession gradients’. Here we showed that facilitative and competitive effects of shrubs markedly determined tree seedling establishment and their fungal colonisation along this succession gradient, but in this chapter we did not relate these findings to any environmental changes. As far as we know, we presented the first finding that an ericoid mycorrhizal shrub may enhance both the performance of the ectomycorrhizal host tree and the tree’s fungal symbionts. The study presented in the fourth chapter was performed along a snow‐depth gradient in an extreme arctic tundra ecosystem in the Northeast Greenland National Park, the largest national park in the world. The chapter is entitled ‘Plant interactions and higharctic vegetation composition along a snow‐depth gradient in NE Greenland’. This ecosystem is probably the most sensitive and fragile among the ecosystems studied in this thesis as the eastern coast of Greenland is expected to experience substantial changes in climate due to marked changes in snow precipitation and temperature regimes (Brown and Mote 2009). Here we assessed plant species richness, establishment and composition patterns in distinct growth forms occurring in common arctic plant communities associated with varying snow‐depth during the winter season. This study will help to predict potential diversity and vegetation changes in the high Arctic if snow precipitation regime changes in the future as anticipated.
6

Damgaard, Christian. "Evolutionary ecology of plant-plant interactions : an empirical modelling approach /." Aarhus University Press, 2004. http://www.elib.se/library/ebook_detail.asp?id_type=ISBN&lib=DK&id=8779348750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brooker, Robin William. "Plant-plant and plant-environment interactions in the Arctic." Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Choh, Yasuyuki. "Plant-plant interactions mediated by herbivore-induced plant volatiles." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soomro, M. H. "The effects of plant parasitic nematodes and plant growth regulators on root growth of graminacious plants." Thesis, University of Reading, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Olsen, Mary W. "Diseases of Urban Plants in Arizona." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1999. http://hdl.handle.net/10150/144807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
26 pp.
Geographically, Arizona can be divided roughly into four areas, southwest, central, southeast, and northern. These regions correspond with four climatic zones, allowing a large and diverse number of plants to be grown for landscaping purposes. But, interestingly, in this desert environment many of the parasitic diseases in landscape plants are caused by a limited number of plant pathogens. This publication discusses some of those diseases that are sufficiently important to the urban plants in all areas Arizona.

Books on the topic "Plant":

1

Huxley, Anthony Julian. Plant and planet. Harmondsworth, Middlesex, England: Penguin Books, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maureen, Richardson, Gibbs John, Alembic Press (Oxford England), and Press Collection (Library of Congress), eds. Plant papers' paper plants. Oxford: Alembic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. Animal and Plant Health Inspection Service. Moving plants, plant products, and plant pests under federal permits. Washington, D.C.?]: U.S. Dept. of Agriculture, Animal and Plant Health Inspection Service, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rady, Mohamed Ramadan. Plant Biotechnology and Medicinal Plants. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22929-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Claybourne, Anna. Growing plants: Plant life processes. Oxford: Heinemann Library, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Claybourne, Anna. Growing plants: Plant life processes. Chicago, Ill: Heinemann Library, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blum, Udo. Plant-Plant Allelopathic Interactions. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0683-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weidenbörner, Martin. Mycotoxins in Plants and Plant Products. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46715-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weidenbörner, Martin. Mycotoxins in Plants and Plant Products. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92850-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Raghavan, G. Vijaya. Comprehensive medicinal plants: Plant monographs alphabetically. Houston, Texas: Studium Press, LLC, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Plant":

1

Le Coz, Christophe J., and Georges Ducombs. "Plants and Plant Products." In Contact Dermatitis, 751–800. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31301-x_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Campbell, Gaylon S., and John M. Norman. "Plants and Plant Communities." In An Introduction to Environmental Biophysics, 223–46. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1626-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ducombs, Georges, and Richard J. Schmidt. "Plants and Plant Products." In Textbook of Contact Dermatitis, 588–634. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-13119-0_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lovell, Christopher, Evy Paulsen, and Jean-Pierre Lepoittevin. "Plants and Plant Products." In Contact Dermatitis, 1–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-72451-5_88-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Le Coz, Christophe J., Georges Ducombs, and Evy Paulsen. "Plants and Plant Products." In Contact Dermatitis, 873–925. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03827-3_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ducombs, Georges, and Richard J. Schmidt. "Plants and Plant Products." In Textbook of Contact Dermatitis, 883–931. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-10302-9_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ducombs, Georges, and Richard J. Schmidt. "Plants and Plant Products." In Textbook of Contact Dermatitis, 588–634. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03104-9_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D’Orso, Fabio, Valentina Forte, Simona Baima, Marco Possenti, Daniela Palma, and Giorgio Morelli. "Methods and Techniques to Select Efficient Guides for CRISPR-Mediated Genome Editing in Plants." In A Roadmap for Plant Genome Editing, 89–117. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46150-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractCRISPR technology is revolutionizing genomic engineering by enabling scientists to precisely modify plant DNA, thus representing a powerful tool for plant breeding.This chapter provides a summary of the approaches and constraints of CRISPR-mediated genome editing in plants, with a focus on the critical prerequisite of efficient CRISPR reagents for successful gene editing in plants.While computational tools have tremendously improved our ability to design specific guides, their limitations make guide effectiveness prediction unreliable, especially for plants. Therefore, it is strongly recommended to validate CRISPR reagents before investing time and resources in the challenging process of plant transformation.A number of in vitro and in planta assays coupled with analytical methods have been proposed to assess the editing performances. Each approach has its own strengths and weaknesses, so the choice of the most suitable system depends on the specific plant species and the type and depth of the genotypic data required.In many cases, the hairy root assay can provide a good compromise between rapidity, reliability and cost-effectiveness for assessing editing performance in numerous plant species.
9

Bell, E. A. "Plant-Plant Interactions." In Ciba Foundation Symposium 102 - Origins and Development of Adaptation, 40–51. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470720837.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Contreras-Moreira, Bruno, Guy Naamati, Marc Rosello, James E. Allen, Sarah E. Hunt, Matthieu Muffato, Astrid Gall, and Paul Flicek. "Scripting Analyses of Genomes in Ensembl Plants." In Plant Bioinformatics, 27–55. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2067-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractEnsembl Plants (http://plants.ensembl.org) offers genome-scale information for plants, with four releases per year. As of release 47 (April 2020) it features 79 species and includes genome sequence, gene models, and functional annotation. Comparative analyses help reconstruct the evolutionary history of gene families, genomes, and components of polyploid genomes. Some species have gene expression baseline reports or variation across genotypes. While the data can be accessed through the Ensembl genome browser, here we review specifically how our plant genomes can be interrogated programmatically and the data downloaded in bulk. These access routes are generally consistent across Ensembl for other non-plant species, including plant pathogens, pests, and pollinators.

Conference papers on the topic "Plant":

1

Bushart, Sean, Karen Kim, and Michael Naughton. "Program Change Management During Nuclear Power Plant Decommissioning." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Decommissioning a nuclear power plant is a complex project. The project involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As certain project Milestones are met, the evolution of such plant programs and regulations can help optimize project execution and cost. This paper will provide information about these Milestones and the plant departments and programs that change throughout a decommissioning project. The initial challenge in the decommissioning of a nuclear plant is the development of a definitive plan for such a complex project. EPRI has published several reports related to decommissioning planning. These earlier reports provided general guidance in formulating a Decommissioning Plan. This Change Management paper will draw from the experience gained in the last decade in decommissioning of nuclear plants. The paper discusses decommissioning in terms of a sequence of major Milestones. The plant programs, associated plans and actions, and staffing are discussed based upon experiences from the following power reactor facilities: Maine Yankee Atomic Power Plant, Yankee Nuclear Power Station, and the Haddam Neck Plant. Significant lessons learned from other sites are also discussed as appropriate. Planning is a crucial ingredient of successful decommissioning projects. The development of a definitive Decommissioning Plan can result in considerable project savings. The decommissioning plants in the U.S. have planned and executed their projects using different strategies based on their unique plant circumstances. However, experience has shown that similar project milestones and actions applied through all of these projects. This allows each plant to learn from the experiences of the preceding projects. As the plant transitions from an operating plant through decommissioning, the reduction and termination of defunct programs and regulations can help optimize all facets of decommissioning. This information, learned through trial in previous plants, can be incorporated into the decommissioning plan of future projects so that the benefits of optimization can be realized from the beginning of the projects. This process of the collection of information and lessons learned from plant experiences is an important function of the EPRI Decommissioning Program.
2

Lecheheb, Namane, Ahmed Abbas, and Mohamed Nedjar. "Adgas LNG Plant Pre-Fire Plans." In SPE International Health, Safety & Environment Conference. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/98487-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weaver, Thomas L., John K. Murdock, and James R. Ide. "Tactical aircraft optical cable plant program plan." In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, edited by Daniel B. Thompson, Robert J. Baumbick, and Larry B. Stotts. SPIE, 1995. http://dx.doi.org/10.1117/12.210095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malyshev, R. V. "Biological calorimetry in plant physiology." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiao, Yueyi, Xinran Wang, Yuncong Chen, Michael J. Castellano, James C. Schnable, Patrick S. Schnable, and Liang Dong. "In-Planta Nitrate Detection Using Insertable Plant Microsensor." In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Calemis, I., C. Goumopoulos, and A. Kameas. "Talking plant: integrating plants behavior with ambient intelligence." In 2nd IET International Conference on Intelligent Environments (IE 06). IEE, 2006. http://dx.doi.org/10.1049/cp:20060660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saraswat, Laxmi, Lopamudra Mohanty, Puneet Garg, and Sonia Lamba. "Plant Disease Identification Using Plant Images." In 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). IEEE, 2022. http://dx.doi.org/10.1109/ccict56684.2022.00026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuznetsov, Vl V. "Plant Physiology and Global Problem Solving." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stepanov, S. A., M. Yu Kasatkin, and A. M. Strapko. "Morphogenetic aspects of plant integrity problem." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Minato, Hirokazu, Takatoshi Hattri, Toshihiko Higashi, and Takehiro Iwata. "Dose Assessment for Setting of EPZ in Emergency Plan for Decommissioning of Nuclear Power Plant." In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In emergency plan for a nuclear power plant, taking enough measures in EPZ boundary (Emergency Planning Zone) is one of priority matters, to have protection against the release of radioactive materials in accident efficiently and quickly to minimize environmental impacts. EPZ is set as the zone which emergency plans should be mainly prepared on emergency conditions. The criteria of EPZ is that dose value in the area between plant and EPZ boundary have to be less than 10mSv, even if very conservative release mechanisms and path are supposed. The released amount of radioactive material from a nuclear power plant is calculated to the accident scenario were supposed with the each phase of decommissioning. Moreover, the dose value is calculated as the evaluation of environmental impacts, using atmospheric diffusion parameters are determined by the plume concentration Gaussian type distribution model at steady state, and annual meteorological data of the reference plants. Both of ‘the spent fuel storage phase’ and ‘the safe maintenance and dismantling phase’ on each of the expected accident scenario, the dose value in EPZ boundary is much less than safety criteria (10mSv), and there is no need to plan offsite emergency plan, such as the Sheltering and Escape for a reference plant. This result is agreeing with the opinion of Waste and decommission working group 2006 of Western European Nuclear Regulator’s Association (WENRA).

Reports on the topic "Plant":

1

Morson, R. Hanford waste vitrification plant project plant acquisition plan. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/6961380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bauer, L. R., M. S. Tullis, R. P. Paulick, and L. L. Roush. Mound Plant Environmental Monitoring Plan. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10196595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klingenberger, D. FY1994 Pinellas Plant Construction Plan. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10176103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Delyea, Cole. Plant Growth - Music for Plants - Summary. ResearchHub Technologies, Inc., May 2024. http://dx.doi.org/10.55277/researchhub.ezgm7qzn.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kover, K. K. Waste minimization plan, T plant facilities. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/327596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Godfrey, S. D. B Plant Transition Project Management Plan. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/328651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ADLER, J. G. B Plant Complex preclosure work plan. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/781499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Godfrey, S. D. B plant transition project management plan. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/289267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klingenberger, D. FY1994 Pinellas Plant site development plan. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10173894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Williams, J. F. Waste analysis plan for T Plant Complex. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/344982.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography