Academic literature on the topic 'Planarian flatworms'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Planarian flatworms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Planarian flatworms"

1

Kreshchenko, Grebenshchikova, and Karpov. "INFLUENCE OF SEROTONIN ON PLANARIAN PHOTORECEPTORS’ REGENERATION." THEORY AND PRACTICE OF PARASITIC DISEASE CONTROL, no. 20 (May 14, 2019): 278–83. http://dx.doi.org/10.31016/978-5-9902340-8-6.2019.20.278-283.

Full text
Abstract:
The paper presents data on the effect of biogenic amine, serotonin, on morphogenetic processes in planarians Schmidtea mediterranea and Girardia tigrina(Turbellaria, Platyhelminthes). For the study, cut-off median and tail fragments of the planarian body were used, in which eye regeneration was observed. Photoreceptor recovery occurred from the 3rd to the 6th day of regeneration. In experimental specimens exposed to serotonin at a concentration of 0.1–1 μM, acceleration of the photoreceptor regeneration process was observed. The stimulating effect was observed at 4–5 days after surgery. Planaria (Turbellaria, Platyhelminthes) are free-living flatworms related to parasitic trematodes, cestodes and monogenges. In addition to the nervous, muscular, digestive, excretory and reproductive systems, they have a pair of simple eyes (photoreceptors), so they can distinguish the intensity and direction of the light flux and are oriented in space [1]. Planarium eyes are located on the dorsal surface of the head part of the body and consist of photoreceptor and pigment cells that form an "eye cup". Planaria can regenerate the whole organism from a small fragment. In the process of regeneration, the planarium can completely restore the head ganglion (brain), as well as other organs, including the eyes.Our task was to study the dynamics of photoreceptor differentiation in planarians Schmidtea mediterranea, and to investigate the possible morphogenetic function of serotonin in S. mediterranea and G. tigrina
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Iana V., Sebastian Riedelbauch, and Claus-D. Kuhn. "The piRNA pathway in planarian flatworms: new model, new insights." Biological Chemistry 401, no. 10 (September 25, 2020): 1123–41. http://dx.doi.org/10.1515/hsz-2019-0445.

Full text
Abstract:
AbstractPIWI-interacting RNAs (piRNAs) are small regulatory RNAs that associate with members of the PIWI clade of the Argonaute superfamily of proteins. piRNAs are predominantly found in animal gonads. There they silence transposable elements (TEs), regulate gene expression and participate in DNA methylation, thus orchestrating proper germline development. Furthermore, PIWI proteins are also indispensable for the maintenance and differentiation capabilities of pluripotent stem cells in free-living invertebrate species with regenerative potential. Thus, PIWI proteins and piRNAs seem to constitute an essential molecular feature of somatic pluripotent stem cells and the germline. In keeping with this hypothesis, both PIWI proteins and piRNAs are enriched in neoblasts, the adult stem cells of planarian flatworms, and their presence is a prerequisite for the proper regeneration and perpetual tissue homeostasis of these animals. The piRNA pathway is required to maintain the unique biology of planarians because, in analogy to the animal germline, planarian piRNAs silence TEs and ensure stable genome inheritance. Moreover, planarian piRNAs also contribute to the degradation of numerous protein-coding transcripts, a function that may be critical for neoblast differentiation. This review gives an overview of the planarian piRNA pathway and of its crucial function in neoblast biology.
APA, Harvard, Vancouver, ISO, and other styles
3

Kreshchenko, Skavulyak, Bondarenko, and Ermakov. "MELATONIN MODULATES DYNAMICS OF PLANARIAN STEM CELL PROLIFERATION." THEORY AND PRACTICE OF PARASITIC DISEASE CONTROL, no. 21 (May 29, 2020): 157–63. http://dx.doi.org/10.31016/978-5-9902341-5-4.2020.21.157-163.

Full text
Abstract:
Melatonin is a derivate of biogenic amine of serotonin identified in all classes of animals including flatworms. Melatonin demonstrates different physiological functions the main of which is circadian rhythm regulation. Via specific G-protein coupled receptors, melatonin affects the target cells changing the levels of other hormones. On early stages of embryonic development, biogenic amines as well as melatonin play a role of specific signal cell molecules that regulate processes of cellular renewal. This work has studied physiological function of melatonin in free-living flatworms, planarian Schmidtea mediterranea. The influence of melatonin on diurnal dynamics of stem cells proliferation was investigated using an immunocytochemical method and confocal laser scanning microscopy. The specific antibodies against H3 phosphohistones were applied for immunocytochemical identification of proliferative cells. It was shown that melatonin (1 µМ) decreased the total number of proliferative cells in planarians. It was also found that the diurnal dynamics of cells proliferation in planarians was changed by melatonin: regular rhythmic oscillations observed in the control group of animals were smoothening. Further researches are required to clarify mechanisms of melatonin actions.
APA, Harvard, Vancouver, ISO, and other styles
4

Adell, Teresa, Emili Saló, Jack J. W. A. van Loon, and Gennaro Auletta. "Planarians Sense Simulated Microgravity and Hypergravity." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/679672.

Full text
Abstract:
Planarians are flatworms, which belong to the phylumPlatyhelminthes.They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM) set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC) planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development.
APA, Harvard, Vancouver, ISO, and other styles
5

Sluys, Ronald. "The evolutionary terrestrialization of planarian flatworms (Platyhelminthes, Tricladida, Geoplanidae): a review and research programme." Zoosystematics and Evolution 95, no. 2 (September 29, 2019): 543–56. http://dx.doi.org/10.3897/zse.95.38727.

Full text
Abstract:
The terrestrialization of animal life from aquatic ancestors is a key transition during the history of life. Planarian flatworms form an ideal group of model organisms to study this colonization of the land because they have freshwater, marine, and terrestrial representatives. The widespread occurrence of terrestrial flatworms is a testament to their remarkable success occupying a new niche on land. This lineage of terrestrial worms provides a unique glimpse of an evolutionary pathway by which a group of early divergent aquatic, invertebrate metazoans has moved onto land. Land flatworms are among the first groups of animals to have evolved terrestrial adaptations and to have extensively radiated. Study of this terrestrialization process and the anatomical key innovations facilitating their colonization of the land will contribute greatly to our understanding of this important step in Metazoan history. The context and scientific background are reviewed regarding the evolutionary terrestrialization of land flatworms. Furthermore, a framework of a research programme is sketched, which has as its main objective to test hypotheses on the evolution of land planarians, specifically whether particular anatomical and physiological key innovations have contributed to their evolutionary successful terrestrial colonization and radiation. In this context special attention is paid to the respiration in aquatic and terrestrial planarians. The research programme depends on a comprehensive phylogenetic analysis of all major taxa of the land flatworms on the basis of both molecular and anatomical data. The data sets should be analyzed phylogenetically with a suite of phylogenetic inference methods. Building on such robust reconstructions, it will be possible to study associations between key innovations and the evolutionary terrestrialization process.
APA, Harvard, Vancouver, ISO, and other styles
6

Molina, M. Dolores, and Francesc Cebrià. "Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression." Biomolecules 11, no. 10 (October 17, 2021): 1532. http://dx.doi.org/10.3390/biom11101532.

Full text
Abstract:
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
APA, Harvard, Vancouver, ISO, and other styles
7

Verma, Prince, Court K. M. Waterbury, and Elizabeth M. Duncan. "Set1 Targets Genes with Essential Identity and Tumor-Suppressing Functions in Planarian Stem Cells." Genes 12, no. 8 (July 29, 2021): 1182. http://dx.doi.org/10.3390/genes12081182.

Full text
Abstract:
Tumor suppressor genes (TSGs) are essential for normal cellular function in multicellular organisms, but many TSGs and tumor-suppressing mechanisms remain unknown. Planarian flatworms exhibit particularly robust tumor suppression, yet the specific mechanisms underlying this trait remain unclear. Here, we analyze histone H3 lysine 4 trimethylation (H3K4me3) signal across the planarian genome to determine if the broad H3K4me3 chromatin signature that marks essential cell identity genes and TSGs in mammalian cells is conserved in this valuable model of in vivo stem cell function. We find that this signature is indeed conserved on the planarian genome and that the lysine methyltransferase Set1 is largely responsible for creating it at both cell identity and putative TSG loci. In addition, we show that depletion of set1 in planarians induces stem cell phenotypes that suggest loss of TSG function, including hyperproliferation and an abnormal DNA damage response (DDR). Importantly, this work establishes that Set1 targets specific gene loci in planarian stem cells and marks them with a conserved chromatin signature. Moreover, our data strongly suggest that Set1 activity at these genes has important functional consequences both during normal homeostasis and in response to genotoxic stress.
APA, Harvard, Vancouver, ISO, and other styles
8

Morris, Johnathan, Elizabeth J. Bealer, Ivan D. S. Souza, Lauren Repmann, Hannah Bonelli, Joseph F. Stanzione III, and Mary M. Staehle. "Chemical Exposure-Induced Developmental Neurotoxicity in Head-Regenerating Schmidtea mediterranea." Toxicological Sciences 185, no. 2 (November 13, 2021): 220–31. http://dx.doi.org/10.1093/toxsci/kfab132.

Full text
Abstract:
Abstract The growing number of commercially used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head-regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A [BPA]). Planarian flatworms are an established alternative animal model for neurodevelopmental studies and have remarkable regenerative abilities allowing neurodevelopment to be induced via head resection. Here, we observed changes in photophobic behavior and central nervous system (CNS) morphology to evaluate the impact of exposure to low concentrations of ethanol, BPA, and BPA industry alternatives bisphenol F, and bisguaiacol on neurodevelopment. Our studies show that exposure to 1% v/v ethanol during regeneration induces a recoverable 48-h delay in the development of proper CNS integrity, which aligns with behavioral assessments of cognitive ability. Exposure to BPA and its alternatives induced deviations to neurodevelopment in a range of severities, distinguished by suppressions, delays, or a combination of the 2. These results suggest that quick and inexpensive behavioral assessments are a viable surrogate for tedious and costly immunostaining studies, equipping more utility and resolution to the planarian model for neurodevelopmental toxicity in the future of mass chemical screening. These studies demonstrate that behavioral phenotypes observed following chemical exposure are classifiable and also temporally correlated to the anatomical development of the CNS in planaria. This will facilitate and accelerate toxicological screening assays with this alternative animal model.
APA, Harvard, Vancouver, ISO, and other styles
9

Cao, Zhonghong, Hongjin Liu, Bosheng Zhao, Qiuxiang Pang, and Xiufang Zhang. "Extreme Environmental Stress-Induced Biological Responses in the Planarian." BioMed Research International 2020 (June 11, 2020): 1–11. http://dx.doi.org/10.1155/2020/7164230.

Full text
Abstract:
Planarians are bilaterally symmetric metazoans of the phylum Platyhelminthes. They have well-defined anteroposterior and dorsoventral axes and have a highly structured true brain which consists of all neural cell types and neuropeptides found in a vertebrate. Planarian flatworms are famous for their strong regenerative ability; they can easily regenerate any part of the body including the complete neoformation of a functional brain within a few days and can survive a series of extreme environmental stress. Nowadays, they are an emerging model system in the field of developmental, regenerative, and stem cell biology and have offered lots of helpful information for these realms. In this review, we will summarize the response of planarians to some typical environmental stress and hope to shed light on basic mechanisms of how organisms interact with extreme environmental stress and survive it, such as altered gravity, temperature, and oxygen, and this information will help researchers improve the design in future studies.
APA, Harvard, Vancouver, ISO, and other styles
10

Sluys, Ronald, Masaharu Kawakatsu, Marta Riutort, and Jaume Baguñà. "A new higher classification of planarian flatworms (Platyhelminthes, Tricladida)." Journal of Natural History 43, no. 29-30 (July 21, 2009): 1763–77. http://dx.doi.org/10.1080/00222930902741669.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Planarian flatworms"

1

Lewallen, Melissa A. "The Metabolic Physiology of Planarian Flatworms." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538679/.

Full text
Abstract:
Using a high throughput closed respirometry method to measure oxygen consumption, I determined metabolic rates in asexual and sexual Schmidtea mediterranea and Girardia dorotocephala, as a function of temperature, taxon, stressors, reproductive mode, age, regeneration, and specific dynamic action. This study has shown that oxygen consumption can reliably be measured in planaria using optode closed respirometry, and also provided a reliable method for measuring wet mass in planaria, which has been a challenge to researchers in the past. This research revealed that oxygen consumption in S. mediterranea is 1.5-2.1X greater in the sexual strain over the asexual strain at 13-18°C. Within the sexual strain, oxygen consumption is 1.5 -2.2X greater in sexually mature adults over the sexually immature groups (hatchlings, juveniles, and regenerating sexuals). Furthermore, I was able to quantify differences in sexual morphology between these groups exhibiting significant differences in oxygen consumption. The results of this research supports a theory of higher metabolic costs with sexual maturity in S. mediterranea. Therefore, this study has established sexual and asexual S. mediterranea as simple, yet attractive models for investigating energetic costs between sexual and asexual phenotypes. This research also provided quantitative values for specific dynamic action in planaria, with a maximum increase in oxygen consumption of 160% induced by feeding, as well as metabolic relationships in planaria involving temperature, age, and regeneration. These values establish planaria as one of the simplest animal models in which common metabolic patterns, such as SDA and poikilothermic temperature sensitivity, have been demonstrated. Therefore, this research has contributed to the overall knowledge of the basic physiology in this animal, providing the framework for future metabolic studies in planaria involving environmental factors, reproduction, regeneration, development, and aging. Information from this study may supplement interpretation and understanding of modern cellular, molecular, and genomic studies in planaria.
APA, Harvard, Vancouver, ISO, and other styles
2

Abnave, Prasad. "Exploring mammalian immunity against intracellular bacteria through planarian flatworms." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM5049.

Full text
Abstract:
Les interactions hôte-pathogène sont un jeu vaste et complexe entre agent pathogène et hôtepour la victoire de la bataille de la pathogenèse. Plusieurs organismes modèles sont étudiéspour illustrer les mécanismes impliqués dans ces interactions. Dans ma thèse, j'ai utilisé lesplanaires comme un organisme modèle pour explorer les interactions hôte-pathogène. Comme les différents organismes modèles peuvent mettre enévidence les différentes caractéristiques de l'immunité, j'ai décidé de tirer avantage del'absence de connaissances sur l'immunité des planaires en explorant l'inexplorée. Dans monprojet, j'ai infecté les planaires avec 16 bactéries pathogènes : les planaires y sont très résistantes. Pour en explorer lemécanisme j'ai effectué un profilage du transcriptome à partir deplanaires infectées, suivie par un criblage par ARN interférence des gènes up-régulés. J'aidécouvert les gènes qui régissent la résistance antibactérienne dans les planaires, et de façonintéressante, le criblage a permis de mettre en évidence un gène, MORN2, dont la fonctionimmunologique était complètement inconnue. L'induction et l'extinction de l'expression de MORN2dans les macrophages ont révélé que MORN2 contrôle l'internalisation, la réplication et letrafic des bactéries à l'intérieur de la cellule. Dans mon étude, j'ai démontré que MORN2 estun composant de la phagocytose associée à LC3 et qu'il peut surmonter le blocage de lafusion phagolysosomale imposée par les bactéries pathogènes. Ainsi ma thèse met en avantl'importance d'utiliser des organismes modèles inhabituels afin de dévoiler des mécanismesinexplorées et des molécules impliquées dans les interactions hôte-pathogène
Host-pathogen interaction is a vast and complex interplay between pathogen and hostto conquer the battle of pathogenesis. Several model organisms are being studied to illustratethe mechanisms involved in these interactions. In my thesis I have used planarians as a modelorganism to explore host-pathogen interactions. As different model organismscan highlight different features of immunity I decided to take advantage of lack of knowledgeabout planarian immunity and get benefits from exploring unexplored. In my project I haveinfected planarians with 16 pathogenic bacteria and I found that in contrary to othercommonly used model organisms such as Drosophila, C. elegans and zebrafish the planariansare highly resistant to bacterial infections. To explore the mechanism behind this resistance Iperformed infection induced transcriptome profiling followed by RNA interference screeningof up-regulated gens. I discovered genes governing antibacterial resistance in planarians andinterestingly the screening highlighted a gene MORN2 of which the immunological functionwas completely unknown. The human ortholog of MORN2 is then further assessed for itsantimicrobial function. Induced expression and down regulation of MORN2 in macrophagesrevealed that MORN2 controls uptake, replication and trafficking of bacteria inside the cell.In my study I demonstrated that MORN2 is a component of LC3-associated phagocytosis andit can overcome phagosome maturation blockage imposed by pathogenic bacteria. Thus mythesis propounds the importance of using unusual model organisms to unveil unexploredmechanisms and molecules involved in host-pathogen interactions
APA, Harvard, Vancouver, ISO, and other styles
3

Stewart, Valerie I. "The biology of the terrestrial planarian Artioposthia triangulata (Dendy, 1894) and its genetic variation in colonized habitats." Thesis, Queen's University Belfast, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Curry, Haley Nicole. "Characterization of a Conserved Transient Receptor Potential Channel Supporting Spermatogenesis in Planarian Flatworms." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1589976835122505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Collins, Erica Leighanne. "The Effect of Caffeine and Ethanol on Flatworm Regeneration." Digital Commons @ East Tennessee State University, 2007. https://dc.etsu.edu/etd/2028.

Full text
Abstract:
Flatworms, or planarian, have a high potential for regeneration and have been used as a model to investigate regeneration and stem cell biology for over a century. Chemicals, temperature, and seasonal factors can influence planarian regeneration. Caffeine and ethanol are two widely used drugs and their effect on flatworm regeneration was evaluated in this experiment. Non-toxic levels of caffeine, a stimulant, and ethanol, a depressant, were determined. The tails of the flatworms were removed and the regeneration stage was analyzed every 3 days for 15 days to see the effect of these drugs alone and in combination on regeneration. For day 3 and day 6, there was a significant difference between the ethanol treatment and the other treatments (positive control, caffeine treatment, and combined treatment). The ethanol treatment showed a delay in the initiation of regeneration but caught up to the other treatments by day 15.
APA, Harvard, Vancouver, ISO, and other styles
6

Steiner, Jessica Kathryne. "Characterization of sterility and germline defects caused by Smed-boule RNA-interference." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1463490878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.

Full text
Abstract:
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden)
Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
APA, Harvard, Vancouver, ISO, and other styles
8

Bocchinfuso, Donald Gerald. "Proteomic Profiling of the Planarian Schmidtea mediterranea and its Mucous Reveals Similarities with Human Secretions and those Predicted for Parasitic Flatworms." Thesis, 2012. http://hdl.handle.net/1807/33342.

Full text
Abstract:
The freshwater planarian Schmidtea mediterranea has been used in research for over 100 years, and is an emerging stem cell model. Exteriorly, planarians are covered in mucous secretions of unknown composition. While the planarian genome has been sequenced, it remains mostly unannotated. The goal my master’s research was to annotate the planarian proteome and mucous sub-proteome. Using a proteogenomics approach, I elucidated the proteome and mucous subproteome via mass spectrometry together with an in silico translated transcript database. I identified 1604 proteins, which were annotated using the Swiss-Prot BLAST algorithm and Gene Ontology analysis. The S. mediterranea proteome is highly similar to that predicted for the trematode Schistosoma mansoni associated with schistosomiasis. Remarkably, orthologs of 119 planarian mucous proteins are present in human mucosal secretions and tear fluid. I suggest planarians have potential to be a model system for parasitic worms and diseases underlined by mucous aberrancies.
APA, Harvard, Vancouver, ISO, and other styles
9

Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30879.

Full text
Abstract:
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Planarian flatworms"

1

Shinozawa, Takao, Syuichi Shiozaki, Masanobu Ezaki, Hideki Fujino, Takeshi Tanaka, and Toshihiko Saheki. "Regulation factor for planarian regeneration." In Biology of Turbellaria and some Related Flatworms, 247–53. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schürmann, Wolfgang, and Roland Peter. "Separation of planarian neoblasts based on density gradient centrifugation." In Biology of Turbellaria and some Related Flatworms, 267. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peter, Roland. "Regenerative and reproductive capacities of the fissiparous planarian Dugesia tahitiensis." In Biology of Turbellaria and some Related Flatworms, 261. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eriksson, Krister, Pertti Panula, and Maria Reuter. "GABA in the nervous system of the planarian Polycelis nigra." In Biology of Turbellaria and some Related Flatworms, 285–89. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sakurai, Takashige, and Saburo Ishii. "An electron microscope study of primary epidermis formation in freshwater planarian embryos." In Biology of Turbellaria and some Related Flatworms, 159. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morita, Michio. "Structure and function of the reticular cell in the planarian Dugesia dorotocephala." In Biology of Turbellaria and some Related Flatworms, 189–96. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shinozawa, Takao, Hajime Kawarada, Kazuhisa Takezaki, Hideaki Tanaka, and Kinji Inoue. "Preparation of monoclonal antibodies against planarian organs and the effect of fixatives." In Biology of Turbellaria and some Related Flatworms, 255–57. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morita, Michio, and Jay Boyd Best. "Fine structure of the astrocyte-like neuroglial cell in the planarian Dugesia dorotocephala." In Biology of Turbellaria and some Related Flatworms, 197. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saló, Emili, Ana Maria Muñoz-Mármol, José Ramon Bayascas-Ramirez, Jordi Garcia-Fernàndez, Agusti Miralles, Andreu Casali, Montserrat Corominas, and Jaume Baguñá. "The freshwater planarian Dugesia (G.) tigrina contains a great diversity of homeobox genes." In Biology of Turbellaria and some Related Flatworms, 269–75. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peter, Roland. "Restitution bodies from planarian cell suspensions: formation and survival in an isotonic culture medium." In Biology of Turbellaria and some Related Flatworms, 265. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0045-8_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography