Academic literature on the topic 'Planar Nanomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Planar Nanomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Planar Nanomaterials"
Story, S. Drew, Stephen Boggs, Linda M. Guiney, Mani Ramesh, Mark C. Hersam, C. Jeffrey Brinker, and Sharon L. Walker. "Aggregation morphology of planar engineered nanomaterials." Journal of Colloid and Interface Science 561 (March 2020): 849–53. http://dx.doi.org/10.1016/j.jcis.2019.11.067.
Full textQu, Xin, Jinghai Yang, Yanchao Wang, Jian Lv, Zhongfang Chen, and Yanming Ma. "A two-dimensional TiB4monolayer exhibits planar octacoordinate Ti." Nanoscale 9, no. 45 (2017): 17983–90. http://dx.doi.org/10.1039/c7nr05688e.
Full textAmaro, Andrea, Adrian Suarez, Jose Torres, Pedro A. Martinez, Roberto Herraiz, Antonio Alcarria, Adolfo Benedito, Rocio Ruiz, Pedro Galvez, and Antonio Penades. "Shielding Effectiveness Measurement Method for Planar Nanomaterial Samples Based on CNT Materials up to 18 GHz." Magnetochemistry 9, no. 5 (April 25, 2023): 114. http://dx.doi.org/10.3390/magnetochemistry9050114.
Full textSivakumar, Ponnurengam M., Matin Islami, Ali Zarrabi, Arezoo Khosravi, and Shohreh Peimanfard. "Polymer-Graphene Nanoassemblies and their Applications in Cancer Theranostics." Anti-Cancer Agents in Medicinal Chemistry 20, no. 11 (July 8, 2020): 1340–51. http://dx.doi.org/10.2174/1871520619666191028112258.
Full textWüest, R. "Proximity-effect induced density limitations for electron-beam patterned planar photonic nanomaterials." Photonics and Nanostructures - Fundamentals and Applications 7, no. 4 (December 2009): 212–19. http://dx.doi.org/10.1016/j.photonics.2009.09.001.
Full textKarakashov, Blagoj, Martine Mayne-L’Hermite, and Mathieu Pinault. "Conducting Interface for Efficient Growth of Vertically Aligned Carbon Nanotubes: Towards Nano-Engineered Carbon Composite." Nanomaterials 12, no. 13 (July 4, 2022): 2300. http://dx.doi.org/10.3390/nano12132300.
Full textWang, Zhen, Zhiming Liu, Chengkang Su, Biwen Yang, Xixi Fei, Yi Li, Yuqing Hou, et al. "Biodegradable Black Phosphorus-based Nanomaterials in Biomedicine: Theranostic Applications." Current Medicinal Chemistry 26, no. 10 (June 20, 2019): 1788–805. http://dx.doi.org/10.2174/0929867324666170920152529.
Full textKasarla, Sarveshwar, Vimala Saravanan, Vidhya Prasanth, and Manjula Selvam. "The Influence of Thermoelectric Properties of Nanomaterial and Applications." Journal on Materials and its Characterization 1, no. 1 (December 1, 2022): 1–5. http://dx.doi.org/10.46632/jmc/1/1/1.
Full textGoldenberg, Leonid M., Mathias Köhler, and Christian Dreyer. "SiO2 Nanoparticles-Acrylate Formulations for Core and Cladding in Planar Optical Waveguides." Nanomaterials 11, no. 5 (May 3, 2021): 1210. http://dx.doi.org/10.3390/nano11051210.
Full textKylián, O., D. Nikitin, J. Hanuš, S. Ali-Ogly, P. Pleskunov, and H. Biederman. "Plasma-assisted gas-phase aggregation of clusters for functional nanomaterials." Journal of Vacuum Science & Technology A 41, no. 2 (March 2023): 020802. http://dx.doi.org/10.1116/6.0002374.
Full textDissertations / Theses on the topic "Planar Nanomaterials"
Seinberg, Liis. "Low Temperatures Synthesis and Properties of Ferromagnetic -Metal Nanomaterials and Square-Planar Coordinate Iron Oxides." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174955.
Full textTian, Furong [Verfasser]. "Influence of nanomaterials on cell function / Max-Planck-Institut für Metallforschung, Stuttgart. Vorgelegt von Furong Tian." Stuttgart : Max-Planck-Inst. für Metallforschung, 2006. http://d-nb.info/980324068/34.
Full textKoehle-Divo, Vanessa. "Effets de nanomatériaux chez deux espèces de bivalves le long d'un gradient de salinité : approches intégrées physiologiques et moléculaires." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0254.
Full textNanotechnology is constantly evolving and leads to the incorporation of engineered nanomaterials (ENM) into daily commercial products. The synthesis of ENM and the use of products containing those ENM leads to their release in the environment but the risk of ENM is not yet known. The particular physico-chemical properties of ENM makes the evaluation of their toxicity particularly difficult and still not completely solved now. This thesis is integrated to the ANR NanoSALT (2013-2017) and aims to evaluate the fate and the effects of cerium dioxide and copper oxide ENM in two bivalve species representative of freshwaters (Corbicula fluminea) and of seawaters (Scrobicularia plana). The organisms were exposed to realistic concentrations of these ENM at different stage of their life-cycle, and through the setting up of exposure increasingly closed to environmental conditions (micro- and mesocosms). Nowadays, few nanotoxicology studies have adopted an approach of molecular biology for the evaluation and the comprehension of ENM effects in invertebrates, and more particularly in non-sequenced species. One of the objective of the thesis was to use the qPCR approach for the evaluation of the gene expression perturbation by ENM. This work allowed to determine the fate and the behavior of ENM in the different exposure conditions. The evaluation of ENM effects has been done at different biological scales (molecular, cellular, individual). The use of multivariate statistical tools has been particularly useful for the analysis of the expression variations of the targeted genes. The multi-marker approach at different biological scales allowed the integration of a lot of data, which generally allowed us to differentiate the effects of the different forms of ENM
Dickinson, Edmund John Farrer. "Charge transport dynamics in electrochemistry." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:e4acac56-7265-49ec-9a36-49b3ae6729ed.
Full textBooks on the topic "Planar Nanomaterials"
Oshiyama, Atsushi, and Susumu Okada. Roles of shape and space in electronic properties of carbon nanomaterials. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.3.
Full textBioinspired Nanomaterials. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901571.
Full textGinley, David, and Thomas Fix. Advanced Micro- and Nanomaterials for Photovoltaics. Elsevier, 2019.
Find full textGinley, David, and Thomas Fix. Advanced Micro- and Nanomaterials for Photovoltaics. Elsevier, 2019.
Find full textSaharan, Vinod, and Ajay Pal. Chitosan Based Nanomaterials in Plant Growth and Protection. Springer, 2016.
Find full textSaharan, Vinod, and Ajay Pal. Chitosan Based Nanomaterials in Plant Growth and Protection. Springer London, Limited, 2016.
Find full textSingh, Ashok K., Shivesh Sharma, Parvaiz Ahmad, Durgesh Kumar Tripathi, and Devendra Kumar Chauhan. Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies. Elsevier Science & Technology Books, 2017.
Find full textSingh, Ashok K., Shivesh Sharma, Parvaiz Ahmad, Devendra Kumar Chauhan, and Nawal Kishore Dubey. Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies. Elsevier Science & Technology Books, 2018.
Find full textBook chapters on the topic "Planar Nanomaterials"
Romanov, Sergei G. "Planar Hybrid Plasmonic-Photonic Crystals." In Nanomaterials and Nanoarchitectures, 273–99. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9921-8_9.
Full textPanda, Asit K. "Metamaterial-Inspired Planar Cells for Miniaturized Filtering Applications." In Materials Horizons: From Nature to Nanomaterials, 99–117. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2267-3_6.
Full textRauch, E. F., and L. Dupuy. "Textural Evolution during Equal Channel Angular Extrusion versus Planar Simple Shear." In Nanomaterials by Severe Plastic Deformation, 297–302. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602461.ch5b.
Full textPanda, Asit K. "Some Aspects of Artificial Engineered Materials: Planar and Conformal Geometries." In Materials Horizons: From Nature to Nanomaterials, 17–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2267-3_2.
Full textPalazon, Francisco, Pedro Rojo Romeo, Ali Belarouci, Céline Chevalier, Hassan Chamas, Éliane Souteyrand, Abdelkader Souifi, Yann Chevolot, and Jean-Pierre Cloarec. "Site-Selective Self-Assembly of Nano-Objects on a Planar Substrate Based on Surface Chemical Functionalization." In Nanopackaging: From Nanomaterials to the Atomic Scale, 93–112. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21194-7_7.
Full textPan, Xia-Hui, Shou-Wen Yu, and Xi-Qiao Feng. "Oriented Thermomechanics for Isothermal Planar Elastic Surfaces Under Small Deformation." In IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 1–13. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_1.
Full textAdassooriya, Nadeesh M., Ryan Rienzie, and Nadun H. Madanayake. "Synthesis of Nanomaterials." In Nanoscale Technologies in Plant Sciences, 17–29. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003346852-2.
Full textKumari, R. Mankamna, Nikita Sharma, Geeta Arya, and Surendra Nimesh. "Recent Progress in Applied Nanomaterials." In Plant Nanobionics, 33–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12496-0_2.
Full textAdassooriya, Nadeesh M., Ryan Rienzie, and Nadun H. Madanayake. "Characterization Techniques of Nanomaterials." In Nanoscale Technologies in Plant Sciences, 96–104. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003346852-8.
Full textSelvakesavan, Rajendran K., Dariusz Kruszka, Preeti Shakya, Dibyendu Mondal, and Gregory Franklin. "Impact of Nanomaterials on Plant Secondary Metabolism." In Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications, 133–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20878-2_6.
Full textConference papers on the topic "Planar Nanomaterials"
Wang, Lai-Sheng. "From planar boron clusters to borophenes and borospherenes." In International Symposium on Clusters and Nanomaterials, edited by Puru Jena and Anil K. Kandalam. SPIE, 2016. http://dx.doi.org/10.1117/12.2254384.
Full textPatel, Priya, Jaykumar Dave, Mohmadsohil Momin, Chirayu Sheth, Rushabh Gajab, Meet Dadhania, and Rutu Parekh. "CNTFET: Comparative Study of Planar and Coaxial." In 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO). IEEE, 2022. http://dx.doi.org/10.1109/5nano53044.2022.9828964.
Full textChkhartishvili, Levan. "Boron quasi-planar clusters a mini-review on diatomic approach." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190297.
Full textIsmaeel Maricar, M., J. Glover, G. A. Evans, Ata Khalid, V. Papageorgiou, Li Chong, G. Dunn, et al. "Planar gunn diode characterisation and resonator elements to realise oscillator circuits." In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609384.
Full textBalaban, O., I. Grygorchak, A. Borysyuk, M. Larkin, O. Hevus, N. Mitina, A. Zaichenko, V. Datsyuk, and S. Trotsenko. "Electrospining and physical properties of nanofiber polymer-inorganic planar quantum layers, hybridized with 0-D Fe2O3." In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190260.
Full textAllen, Ashante’, Andrew Cannon, William King, and Samuel Graham. "Flexible Electronic Devices From Hot Embossing Materials Transfer." In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87068.
Full textDu, H., S. H. Ng, K. T. Neo, M. Ng, I. S. Altman, S. Chiruvolu, N. Kambe, R. Mosso, and K. Drain. "Inorganic-Polymer Nanocomposites for Optical Applications." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17088.
Full textDevaradjane, Ramaprasath, and Donghyun Shin. "Enhanced Heat Capacity of Molten Salt Nano-Materials for Concentrated Solar Power Application." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87737.
Full textPyatibratov, M. G., A. S. Syutkin, S. N. Beznosov, A. V. Galeva, and S. Yu Shchyogolev. "Bioengineering of archaeal flagella." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.203.
Full textYang, Hongjoo, and Debjyoti Banerjee. "Study of Specific Heat Capacity Enhancement of Molten Salt Nanomaterials for Solar Thermal Energy Storage (TES)." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75338.
Full textReports on the topic "Planar Nanomaterials"
none,. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/1218766.
Full textKennedy, Alan, Natalie Smith, Alexander Linan, and Laszlo Kovacs. Bioassay to assess toxicity of water-dispersed engineered nanomaterials in plants; Scientific Operating Procedure Series : Toxicology (T). Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33388.
Full textChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova, and Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Full textChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock, and Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Full text