Journal articles on the topic 'Planar Fault Energies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 journal articles for your research on the topic 'Planar Fault Energies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Eggeler, Y. M., K. V. Vamsi, and T. M. Pollock. "Precipitate Shearing, Fault Energies, and Solute Segregation to Planar Faults in Ni-, CoNi-, and Co-Base Superalloys." Annual Review of Materials Research 51, no. 1 (July 26, 2021): 209–40. http://dx.doi.org/10.1146/annurev-matsci-102419-011433.
Full textWoodward, C., J. M. MacLaren, and S. Rao. "Electronic structure of planar faults in TiAl." Journal of Materials Research 7, no. 7 (July 1992): 1735–50. http://dx.doi.org/10.1557/jmr.1992.1735.
Full textJagatramka, Ritesh, Junaid Ahmed, and Matthew Daly. "The evolution of deformation twinning microstructures in random face-centered cubic solid solutions." Journal of Applied Physics 133, no. 5 (February 7, 2023): 055107. http://dx.doi.org/10.1063/5.0135538.
Full textFarkas, Diana, and Christophe Vailhe. "Planar fault energies and dislocation core spreading in B2 NiAl." Journal of Materials Research 8, no. 12 (December 1993): 3050–58. http://dx.doi.org/10.1557/jmr.1993.3050.
Full textLiu, Lili, Liwan Chen, Youchang Jiang, Chenglin He, Gang Xu, and Yufeng Wen. "Temperature Effects on the Elastic Constants, Stacking Fault Energy and Twinnability of Ni3Si and Ni3Ge: A First-Principles Study." Crystals 8, no. 9 (September 14, 2018): 364. http://dx.doi.org/10.3390/cryst8090364.
Full textWiezorek, J. M. K., and C. J. Humphreys. "On the hierarchy of planar fault energies in TiAl." Scripta Metallurgica et Materialia 33, no. 3 (August 1995): 451–58. http://dx.doi.org/10.1016/0956-716x(95)00212-e.
Full textLiu, Lili, Yelu He, Dingxing Liu, Xiaozhi Wu, and Rui Wang. "Temperature-Dependent Generalized Planar Fault Energy and Twinnability of Mg Microalloyed with Er, Ho, Dy, Tb, and Gd: First-Principles Study." Advances in Materials Science and Engineering 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/7365906.
Full textKibey, S., J. B. Liu, D. D. Johnson, and H. Sehitoglu. "Generalized planar fault energies and twinning in Cu–Al alloys." Applied Physics Letters 89, no. 19 (November 6, 2006): 191911. http://dx.doi.org/10.1063/1.2387133.
Full textZhu, Yaxin, Zhouqi Zheng, Minsheng Huang, Shuang Liang, and Zhenhuan Li. "Modeling of solute hydrogen effect on various planar fault energies." International Journal of Hydrogen Energy 45, no. 15 (March 2020): 9162–73. http://dx.doi.org/10.1016/j.ijhydene.2020.01.107.
Full textWen, Y. F., and J. Sun. "Generalized planar fault energies and mechanical twinning in gamma TiAl alloys." Scripta Materialia 68, no. 9 (May 2013): 759–62. http://dx.doi.org/10.1016/j.scriptamat.2012.12.032.
Full textZhang, J. Y., P. S. Branicio, and D. J. Srolovitz. "Planar fault energies of copper at large strain: A density functional theory study." Journal of Applied Physics 116, no. 10 (September 14, 2014): 103512. http://dx.doi.org/10.1063/1.4895075.
Full textVamsi, K. V., and S. Karthikeyan. "High-throughput estimation of planar fault energies in A3B compounds with L12 structure." Acta Materialia 145 (February 2018): 532–42. http://dx.doi.org/10.1016/j.actamat.2017.10.029.
Full textFu, C. L., J. Zou, and M. H. Yoo. "Elastic constants and planar fault energies of Ti3Al, and interfacial energies at the interface by first-principles calculations." Scripta Metallurgica et Materialia 33, no. 6 (September 1995): 885–91. http://dx.doi.org/10.1016/0956-716x(95)00313-k.
Full textKawabata, T., and O. Izumi. "Effect of the axial ratio on planar fault energies in L10-type superlattice structures." Philosophical Magazine A 55, no. 6 (June 1987): 823–41. http://dx.doi.org/10.1080/01418618708214386.
Full textZhang, W. J., and F. Appel. "Weak-beam TEM study on planar fault energies of Al-lean TiAl-base alloys." Materials Science and Engineering: A 334, no. 1-2 (September 2002): 59–64. http://dx.doi.org/10.1016/s0921-5093(01)01763-4.
Full textGbemou, Kodjovi, Jean Marc Raulot, Vincent Taupin, and Claude Fressengeas. "Continuous Modeling of Dislocation Cores Using a Mechanical Theory of Dislocation Fields." Materials Science Forum 879 (November 2016): 2456–62. http://dx.doi.org/10.4028/www.scientific.net/msf.879.2456.
Full textVailhé, C., and D. Farkas. "Shear faults and dislocation core structures in B2 CoAl." Journal of Materials Research 12, no. 10 (October 1997): 2559–70. http://dx.doi.org/10.1557/jmr.1997.0340.
Full textKim, C. S., and S. I. Kwun. "Ultrasonic Evaluation of Cyclically Deformed Microstructures of Cu and Cu-35Zn Alloy." Materials Science Forum 475-479 (January 2005): 4117–20. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.4117.
Full textVarn, D. P., G. S. Canright, and J. P. Crutchfield. "Inferring planar disorder in close-packed structures via ∊-machine spectral reconstruction theory: structure and intrinsic computation in zinc sulfide." Acta Crystallographica Section B Structural Science 63, no. 2 (March 16, 2007): 169–82. http://dx.doi.org/10.1107/s0108768106043084.
Full textKumar, Kaushlendra, R. Sankarasubramanian, and Umesh V. Waghmare. "Tuning planar fault energies of Ni3Al with substitutional alloying: First-principles description for guiding rational alloy design." Scripta Materialia 142 (January 2018): 74–78. http://dx.doi.org/10.1016/j.scriptamat.2017.08.021.
Full textWoodward, C., and J. M. Maclaren. "Planar fault energies and sessile dislocation configurations in substitutionally disordered Ti-Al with Nb and Cr ternary additions." Philosophical Magazine A 74, no. 2 (August 1996): 337–57. http://dx.doi.org/10.1080/01418619608242147.
Full textLiu, Lili, Rui Wang, Xiaozhi Wu, Liyong Gan, and Qunyi Wei. "Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations." Computational Materials Science 88 (June 2014): 124–30. http://dx.doi.org/10.1016/j.commatsci.2014.03.005.
Full textLiu, Yifan, Xianjun Guan, Yanjie Zhang, Zipeng Jia, Simin Liang, and Xiaowu Li. "Effect of Short-Range Ordering on the Grain Boundary Character Distribution Optimization of FCC Metals with High Stacking Fault Energy: A Case Study on Ni-Cr Alloys." Crystals 12, no. 12 (December 14, 2022): 1822. http://dx.doi.org/10.3390/cryst12121822.
Full textHan, Dong, Jin-Xian He, Xian-Jun Guan, Yan-Jie Zhang, and Xiao-Wu Li. "Impact of Short-Range Clustering on the Multistage Work-Hardening Behavior in Cu–Ni Alloys." Metals 9, no. 2 (January 29, 2019): 151. http://dx.doi.org/10.3390/met9020151.
Full textLv, Xinliang, Shenghu Chen, Qiyu Wang, Haichang Jiang, and Lijian Rong. "Temperature Dependence of Fracture Behavior and Mechanical Properties of AISI 316 Austenitic Stainless Steel." Metals 12, no. 9 (August 28, 2022): 1421. http://dx.doi.org/10.3390/met12091421.
Full textSINGH, A. K., R. SANKARASUBRAMANIAN, and T. K. NANDY. "Mobilities and dislocation energies of planar faults in an ordered A3B (D019) structure." Bulletin of Materials Science 36, no. 4 (August 2013): 677–86. http://dx.doi.org/10.1007/s12034-013-0521-9.
Full textPaidar, Václav, and Andriy Ostapovets. "Displacive Phase Transformations." Solid State Phenomena 150 (January 2009): 159–74. http://dx.doi.org/10.4028/www.scientific.net/ssp.150.159.
Full textMaclaren, J. M., and C. Woodward. "Electronic Structure of Planar Faults and Point Defects in High Temperature Intermetallics." MRS Proceedings 253 (1991). http://dx.doi.org/10.1557/proc-253-387.
Full textKumar, Mukul, T. J. Balk, and K. J. Hemker. "Measurement of Planar Fault Energies in Ni3Ge-Fe3Ge Intermetallic Alloys." MRS Proceedings 538 (1998). http://dx.doi.org/10.1557/proc-538-329.
Full textAndritsos, E. I., and A. T. Paxton. "Effects of calcium on planar fault energies in ternary magnesium alloys." Physical Review Materials 3, no. 1 (January 16, 2019). http://dx.doi.org/10.1103/physrevmaterials.3.013607.
Full textHirel, Pierre, Jean Furstoss, and Philippe Carrez. "A critical assessment of interatomic potentials for modelling lattice defects in forsterite Mg$$_2$$SiO$$_4$$ from 0 to 12 GPa." Physics and Chemistry of Minerals 48, no. 12 (November 11, 2021). http://dx.doi.org/10.1007/s00269-021-01170-6.
Full textZhu, Qi, Zhiliang Pan, Zhiyu Zhao, Guang Cao, Langli Luo, Chaolun Ni, Hua Wei, Ze Zhang, Frederic Sansoz, and Jiangwei Wang. "Defect-driven selective metal oxidation at atomic scale." Nature Communications 12, no. 1 (January 25, 2021). http://dx.doi.org/10.1038/s41467-020-20876-9.
Full textZapol, Peter, Larry A. Curtiss, and Dieter M. Gruen. "First-Principles Study of π-Bonded (100) Planar Defects in Diamond." MRS Proceedings 538 (1998). http://dx.doi.org/10.1557/proc-538-371.
Full textSimmons, J. P., S. I. Rao, and D. M. Dimiduk. "Effect of Planar Fault Energies on Dislocation Core Structures and Mobilities in L10 Compounds." MRS Proceedings 288 (January 1992). http://dx.doi.org/10.1557/proc-288-335.
Full textBreidi, A., J. Allen, and A. Mottura. "First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12compounds." physica status solidi (b) 254, no. 9 (May 16, 2017). http://dx.doi.org/10.1002/pssb.201600839.
Full textLi, Wei, Shuang Lyu, Yue Chen, and Alfonso H. W. Ngan. "Fluctuations in local shear-fault energy produce unique and dominating strengthening in metastable complex concentrated alloys." Proceedings of the National Academy of Sciences 120, no. 12 (March 13, 2023). http://dx.doi.org/10.1073/pnas.2209188120.
Full textZhang, X. D., and M. H. Loretto. "Complex Anti Phase Domain Boundaries In A Gamma TiAl Alloy." MRS Proceedings 364 (1994). http://dx.doi.org/10.1557/proc-364-611.
Full textJohn Balk, T., Mukul Kumar, and Kevin J. Hemker. "Relating Mechanical Properties with Dislocation Cores in Ni3Ge-Fe3Ge Intermetallic Alloys." MRS Proceedings 460 (1996). http://dx.doi.org/10.1557/proc-460-641.
Full textBalk, T. J., Mukul Kumar, O. N. Mryasov, A. J. Freeman, and K. J. Hemker. "Characterizing Deformation Mechanisms in Ni3Ge-Fe3Ge Intermetallic Alloys." MRS Proceedings 552 (1998). http://dx.doi.org/10.1557/proc-552-kk10.8.1.
Full textRao, S., C. Woodward, and P. M. Hazzledine. "The Interaction Between Dislocations and Lamellar Grain Boundaries in Pst γ Tiai." MRS Proceedings 319 (1993). http://dx.doi.org/10.1557/proc-319-285.
Full textRao, Satish I., C. Woodward, and T. A. Parthasarathy. "Empirical Interatomic Potentials for L1O Tial and B2 Nial." MRS Proceedings 213 (1990). http://dx.doi.org/10.1557/proc-213-125.
Full textKhantha, M., V. Vitek, and D. P. Pope. "Dislocation Core Structures and Mechanical Behavior of DO22 Type Alloys." MRS Proceedings 213 (1990). http://dx.doi.org/10.1557/proc-213-229.
Full textWoodward, C., J. M. Maclaren, and S. Rao. "Electronic Structure of Planar Faults in Tial." MRS Proceedings 213 (1990). http://dx.doi.org/10.1557/proc-213-715.
Full textHampel, K., D. D. Vvedensky, and S. Crampin. "First-Principles Calculations of Stacking Faults and Grain Boundaries in Metals." MRS Proceedings 213 (1990). http://dx.doi.org/10.1557/proc-213-57.
Full textBrey, Dominik, Barbara Scherer, and Martin U. Schmidt. "Lattice defects in quinacridone." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 78, no. 5 (September 9, 2022). http://dx.doi.org/10.1107/s205252062200779x.
Full text