Academic literature on the topic 'PINN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PINN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "PINN"
Abdullah, Ibrahima Faye, and Laila Amera Aziz. "Artificial Neural Networks Solutions for Solving Differential Equations: A Focus and Example for Flow of Viscoelastic Fluid with Microrotation." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 112, no. 1 (January 13, 2024): 76–83. http://dx.doi.org/10.37934/arfmts.112.1.7683.
Full textZhang, Wenjuan, and Mohammed Al Kobaisi. "On the Monotonicity and Positivity of Physics-Informed Neural Networks for Highly Anisotropic Diffusion Equations." Energies 15, no. 18 (September 18, 2022): 6823. http://dx.doi.org/10.3390/en15186823.
Full textAng, Elijah Hao Wei, Guangjian Wang, and Bing Feng Ng. "Physics-Informed Neural Networks for Low Reynolds Number Flows over Cylinder." Energies 16, no. 12 (June 7, 2023): 4558. http://dx.doi.org/10.3390/en16124558.
Full textEkramoddoullah, Abul K. M., Doug Taylor, and Barbara J. Hawkins. "Characterisation of a fall protein of sugar pine and detection of its homologue associated with frost hardiness of western white pine needles." Canadian Journal of Forest Research 25, no. 7 (July 1, 1995): 1137–47. http://dx.doi.org/10.1139/x95-126.
Full textLi, Jianfeng, Liangying Zhou, Jingwei Sun, and Guangzhong Sun. "Physically plausible and conservative solutions to Navier-Stokes equations using Physics-Informed CNNs." JUSTC 53 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0174.
Full textXiao, Zixu, Yaping Ju, Zhen Li, Jiawang Zhang, and Chuhua Zhang. "On the Hard Boundary Constraint Method for Fluid Flow Prediction based on the Physics-Informed Neural Network." Applied Sciences 14, no. 2 (January 19, 2024): 859. http://dx.doi.org/10.3390/app14020859.
Full textXia, Yichun, and Yonggang Meng. "Physics-Informed Neural Network (PINN) for Solving Frictional Contact Temperature and Inversely Evaluating Relevant Input Parameters." Lubricants 12, no. 2 (February 17, 2024): 62. http://dx.doi.org/10.3390/lubricants12020062.
Full textChen, Yanlai, Yajie Ji, Akil Narayan, and Zhenli Xu. "TGPT-PINN: Nonlinear model reduction with transformed GPT-PINNs." Computer Methods in Applied Mechanics and Engineering 430 (October 2024): 117198. http://dx.doi.org/10.1016/j.cma.2024.117198.
Full textNgo, Son Ich, and Young-Il Lim. "Solution and Parameter Identification of a Fixed-Bed Reactor Model for Catalytic CO2 Methanation Using Physics-Informed Neural Networks." Catalysts 11, no. 11 (October 28, 2021): 1304. http://dx.doi.org/10.3390/catal11111304.
Full textHou, Qingzhi, Honghan Du, Zewei Sun, Jianping Wang, Xiaojing Wang, and Jianguo Wei. "PINN-CDR: A Neural Network-Based Simulation Tool for Convection-Diffusion-Reaction Systems." International Journal of Intelligent Systems 2023 (August 16, 2023): 1–15. http://dx.doi.org/10.1155/2023/2973249.
Full textDissertations / Theses on the topic "PINN"
Cedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Full textCaple, Christopher. "An analytical appraisal of copper alloy pin production: 400-1600 AD : the development of the copper alloy, pin industry in Britain during the post-Roman period, based on analytical, metallographic and typological examination with consideration of historical and archaeological archives." Thesis, University of Bradford, 1986. http://hdl.handle.net/10454/3423.
Full textPureswaran, Deepa S. "Dynamics of pheromone production and communication in the mountain pine beetle, Dendroctonus ponderosae Hopkins and the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae)." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ51452.pdf.
Full textGrenon, Frank. "Relation entre la présence du nodulier (Petrova albicapitana) et les diminutions de la croissance du pin gris (Pinus banksiana) /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1998. http://theses.uqac.ca.
Full textYoung, Anna Gilg. "The isolation and characterization of geranyl diphosphate synthase from the pine engraver, Ips pini (Coleoptera: Scolytidae) /." abstract and full text PDF (UNR users only), 2004. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3164670.
Full textHodnett, Kyle. "Mating and fitness consequences of breeding aggregations in pine engraver bark beetles, Ips pini (Coleoptera: scolytidae)." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ65104.pdf.
Full textPei, Ming Hao. "Peridermium pini (Pers.) Lév.-Axenic culture and infection of pine callus tissue cultures and young seedlings." Thesis, University of Aberdeen, 1989. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU553195.
Full textRobertson, Ian Charles. "Paternal care in the pine engraver, Ips pini (Coleoptera: Scolytidae), and the implications of variable reproductive potential for population dymamics." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ37748.pdf.
Full textEvrard, Alexandre. "Etude des interactions cellulaires des puroindolines et étude de la régulation de l'expression des gènes PinA et PinB de blé." Montpellier, ENSA, 2003. http://www.theses.fr/2003ENSA0012.
Full textPuroindolines are 13kDa proteins, involved in wheat grain softness. Nethertheless, Cell function and Pin genes expression regulation are not very well documented. Puroindolines cell interactions were studied in the yeast Saccaromyces cerevisiae. Puroindolines do not form homo or heterodimer but interact in vivo with the yeast plasma membrane. Site directed mutagenesis approach highlighted that the tryptophan rich domain of puroindoline-a is involved in this interaction but not in the case of puroindoline-b. In parallel, promoter of both PinA and PinB genes were studied in transgenic rice plants. PinA and PinB genes are expressed in the grain and regulated during development. Whereas PinB gene expression is grain specific, PinA gene is expressed also in other organs is wound induced in stems and leaves
Goodall, Benjamin. "Identification of novel factors contributing to the regulation of PIN-FORMED 7 (PIN7) transcription, in the Arabidopsis root." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/50036/.
Full textBooks on the topic "PINN"
Scott, De Buitléir, ed. Blaiseadh pinn: Nuascríbhneoireacht Ghaeilge. [Dublin, Ireland?]: Cois Life, 2008.
Find full text1940-, Prút Liam, ed. Cuimhní pinn, cuimhní cinn. Binn Éadair, BÁC: Coisceím, 2010.
Find full textGréagóir, Ó Dúill, ed. Fearann Pinn: Filíochta 1900-1999. Baile Átha Cliath: Coiscéim, 2000.
Find full textGréagóir, Ó Dúill, ed. Fearann pinn: Filíocht, 1900-1999. Binn Éadair, Baile Átha Cliath: Coiscéim, 2000.
Find full textRegina, Uí Chollatáin, ed. Iriseoirí pinn na Gaeilge: An cholúnaíocht liteartha : critic iriseoireachta. Baile Átha Cliath: Cois Life Teo., 2008.
Find full textShusen, Yao, ed. Bao ping qi an: Zhong pian ping shu. Shenyang: Chun feng wen yi chu ban she, 1985.
Find full textShusen, Yao, ed. Bao ping qi an: Zhong pian ping shu. Shenyang: Chun feng wen yi chu ban she, 1985.
Find full textZhou, Can. Zhou Can ping jie shi 30 pian. Singapore: Xinjiapo qing nian shu ju, 2012.
Find full textShusen, Yao, ed. Shemingwang chuan qi: Zhong pian ping shu. Shenyang: Chun feng wen yi chu ban she, 1985.
Find full textLewisohn, Ludwig. Jin dai wen yi pi ping duan pian. [Beijing: Beijing zhong xian tuo fang ke ji fa zhan you xian gong si, 2012.
Find full textBook chapters on the topic "PINN"
Ibrahim, Abdul Qadir, Sebastian Götschel, and Daniel Ruprecht. "Parareal with a Physics-Informed Neural Network as Coarse Propagator." In Euro-Par 2023: Parallel Processing, 649–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39698-4_44.
Full textDhamirah Mohamad, Najwa Zawani, Akram Yousif, Nasiha Athira Binti Shaari, Hasreq Iskandar Mustafa, Samsul Ariffin Abdul Karim, Afza Shafie, and Muhammad Izzatullah. "Heat Transfer Modelling with Physics-Informed Neural Network (PINN)." In Studies in Systems, Decision and Control, 25–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04028-3_3.
Full textLi, Yan, Mingzhou Yang, Matthew Eagon, Majid Farhadloo, Yiqun Xie, William F. Northrop, and Shashi Shekhar. "Eco-PiNN: A Physics-informed Neural Network for Eco-toll Estimation." In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), 838–46. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2023. http://dx.doi.org/10.1137/1.9781611977653.ch94.
Full textSaha, Subrata. "Physics Informed Neural Network (PINN) for Load Reconstruction for Vibrating Pipes in Process Plants." In International Conference on Security, Surveillance and Artificial Intelligence (ICSSAI-2023), 282–89. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003428459-32.
Full textSzerszeń, Krzysztof, and Eugeniusz Zieniuk. "Coupling PIES and PINN for Solving Two-Dimensional Boundary Value Problems via Domain Decomposition." In Computational Science – ICCS 2024, 87–94. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63759-9_11.
Full textKalash, Taj Khan. "Jinn Pinn Dance in the Floods: Perceptions of Flood Disasters Among the Kalasha of Pakistan." In Dealing with Disasters, 101–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56104-8_5.
Full textYe, Yubo, Huafeng Liu, Xiajun Jiang, Maryam Toloubidokhti, and Linwei Wang. "A Spatial-Temporally Adaptive PINN Framework for 3D Bi-Ventricular Electrophysiological Simulations and Parameter Inference." In Lecture Notes in Computer Science, 163–72. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43990-2_16.
Full textYan, Da, and Ligang He. "DP-PINN: A Dual-Phase Training Scheme for Improving the Performance of Physics-Informed Neural Networks." In Computational Science – ICCS 2024, 19–32. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63749-0_2.
Full textvan Laerhoven, Kristof, Albrecht Schmidt, and Hans-Werner Gellersen. "Pin&Play: Networking Objects through Pins." In UbiComp 2002: Ubiquitous Computing, 219–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45809-3_17.
Full textvan Cranenburgh, Ben. "Inleiding: de studie van pijn." In Pijn, 19–33. Houten: Bohn Stafleu van Loghum, 2016. http://dx.doi.org/10.1007/978-90-368-1604-5_1.
Full textConference papers on the topic "PINN"
My Ha, Dao, Chiu Pao-Hsiung, Wong Jian Cheng, and Ooi Chin Chun. "Physics-Informed Neural Network With Numerical Differentiation for Modelling Complex Fluid Dynamic Problems." In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-81237.
Full textMalineni, Vamsi Sai Krishna, and Suresh Rajendran. "On the Performance of a Data-Driven Backward Compatible Physics Informed Neural Network (BC-PINN) for Prediction of Flow Past a Cylinder." In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-105343.
Full textLaubscher, Ryno, Pieter Rousseau, and Chris Meyer. "Modeling of Inviscid Flow Shock Formation in a Wedge-Shaped Domain Using a Physics-Informed Neural Network-Based Partial Differential Equation Solver." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-81768.
Full textManiglio, Marco, Giorgio Fighera, Laura Dovera, and Carlo Cristiano Stabile. "Physics Informed Neural Networks Based on a Capacitance Resistance Model for Reservoirs Under Water Flooding Conditions." In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207800-ms.
Full textGhaderi, Aref, and Roozbeh Dargazany. "Modeling the Burning of Polymer Matrix: Training Collocation Physics-Informed Neural Network." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95456.
Full textChu, Haoyu, Yuto Miyatake, Wenjun Cui, Shikui Wei, and Daisuke Furihata. "Structure-Preserving Physics-Informed Neural Networks with Energy or Lyapunov Structure." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/428.
Full textAlhubail, Ali, Marwan Fahs, Francois Lehmann, and Hussein Hoteit. "Physics-Informed Neural Networks for Modeling Flow in Heterogeneous Porous Media: A Decoupled Pressure-Velocity Approach." In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24362-ms.
Full textChen, Bo-Chen, and Yi-Hsiang Yu. "A Preliminary Study of Learning a Wave Energy Converter System Using Physics-Informed Neural Network Method." In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-105123.
Full textDale, Seth, Doug Turner, Salar Afra, Adriana Teixeira, Leandro Saraiva Valim, Carolyn Koh, and Dinesh Mehta. "Physics-Informed Neural Networks for Gas Hydrate Plugging Risk Assessment Using Intrinsic Kinetics and Flowloop Data." In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35362-ms.
Full textFuchi, Kazuko W., Eric M. Wolf, David S. Makhija, Nathan A. Wukie, Christopher R. Schrock, and Philip S. Beran. "Investigation of Analysis and Gradient-Based Design Optimization Using Neural Networks." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2241.
Full textReports on the topic "PINN"
Pettit, Chris, and D. Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41034.
Full textMotter, J. W., J. D. Pitcher, M. Fankhanel, and W. Campbell. Pinon Pine IGCC project status update, August 1992. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10106871.
Full textP. R. Fresquez, J. D. Huchton, M. A. Mullen, and Jr L. Naranjo. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/752387.
Full textWulf, Gerburg M., and Kun P. Lu. Roles of Mitotic Checkpoint Regulators Pin1 and Pin2 in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada424006.
Full textWulf, Gerburg M., and Kung P. Lu. Roles of the Mitotic Checkpoint Regulators Pin1 and Pin2 in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada404683.
Full textWard, Kimiora. Sierra Nevada Network white pine monitoring: 2022 annual report. National Park Service, 2023. http://dx.doi.org/10.36967/2301003.
Full textWard, Kimiora. Sierra Nevada Network high elevation white pine monitoring: 2021 annual report. National Park Service, 2024. http://dx.doi.org/10.36967/2302327.
Full textOnuoha, Chukwuma Candidus, and Shamus McDonnell. PR-388-143604-R01 Identifying Coating Faults and Severity Through Electrolyte Resistivity Measurement. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2018. http://dx.doi.org/10.55274/r0011481.
Full textBlanchard, J. P., and N. M. Ghoniem. Bowing of solid breeder fuel pins and multiplier rods in a pin-type fusion blanket. Office of Scientific and Technical Information (OSTI), February 1986. http://dx.doi.org/10.2172/5550859.
Full textPoloboc, Alina. Fancy Pink Goat. Intellectual Archive, December 2023. http://dx.doi.org/10.32370/iaj.2998.
Full text