Dissertations / Theses on the topic 'Pili de type IVa'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Pili de type IVa.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zatakia, Hardik M. "Characterization of symbiotically important processes in Sinorhizobium meliloti." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/56652.
Full textPh. D.
Berry, Jamie. "Structural characterization of type IV pilus biogenesis proteins." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/structural-characterization-of-type-iv-pilus-biogenesis-proteins(1e0d7119-58d5-4e5d-839d-daef8deb76ab).html.
Full textJacobsen, Theis. "Structure and assembly of bacterial type IV filaments unravelled by an integrative approach." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS146.
Full textThe type IV filament (TFF) superfamily is a group of molecular machineries located in the membrane of bacteria and archaea. These machineries assemble non-covalent protein polymers called pili extending away from the cell to perform multiple functions which have evolved specifically to adapt to different host organisms. The TFF superfamily includes the type II secretion system (T2SS) and the type IVa pili (T4aP). The T2SS promotes the secretion of substrates in Gram-negative bacteria. These substrates are in general enzymes degrading complex carbohydrates, peptidoglycan, and lipids, resulting in the release of nutrients. The T4aP are long flexible fibres anchored in the membrane and enable various functions such as twitching motility, DNA uptake and biofilm formation. The mechanism by which the T2SS and T4aP pilus fulfil their different functions is still not completely understood. To understand the mechanism of secretion by T2SS, we studied the structure of the pseudopilin OutG, the major component of the pseudopilus in Dickeya dadantii by Nuclear Magnetic Resonance (NMR). In a second part, we aimed to address the structure and the assembly of minor pilins, protein components of Enterohemorrhagic Escherichia coli T4aP. We optimised the overexpression, purification and labelling of the minor pilins for their structural study by NMR. Furthermore, molecular modelling of the minor pilins and crosslinking mass spectrometry were performed on whole T4aP and T2SS pseudopili purified samples as a methodology to determine the structure and the interactions of pilins and pseudopilins within the native pilus
Luna-Rico, Areli-Noemi. "Enterobacterial type IV pili : structure, assembly and molecular function." Thesis, Sorbonne Paris Cité, 2018. https://theses.md.univ-paris-diderot.fr/LUNARICO_Areli_4_va_20180629.pdf.
Full textMany bacterial species display surface fibers to interact with the surrounding environment. Type 4 pili (T4P) are long and thin, flexible fibers involved in a variety of functions including adherence, motility, secretion, DNA uptake and biofilm formation. They are composed of thousands of copies of major pilin subunits and are assembled by a protein complex localized in the bacterial envelope. In this study we focused on the T4P from Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7. EHEC is a human foodborne pathogen that causes outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS), which can lead to a lethal outcome. EHEC T4P is composed of the major subunit PpdD and presumably in lower abundance by minor pilins PpdA, PpdB, YgdB and PpdC.This study has aimed to describe the structure of the T4P from EHEC, a representative of pili conserved in enterobacteria. Structural information provides insights that can relate to the mode of action of these organelles. In this project we addressed the structure of the EHEC T4P and the molecular basis of their assembly. Due to the flexible and non-covalent nature of T4P fibers we used an integrative approach to combine information obtained by cryo-electron microscopy, NMR spectroscopy, molecular modeling and biochemical analyses to obtain a high quality structure of the EHEC T4P. In addition, from functional, interaction and mutational analysis we gained insights into the molecular interactions between the pilin subunits present in the fiber. The T4P are poorly studied in enterobacterial systems; despite the presence of all the necessary genes, the conditions that trigger their expression in E. coli are unknown. In addition, in E. coli the T4P-related genes are coregulated with genes encoding the DNA uptake machinery, suggesting their role in natural competence. In order to facilitate the study of T4P, we achieved a functional reconstitution of the EHEC T4PS in the non-pathogenic E. coli K-12 through the controlled expression of the T4P genes cloned together as a single artificial operon. With this accomplishment we were able to perform comparative analyses between pili assembled by a heterologous system (the Type 2 secretion system from another enterobacterium, Klebsiella oxytoca) and by the cognate EHEC T4P assembly system. CryoEM analysis showed that these pili are identical, indicating that major pilins are the key determinants of fiber structure and symmetry. The results also led us to obtain important insights into pilus assembly and to characterize PpdD interactions with the assembly machinery. These interactions and PpdD dimerization were required for pilin stability prior to pilus assembly, highlighting important early steps involving targeting of subunits to the assembly machinery. Together, these results lay the foundations for future structural and functional studies of enterobacterial T4P
Seow, Vui Yin. "DNA Transformation and Type IV Pili in Neisseria gonorrhoeae." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS049.
Full textAntibiotic resistance, evident in strains like Neisseria gonorrhoeae, is a global health crisis. Understanding its mechanism, particularly natural transformation through Type IV Pili in these bacteria, remains vital. Despite discovery in 1928, the specifics of natural transformation remain elusive. Neisseria gonorrhoeae's dependence on Type IV Pili makes it an ideal model for studying this process.This thesis embarks on an intensive exploration into the intricate processes of DNA transformation within Neisseria gonorrhoeae, responding to the urgency of this critical concern. Central to this comprehensive study is the pivotal role attributed to Type IV Pili, a multifunctional and essential player in orchestrating DNA transformation.This research meticulously lays the groundwork, introducing molecular biology techniques essential for genetic engineering within N. gonorrhoeae. We explores tool development, particularly in medium optimization and microscopy tools tailored to study DNA uptake and transformation. Moreover, our investigations uncovered an intriguing correlation between starch and fatty acid, significantly impacting gonococcal growth. To understand Type IV pili dynamics during DNA uptake, we engineered tools and a streamlined workflow capable of visualizing and quantifying both pili and DNA molecules. Additionally, we automated the analysis of hydrogel micropillars to delve into the mechanical properties of pili retractions. Furthermore, adaptations to the micropillar coatings enabled us to study pili retractions interacting with DNA.This in-depth investigation also involves scrutinizing the behaviour of ΔPilV, ΔPilC, and ΔPilD mutants, unveiling profound insights into the regulatory mechanisms of Type IV Pili and their consequential impact on the dynamics of DNA uptake. Particularly noteworthy is the revelation that ΔPilV mutations induce alterations in PilE translocation, resulting in the emergence of shorter yet efficient pili. This discovery underscores the adaptive nature of N. gonorrhoeae in manipulating the diversity of Type IV Pili to optimize DNA uptake processes, a revelation that holds immense significance in combating antibiotic resistance.Furthermore, our studies on other minor pilins sheds light on phenotype alterations without impeding the mechanics of pili retraction. Our studies on PilV and PilD mutants, highlight the influence of posttranslational modifications on PilE, thereby accentuating the heterogeneous composition of Type IV Pili and their robust functionality as a polymer.We also include a short study examining the interplay between commensal and pathogenic Neisseria species within the context of DNA uptake broadens the scope of implications, inviting further inquiry and expanding the horizons of this captivating field.While this expedition leaves certain questions unanswered, its depth and breadth offer extensive insights into the intricate mechanisms of DNA transformation and the dynamic role played by Type IV Pili in the remarkable adaptability of Neisseria gonorrhoeae. Not only does this thesis provide solutions to existing queries, but it also illuminates novel pathways for future research, sparking curiosity and fascination in unravelling the functional intricacies of pili structures and their profound implications in DNA transformation
Alteri, Christopher. "Novel Pili of Mycobacterium tuberculosis." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1276%5F1%5Fm.pdf&type=application/pdf.
Full textCouchman, Edward. "Investigating the Type IV pili of Clostridium difficile and Clostridium sordellii." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/48055.
Full textHendrick, William Anthony. "Molecular Analysis of Type IV Pilus Assembly in Clostridium perfringens." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81696.
Full textPh. D.
Amerighi, Fulvia. "Impact of S.pneumoniae type-I pilus and its subunits on bacterial adherence to human epithelial cells." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422591.
Full textStreptococcus pneumoniae è un batterio Gram-positivo che fa parte della normale flora microbica che colonizza in modo asintomatico le vie respiratorie. Tuttavia questo microorganismo è anche uno dei principali patogeni umani, può, infatti, causare gravi infezioni del tratto respiratorio sia in forma non invasiva quali otite media, sinusite e polmonite che in casi più gravi forme invasive quali setticemia e meningite. Sebbene S. pneumoniae sia una delle principali cause di mortalità e morbilità nel mondo, i meccanismi patogenetici di questo batterio non sono ancora stati completamente chiariti. Un punto chiave è la colonizzazione del tratto nasofaringeo e l’interazione dei batteri con le cellule ospiti. A questo proposito, recentemente, sono state identificate nei batteri Gram-positivi delle strutture, note come pili, che svolgono un ruolo cruciale nell’interazione ospite-patogeno, sono infatti coinvolti in processi quali: adesione alle cellule epiteliali, formazione di biofilm e traslocazione degli epiteli. Una percentuale variabile tra il 30% e il 50% dei ceppi di S.pneumoniae contiene nel proprio DNA genomico un elemento genetico noto come pilus islet-1 (PI-1) che codifica per una struttura fibrillare, il pilo di tipo1, coinvolto nei processi di colonizzazione e virulenza. In dettaglio, è stato dimostrato che la sub-unità RrgA è coinvolta nell’adesione in vitro dei batteri alle cellule epiteliali mentre la sub-unità RrgB è il principale costituente della struttura del pilo, all’interno della quale è incorporata l’adesina. I dati riportati in questo lavoro contribuiscono a chiarire il ruolo svolto dal pilo nel meccanismo di adesione di Streptococcus pneumoniae alle cellule epiteliali e forniscono evidenze dell’attività degli anticorpi contro le componenti del pilo di inibire l’adesione dei batteri alle cellule ospiti. Al fine di valutare le capacità di adesione di Streptococcus pneumoniae, abbiamo selezionato una serie di linee cellulari provenienti da diversi distretti anatomici e con diversa capacità di formare un monostrato di cellule polarizzate in vitro. Tra le linee cellulari testate, il miglior modello per lo studio dell’adesione sono le ME180 (cellule epiteliali di cervice uterina) caratterizzate dal formare giunzioni lasse e quindi consentire l’esposizione di componenti della superficie basolaterale. Questo risultato ci fa ipotizzare che il ligando dei pili possa essere un elemento della matrice extracellulare o un recettore posto sulla superficie basolaterale delle cellule. Una volta identificato il modello cellulare ideale, abbiamo analizzato le capacità di adesione pilo-dipendenti di mutanti che mancano delle componenti del pilo e di sottopopolazioni isolate dal ceppo wild type che differiscono tra loro unicamente per una diversa espressione del pilo, una popolazione è altamente piliata, l’altra scarsamente piliata. I risultati mostrano che la popolazione piliata ha una capacità di aderire alle cellule molto più elevata rispetto alla popolazione non piliata. Inoltre abbiamo osservato che sia l’assenza dell’adesina (RrgA) che del backbone (RrgB) determinano una drastica riduzione dell’adesione sottolineando l’importanza per un corretto funzionamento del pilo sia della presenza dell’adesina che della sua localizzazione nella struttura del pilo. Successivamente abbiamo analizzato il contributo del pilo nell’adesione in diversi ceppi di Streptococcus pneumoniae selezionati sulla base della possibilità di poter isolare le due sottopopolazioni con diversa espressione del pilo (popolazione piliata e non piliata). Prendendo in esame le sottopopolazioni pilate dei ceppi selezionati abbiamo osservato notevoli differenze nella capacità di aderire alle cellule epiteliali. Per spiegare questo fenomeno abbiamo condotto studi di microscopia elettronica convenzionale e immuno-elettro microscopia che hanno evidenziato la presenza di una correlazione inversa tra lo spessore della capsula e le capacità adesive pilo-dipendenti, molto probabilmente dovuta alla diversa esposizione dei pili sulla superficie del batterio. Infatti, la delezione dell’intero locus capsulare in un ceppo che mostra scarsa capacità di adesione alle cellule epiteliali come il ceppo 19FTaiwan14, comporta un notevole aumento dell’adesione a livelli paragonabili al ceppo TIGR4 che è scarsamente capsulato. In questo lavoro abbiamo anche dimostrato che anticorpi prodotti contro le componenti del pilo sono in grado di inibire l’adesione dei batteri alle cellule epiteliali in ceppi in cui il pilo è molto esposto al di fuori della capsula e abbiamo identificato un anticorpo monoclonale anti-RrgA in grado di bloccare l’adesione dei batteri alle cellule ospiti in modo comparabile al siero policlonale prodotto contro l’intera proteina. Studi di epitope mapping hanno portato all’identificazione della regione di RrgA probabilmente coinvolta nel binding con l’anticorpo monoclonale, localizzata nel dominio c-terminale della proteina. Attualmente stiamo cercando di confermare questi risultati inserendo nella regione di RrgA che abbiamo identificato delle mutazioni puntiformi per ottenere forme mutate dell’epitopo che non vengano più riconosciute dal monoclonale e infine complementare il ceppo mutante rrga con queste sequenze per confermare l’importanza di questo epitopo nell’adesione alle cellule epiteliali umane.
Hartman, Andrea H. "Use of an Inducible Promoter to Characterize Type IV Pili Homologues in Clostridium perfringens." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/76874.
Full textMaster of Science
Paranjpye, Rohinee. "The role of a Vibrio vulnificus type IV pilin in pathogenesis and in persistence in oysters /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/5372.
Full textGault, Joseph. "Development of Top-Down Mass Spectrometry Approaches for the Analysis of Type IV Pili." Palaiseau, Ecole polytechnique, 2013. https://tel.archives-ouvertes.fr/pastel-00987029/document.
Full textTop-down mass spectrometry (TDMS) is an alternative protein characterisation strategy to the more widespread bottom-up (BU) approach. TDMS has the unique ability to fully characterise the variety of protein products expressed by the cell (proteoforms), including those bearing posttranslational modifications (PTMs). In this thesis TDMS has been developed on both FT-ICR and Orbitrap mass spectrometers for the analysis of type IV pili (T4P). This includes the first T4P to be visualised in a Gram positive bacterium (Streptococcus pneumoniae). T4P are filamentous, extracellular organelles primarily composed of a single protein subunit or major pilin that can be highly posttranslationally modified. For the major pilin, PilE, of the human pathogen Neisseria meningitidis (Nm), TDMS was extensively optimised and the first complete characterisation of all proteoforms of PilE from a single Nm strain performed. A biological role has been proposed for the enigmatic phosphoglycerol PTM. The approach was extended and applied in the first large scale study of PTMs on PilE from uncharacterised, pathogenic strains of Nm. Comparison of the TD and BU methodologies revealed both their complementarity and the inherent weakness of the BU approach for full proteoform characterisation. TDMS was combined with other structural techniques to reveal that pilins from the previously unstudied class II isolates of Nm are extensively glycosylated and that glycosylation is both driven by the primary structure of PilE and has a profound effect on pilus surface topology. These observations have been used to offer the first explanation of how T4P expressed by class II isolates of Nm avoid immune detection
Lee, Ka Man. "Regulation of expression of the type IV B pili-encoding operon of salmonella typhi /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?BICH%202003%20LEE.
Full textIncludes bibliographical references (leaves 110-127). Also available in electronic version. Access restricted to campus users.
Kennouche, Paul. "New insights into meningococcal pathogenesis : exploring the role of the major pilin PilE in the functions of type IV pili Mechanisms of meningococcal type IV pili multiple functions revealed by deep mutational scanning." Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=1972&f=12515.
Full textType IV pili (TFP) are multifunctional micrometer-long filaments expressed at the surface of many prokaryotes. In Neisseria meningitidis, TFP are homopolymers of the major pilin PilE. They are crucial for virulence as they mediate interbacterial aggregation and adhesion to host cells although the mechanisms behind these functions remain unclear. During this doctoral work, we simultaneously determined the regions of PilE involved in pili display, auto-aggregation and adhesion to human cells by using deep mutational scanning. Mining of this extensive functional map of the pilin sequence provides new mechanistic insights: first, the hyperconserved 1-domain of PilE was found to be involved in the balance between pili length and number; moreover, we identified an electropositive cluster of residues centered around Lysine 140 necessary for aggregation; finally, we show the importance of the tip of TFP in adhesion. Overall, these results support a direct role of PilE in aggregation and adhesion to host cells and identify these specific functional domains. This doctoral work opens up new perspectives on the pathogenicity mechanisms of Neisseria meningitidis and could help design new therapies to fight meningococcal disease
Imhaus, Anne-Flore. "Rôle et mode d’action des pilines mineures des pili de type IV de Neisseria meningitidis." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T019/document.
Full textType IV Pili (TFP) are widespread filamentous organelles extending from the surface of many Gram-negative bacteria that mediate multiple functions and play a key role in the pathogenesis of several important human pathogens, including our model, Neisseria meningitidis. The assembly of TFP requires a complex machinery composed by at least twenty proteins that are localized in the inner membrane, the outer membrane and the periplasm. Three of these proteins, called minor pilins, are not required for the biosynthesis of the TFP, but support their functions. Based on the phenotypes associated with the mutants, their role on TFP functions has been determined. The minor pilin Comp is required for natural competence for DNA transformation, PilV is required for the deformation of the host cell plasma membrane and PilX is essential for the adhesion of bacteria to epithelial and endothelial cells, the bacterial aggregation and the deformation of the host cell plasma membrane. Many similarities with the major pilin PilE suggests that minor pilin are inserted into the fiber of TFP to exert their functions, although it has never been demonstrated. How these proteins carry out their functions mechanistically is not elucidated. The general objective of this thesis was to understand how a single fiber can provide such a variety of functions. To achieve this, the study of the mode of action of minor pilins was undertaken. Contrarily to what has been previously proposed, the PilV and PilX minor pilins seem to exert their functions from the periplasmic space to modulate the amount of surface exposed pili. Indeed, pilV and pilX strains show piliation defects of 39 % and 63 % respectively compared to the wild type. Besides, we have shown that TFP functions require a large amount of TFP, at least 40 % for the aggregation and adhesion and 70% to induce the reorganization of the plasma membrane. Thus these modest decreases in the amount of pili explain the phenotypes of these mutants. These results indicate that the minor pilins are involved in the biogenesis of TFP rather than in the direct support of their biochemical properties. Moreover, the piliation defect of these mutants is restored in the absence of retraction, indicating that the PilV and PilX minor pilins play a role in the stability of TFP. To understand how PilV and PilX minor pilins modulate surface exposed pili level, we performed a structure/ function analysis of these two proteins. Blocking the PilV and PilX minor pilins in the inner membrane abolishes piliation, indicating a direct interaction with the machinery of TFP, probably via the major pilin PilE. We have also shown that an interaction between the minor pilins and the major pilin occurs in the inner membrane and upstream of the pilus assembly. However, these results, obtained by biochemical techniques, need to be confirmed by additional controls. By a mutagenesis strategy, we finally demonstrated that the D region of PilV and the α/β and β2/β3 loops of PilX are necessary for their functions. This study has shown that a relatively modest decrease in the amount of pili displayed on the bacterial surface leads to a strong effect on the functions carried by TFP. Minor pilins act in the periplasm to promote the biosynthesis of pili, which highlights the direct role of the major pilin in the TFP-dependent functions
Salomonsson, Emelie. "The role of the Type IV pili system in the virulence of Francisella tularensis." Doctoral thesis, Umeå universitet, Molekylärbiologi (Teknisk-naturvetenskaplig fakultet), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1656.
Full textBrown, Daniel Robert. "Systematic analysis in Neisseria meningitidis of proteins that fine-tune functions mediated by type IV pili." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6834.
Full textMurray, Samantha Rose. "Characterization of Type IV Pilus System Genes and Their Regulation in Clostridium perfringens." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/86173.
Full textMaster of Science
Nikraftar, Sarah. "Localization of Type IV Pilin Polymerization Proteins in Clostridium perfringens." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/71742.
Full textMaster of Science
Friedrich, Carmen [Verfasser], and Lotte [Akademischer Betreuer] Sogaard-Andersen. "Deciphering the assembly pathway of type IV pili in Myxococcus xanthus / Carmen Friedrich. Betreuer: Lotte Sogaard-Andersen." Marburg : Philipps-Universität Marburg, 2013. http://d-nb.info/1045729701/34.
Full textRakotoarivonina, Harivony. "Le système d'adhésion de ruminococcus albus : implication de pili de type IV et de deux glycosl-hydrolases." Lyon 1, 2003. http://www.theses.fr/2003LYO10211.
Full textPUJOL, CELINE. "Les pili de type iv chez neisseria meningitidis, elements cles des echanges d'information entre bacteries et cellules eucaryotes." Paris 6, 1999. http://www.theses.fr/1999PA066417.
Full textLövkvist, Lena. "Receptor Interactions Between Pathogenic Bacteria and Host Cells." Doctoral thesis, Uppsala University, Department of Medical Biochemistry and Microbiology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7782.
Full textThis thesis focuses on host and pathogen specific interactions during invasive disease. We have investigated the role and impact of different virulence factors of Neisseria gonorrhoeae, N. meningitidis and Streptococcus pyogenes on host epithelial cells and in vivo.
N. gonorrhoeae cause the sexually transmitted disease gonorrhoea and N. meningitidis is the most common cause of bacterial meningitis and may be leathal to the host within hours of infection. The neisserial type IV pili were shown to have an important impact on host cells for the induction of pro-inflammatory and other cellular defence transcriptional responses. Furthermore, N. meningitidis generally induced an earlier response compared to N. gonorrhoeae, probably as a result of the meningococcal capsule. The role of N. meningitidis serogroup B lipooliogsaccharide was investigated during invasive disease. Bacterial invasion of host cells and blood survival as well as virulence in vivo was dependent on the integrity of the LOS structure.
S. pyogenes may cause a variety of diseases ranging from uncomplicated diseases such as 'strep-throat' to more severe invasive diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. S. pyogenes ScpC protease degrade interleukin 8 during necrotizing fasciitis. We investigated the role of ScpC in systemic disease and observed enhanced virulence by bacteria unable to degrade IL-8. Following an intravenous infection of mice pro-inflammatory cytokines and complement activation was induced by the ScpC negative mutant compared to the wild-type and correlated with higher bacteremia. These data indicate that the precense of the ScpC protease has an important impact on the host for the outcome of streptococcal sepsis. Another phagocytic escape mechanism of S. pyogenes is their ability to coat themselves with host proteins. We observed that released complement control protein, CD46, bound to the streptococcal cell surface. CD46 has been shown to interact with the streptococcal M protein and have now been found to bind to the surface of the bacteria in a growth phase dependent manner. We observed a more aggressive disease development in CD46 transgenic mice after an intravenous infection with an M6 serotype, resulting in higher mortality of CD46 transgenic mice compared with control mice. These data indicate that CD46 may confer a protection to the streptococci during early stage of systemic infection and contributes to the understanding of immune evsion of S. pyogenes.
Harding, Christian Michael. "Discovery and demonstration of functional type IV pili production and post-translational modification by a medically relevant Acinetobacter species." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1428405412.
Full textSantos, Moreno Javier. "Molecular mechanism of pseudopilus assembly in the Klebsiella oxytoca type II secretion system." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC216/document.
Full textThe type II secretion system (T2SS) drives the translocation of folded, periplasmic proteins across the outer membrane in Gram-negative bacteria. Secretion is carried out by an envelope-spanning nanomachine that is similar to the apparatus that builds type IV pili (T4P), bacterial surface filaments involved in adhesion, motility and other functions. In the Pul T2SS of Klebsiella oxytoca, overexpression of pul genes in plate-grown bacteria allows the assembly of T4P-like surface fibres made of PulG subunits, suggesting that a periplasmic pseudopilus fibre plays a role in the secretion of the type II substrate pullulanase under physiological conditions. In this project, we explored the molecular mechanism of pseudopilus assembly by focusing on the interaction between PulG and the T2SS inner membrane and pseudopili components. The network of interactions of PulG with the minor pseudopilins PulH, I, J and K and the assembly platform (AP) components was established using bacterial two-hybrid analysis. To validate these interactions, we combined biochemical approaches (affinity co-purification, chemical or cysteine cross-linking) with functional assays of secretion and pseudopilus formation. We provide evidence of the interaction between PulG and the AP proteins PulF and PulM, and delve into the PulG-PulM interface. Our results point to the formation of a PulK-I-J-H-G complex in the plasma membrane involved in early steps of fibre assembly, with a determinant role for PulG and PulH interaction with PulM and PulF. We obtained experimental evidence supporting a major role for PulM in pseudopilus assembly and protein secretion, probably by intervening in the assembly of the T2SS apparatus and in pseudopilus elongation. The results of experimental and in silico studies in collaboration with experts in mass spectrometry and molecular dynamics support the essential role of the highly conserved PulG residues Glu5 and Thr2, which participate in PulM binding. In addition, Glu5 probably favours PulG membrane extraction by neutralising its N-terminal positive charge through intra-molecular interaction. These findings shed new light on early membrane events during fibre assembly, and open new and exciting avenues in research on T2SSs and related nanomachines.protein secretiontype 4 pilifibre assemblymembrane protein complexprotein-protein interactionsimmunofluorescence microscopymolecular dynamics simulationsbacterial two-hybrid assaymass spectrometrybacterial nanomachines
Bordeleau, Éric. "Régulation du c-di-GMP et rôle de ce messager secondaire dans la formation de pili de type IV chez Clostridium difficile." Thèse, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5385.
Full textPotapova, Anna [Verfasser], and Lotte [Akademischer Betreuer] Soegaard-Andersen. "Regulation of type IV pili formation and function by the small GTPase MglA in Myxococcus xanthus / Anna Potapova ; Betreuer: Lotte Soegaard-Andersen." Marburg : Philipps-Universität Marburg, 2020. http://d-nb.info/1214368220/34.
Full textSoyer, Magali. "Mécanismes moléculaires de la colonisation de l’endothélium par Neisseria meningitidis." Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T080.
Full textBacterial infections targeting the bloodstream lead to a wide array of severe clinical manifestations, such as septic shock or focal infections (endocarditis and meningitis). Neisseria meningitidis colonizes successfully the vascular wall and causes severe sepsis. Such infections result from an efficient colonization of host endothelial cells, a key step in meningococcal diseases which has been the subject of the work presented here. Endothelium colonization by N. meningitidis is a complex process implying bacterial adhesion and multiplication on the endothelial cell surface in the specific context of the bloodstream, where mechanical forces generated by the blood flow are applied on circulating bacteria. Even though many studies focused on the interaction between N. meningitidis and the endothelial cell, many aspects remain elusive, such as the impact of shear stress generated drag forces and the relative contribution of the two partners involved in this interaction.Adhesion to the endothelial cell surface is dependent on bacterial factors called type IV pili (Tfp) and leads to induction of a host cell response, characterized by a local remodeling of the plasma membrane and reorganization of actin cytoskeleton underneath bacterial microcolonies. First, we have shown that the cellular response induced by N. meningitidis actively participate in the colonization process. Indeed, membrane deformation allows contact with every bacterium inside the microcolony, which is necessary for microcolony resistance to mechanical forces. Additionally, we have demonstrated that the PilV protein, a Tfp component, is involved in plasma membrane remodeling and actin cytoskeleton reorganization. We designed a method combining high resolution live-cell fluorescence video-microscopy and fluorescence quantification to decipher the early events induced on contact of bacterial aggregates with the host cell surface. Using this technique we have shown that membrane remodeling does not rely on actin cytoskeleton reorganization but rather on intrinsic properties of the lipid bilayer. Second, we focused on latter steps of the infection process when initiation of a new colonization cycle is initiated. While firmly attached to the host cell surface through the membranous projections, some bacteria can detach from the microcolony to disseminate throughout the host. We have demonstrated the importance of post-translational modification of the major piline in this step and characterized the underlying mechanisms.This work allows refinement of the molecular mechanisms involved in the induction of the cellular response induced by N. meningitidis and its impact on successful endothelium colonization by this pathogen
Basso, Pauline. "Exolysine, un facteur de virulence majeur de Pseudomonas aeruginosa." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV063/document.
Full textPseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections associated with high mortality. The type III secretion system (T3SS) and T3SS-exported toxins have been considered as key infectivity virulence factors. Our team recently characterized a group of strains lacking T3SS, but employing a new pore-forming toxin of 172 kDa, named Exolysin (ExlA) that provokes cell membrane disruption. In this work we demonstrated that the ExlA secretion requires ExlB, a predicted outer membrane protein encoded in the same operon, showing that ExlA-ExlB define a new active Two-Partner Secretion (TPS) system. In addition to the TPS secretion signals, ExlA harbors several distinct domains, which comprise hemagglutinin domains, five Arginine-Glycine-Aspartic acid (RGD) motifs and a non-conserved C-terminal region lacking any identifiable sequence motifs. Cytotoxic assays showed that the deletion of the C-terminal region abolishes host-cell cytolysis. Using liposomes and eukaryotic cells, including red blood cells, we demonstrated that ExlA forms membrane pores of 1.6 nm. Based on a transposon mutagenesis strategy and a high throughput cellular live-dead screen, we identified additional bacterial factors required for ExlA-mediated cell lysis. Among 7 400 mutants, we identified three transposons inserted in genes encoding components of the Type IV pili, which are adhesive extracellular appendices. Type IV pili probably mediate close contact between bacteria and host cells and facilitate ExlA cytotoxic activity. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages to achieve host cell intoxication. Using mice primary bone marrow macrophages we showed that ExlA pores provoke activation of Caspase-1 via the NLRP3-inflamasomme followed by the maturation of the pro-interleukin-1ß. Mining of microbial genomic databases revealed the presence of exlA-like genes in other Pseudomonas species rarely associated with human infections P. putida, P. protegens and P. entomophila. Interestingly, we showed that these environmental bacteria are also able to provoke Caspase-1 cleavage and pro-inflammatory cell death of macrophages. Finally, genome-wide loss-of-function CRISPR/cas9 RAW library screen revealed that several components of the immune system response, indirectly linked to Caspase-1 are involved in the ExlA-mediated cell lysis. Moreover, we found at least three sgRNAs targeting miRNA, mir-741 were highly enriched in resistant macrophages challenged by ExlA. This miRNA regulates enzymes (St8sIa1 and Agpat5) in the sphingolipids and glycerophololipids biosynthesis pathways, suggesting that ExlA activity may require proper lipid environment
Cheung, Fei Wai. "The effect of bile salts on expression from the pil and rci promoters associated with the type IVB pilus-encoding operon of salmonella enterica serovar typhi /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?BICH%202003%20CHEUNG.
Full textIncludes bibliographical references (leaves 98-116). Also available in electronic version. Access restricted to campus users.
Forslund, Anna-Lena. "Identification of new virulence factors in Francisella tularensis." Doctoral thesis, Umeå universitet, Molekylärbiologi (Teknat- och Medfak), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-30857.
Full textWilliams, Danielle A. "The AlgZ/R Two-Component System Is Responsible for Attenuation of Virulence in Pseudomonas aeruginosa." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3340.
Full textTheophilou, Elena Stella. "Development of a novel genetic system for generation of markerless deletions in Clostridium difficile." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9616.
Full textVarga, John Joseph. "The Role of CcpA in Regulating the Carbon-Starvation Response of Clostridium perfringens." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/29759.
Full textPh. D.
Mikaty, Guillain. "Rôle des Pili de type IV dans le réarrangement de la surface cellulaire eucaryote induite par Neisseria meningitidis et conséquences sur la colonisation des barrières cellulaires." Paris 5, 2009. https://hal.archives-ouvertes.fr/tel-01262387.
Full textArantxa, Camus Etchecopar. "Mécanismes moléculaires impliqués dans la formation de biofilm à l’interface eau-composés organiques hydrophobes." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3032/document.
Full textHydrophobic organic compounds (HOC), a large family of naturally-produced or anthropogenic molecules including lipids and hydrocarbons, represent a significant part of organic matter in marine ecosystems. Because of their low solubility in water, bacteria that degrade those compounds require the establishment of specific cell functions to increase their biodisponibility. Biofilm formation in water-HOC interface is one of these adaptations. The model of bacteria used in our laboratory, Marinobacter hydrocarbonoclasticus SP17, is able to form a biofilm on a wide range of HOC, such as alkanes, fatty alcohols and triglycerides, in order to use them as a carbon and energy source. The main purpose of my work was to broaden the knowledge of how bacteria adhere to and from biofilms on HOC, through the functional characterization of 10 candidate genes highlighted during proteomic and transcriptomic studies. Genetic tools and a gene-specific functional characterization have been developed in order to carry out this project. Functional study conducted on MARHY2686 revealed its involvement in the formation of biofilm on alkanes. Co-expression of MARHY2686 and the adjacent genes MARHY2687 and MARHY2685 durnig transcriptomic analysis together with their phylogenetic distribution and synteny conservation suggest that these three genes are involved in the same biological process. According to the high peptide sequence identity between MARHY2686 and AdeT, a periplasmic protein of a tripartite efflux pump system of Acinetobacter baumanii, MARHY2686 in combination with MARHY2687 and MARHY2685 could be the components of such a system. Other phenotypic observations would consider the involvement of MARHY2686 either in the assimilation of HOC or in the accumulation of intracellular lipid reserves. M. hydrocarbonoclasticus SP17 uses type IV pili during biofilm formation on HOC. These appendages are involved in the adhesion of this strain to and in a detachment process from HOC. Type IV pili could either act directly to allow bacteria to detach from the surface to which it is adhered, or indirectly through the action of bacteriophages. The presence of twitching motility on HOC has also been suggested. Finally, the role of the type VI secretion system (T6SS), a well-known protein system which allows interactions between bacteria and host cells, during the formation of a mono-species biofilm on HOC where no other microorganism than M. hydrocarbonoclasticus SP17 is present, has been studied
Black, Wesley P. "Regulation of Exopolysaccharide Production in Myxococcus Xanthus." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/30250.
Full textPh. D.
Dienst, Dennis. "Untersuchungen zu Funktion und Struktur des Regulatorproteins Hfq in Synechocystis sp. PCC 6803." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16250.
Full textThe phylogenetically conserved RNA binding protein Hfq is a key player in bacterial RNA metabolism, particularly with regard to sRNA-mediated post-transcriptional gene regulation. Hfq proteins belong to the well-conserved family of Sm- and Lsm proteins and are characterized by the formation of homo-hexameric ring-shaped structures. In comparison with well-studied Hfq proteins from E.coli and other proteobacteria the cyanobacterial orthologues show rather poor sequence conservation. Therefore, they provide a quite interesting background for analyzing riboregulatory processes in these organisms. In this work, the orthologous Hfq protein from the unicellular model cyanobacterium Synechocystis sp. PCC 6803 has been initially characterized on the functional and structural level. Insertional inactivation of the hfq gene (ssr3341) led to a non-phototactic phenotype that was due to the loss of type IV pili on the cell surface, as demonstrated by electron microscopy. Microarray analyses revealed a set of 31 genes with altered transcript levels in the knock-out mutant. Among the most strongly affected genes, there were members of two operons that had previously been shown to be involved in motility, controlled by the cAMP receptor protein Sycrp1. Further comparative transcriptional analyses using custom tiling arrays revealed two putative sRNAs (Hpr1 and Hpr3) from intergenic regions, whose transcript levels appeared to be significantly affected by hfq-inactivation. Structural analyses, genetic complementation as well as RNA-binding studies in vitro indicate that the Hfq orthologue from Synechocystis sp. PCC 6803 exhibits novel biochemical and functional properties, though retaining general structural features of its proteobacterial counterparts. Functional implications are discussed with regard to structural und phylogenetic considerations.
Sundin, Charlotta. "Type III Secretion Mediated Translocation of Effector Exoenzymes by Pseudomonas aeruginosa." Doctoral thesis, Umeå : Univ, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174.
Full textVirion, Zoé. "Interaction de Neisseria meningitidis avec les cellules endothéliales humaines : rôle des glycosylations des récepteurs cellulaires eucaryotes Receptor recognition by meningococcal type IV pili relies on a specific triantennary N-glycan Sialic acid‐mediated allosteric activation of β2-adrenoceptors An ADAM-10 dependent EPCR shedding links meningococcal interaction with endothelial cells to purpura fulminans." Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2296&f=12491.
Full textNeisseria meningitidis is a commensal bacteria found in the nasopharynx of 10 to 35% of the population. For a still unknown reason, the bacteria a able to cross the epithelial barrier and to reach the bloodstream, where it can proliferate and adhere to the human endothelial cells via the type IV pili. The meningococcus specifically interacts with the adhesion receptor CD147 and the β2-adrenergic receptor, responsible for the activation of signaling under the adherent colony. We showed that the adhesion to the human endothelial cells is dependent on specific N-glycosylation patterns carried by the cellular receptors. The results show that the third N-glycosylation site of CD147 is essential to the adhesion of the bacteria, and that the interaction is due to the presence of sialic acid residues of the N-glycosylation chains. The sialic acids are also essential for the interaction of the meningococcus with the β2-adrenergic receptor and the activation of the signaling under the colony. The results show that the sialic acid of the form Neu5Ac (N-acetylneuraminic acid) found in humans could explain de species specificity of the meningococcal infection, most of the other mammals species possessing a Neu5Gc (N-glycolylneuraminic acid) form of the sialic acid. So we showed that a part of the species specificity of the meningococcus is due to the interaction of the type IV pili with specific glycosylations
Ke-YingHsieh and 謝可盈. "The Contribution of Type IV Pili in Clostridium difficile pathogenesis." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/7w95kp.
Full textChiang, Yi Chien, and 江宜蒨. "Characterization of the Type IV pili gene cluster Streptococcus sanguinis SK36." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/88998232805241370382.
Full text長庚大學
生物醫學研究所
99
Streptococcus sanguinis is a primary colonizer of human tooth and an opportunistic pathogen for subacute endocarditis. A Type IV pili (Tfp) gene cluster was reported in the complete genome of Streptococcus sanguinis SK36 recently. The goal of this research aimed to analyze the expression and function of this gene cluster. The Tfp gene cluster is composed of total 16 genes, from pilB to pilD. A contiguous transcript was detected between pilD and the downstream lytB by RT-PCR, suggesting that lytB is also part of the operon. Three transcription initiation sites, 153- (P1), 536- (P2) and 837-base (P3) 5’ to the translation start site of pilB, respectively, were detected by rapid amplification of cDNA ends (5’ RACE) analysis. Both the P2 and P3 mapped to a σ70-like promoters (5’-TTGACA-N17-TATACT), whereas only an extended -10 sequence was observed with the P1. An anti-PilA antibody was generated and used to examine the structure of the pil cluster encoded products by transmission electron microscopy (TEM). A short hair-like structure was observed in the wild-type SK36 but not the Pil-deficient mutant strain, indicating that pil cluster is responsible for the synthesis of this structure. Furthermore, the pil-deficient mutant strains exhibited reduced biofilm formation. However, neither the adherence to Hela cells nor the twitching motility was affected by the deletion in pil cluster. Taken together, these results suggest that the pil cluster is responsible for the synthesis of a surface structure, and this structure is associated with biofilm formation. The multiple transcription initiation sties with long 5’ untranslated regions suggested the presence of a complex regulation system for the expression of the pil cluster.
Barnett, Timothy Carew. "A genetic and functional analysis of type IV pili produced by Aeromonas bacteria." Thesis, 1999. https://eprints.utas.edu.au/19091/1/whole_BarnettTimothyCarew1999_thesis.pdf.
Full textBulyha, Iryna [Verfasser]. "Regulation of the type IV pili localization in Myxococcus xanthus / vorgelegt von Iryna Bulyha." 2010. http://d-nb.info/1004808496/34.
Full textTseng, Tzu Ying, and 曾姿穎. "Characterization and functional analysis of the type IV pili gene cluster in Streptococcus sanguinis SK36." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/33875483902144865967.
Full text長庚大學
生物醫學研究所
101
Streptococcus sanguinis is a member of the dental plaque and occasionally causes infective endocarditis. Thus far the gene cluster (pil) encoding type IV pili (Tfp) was found only in the genome of Streptococcus sanguinis SK36. Previous studies by using 5’ RACE analysis revealed 3 putative transcription initiation sites 5’ to the pil cluster. Short hair-like structures were observed on the surface of SK36 by using anti-SSA_2315 (PilA) antiserum under transmission electron microscopy. However, the biological functions of the Tfp in S. sanguinis SK36 remains unknown. This study aims to analyze the expression and function of the pil cluster. By using various pil promoter-reporter fusion strains, it was found that all 3 promoters were functional. The activity of a transcriptional fusion containing all 3 promoters was higher in the ccpA-deficient host than that in the wild-type background, indicating that the expression of the pil operon is subject to the regulation of CcpA. Western analysis of the PilA protein indicated that the biogenesis of Tfp was regulated by growth phases, with the highest expression at the early stationary phase. Inactivation of SSA_2313-2315 led to a 40% reduction in adherence to HeLa cells and squamous cell carcinoma (SCC-4) compared to the wild-type strain. Taken together, the expression of the pil cluster was regulated by a complex system and the biosynthesis of Tfp was closely associated with the development of growth phase. The binding of S. sanguinis SK36 Tfp to host cells supports the role of Tfp in the pathogenesis of S. sanguinis SK36.
Wu, Hui Yu, and 吳蕙妤. "Regulation and functional analysis of the type IV pili gene cluster in Streptococcus sanguinis SK36." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/m9564z.
Full textChiang, Poney Che. "Molecular investigation of the role of type 4 pili ATPases involved in twitching motility of Pseudomonas aeruginosa." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=371008&T=F.
Full textWu, Chia Hua, and 吳佳樺. "Functional analysis of the type IV pili gene cluster in the twitching and non-twitching Streptococcus sanguinis strains." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/p57s9h.
Full text長庚大學
生物醫學研究所
106
A type IV pili (Tfp) gene pil cluster of 16 or 17 genes is found in strains of Streptococcus sanguinis but not in other oral streptococci. Although this cluster is highly conserved among S. sanguinis strains, only a few Tfp-expressing strains exhibit twitching motility. To understand the basis for twitching activity, this study examined the pil cluster and the twitching activity of 40 clinical S. sanguinis isolates. Among all isolates, pil-specific PCR products were observed in 39 isolates, indicating that the pil cluster is present commonly in clinical isolates. Although the pil cluster in the non-twitching type-strain SK36 and the twitching clinical strain #10 differs only in the central portion of the cluster, further analysis with all sequenced S. sanguinis strains failed to draw a clear connection between this region and the twitching phenotype. On the other hand, strain #10 expressed a higher amount of pilT and generated longer Tfp compared to SK36, although both strains shared a common 5’ flanking region of the pil cluster. While inactivation of the expression of either the entire cluster (#10∆Tfp) or the gene encoding the retraction ATPase (#10∆pilT) abolished the twitching activity of S. sanguinis #10, #10∆pilT exhibited a wild-type level of adherence to host epithelial cells. Furthermore, #10∆pilT also formed thicker biofilm compared to wild-type #10 in a batch system. Taken together, Tfp, but not the twitching motility, are crucial for the attachment of S. sanguinis. The Tfp-driven motility, however, may reduce the interaction between bacteria in biofilm formation.
Thrall, Elizabeth Simmons. "Spectroscopic Studies of Abiotic and Biological Nanomaterials: Silver Nanoparticles, Rhodamine 6G Adsorbed on Graphene, and c-Type Cytochromes and Type IV Pili in Geobacter sulfurreducens." Thesis, 2012. https://doi.org/10.7916/D8CF9X66.
Full textTammam, Stephanie. "Characterization of PilP from the Type IV Pilus System of Pseudomonas aeruginosa." Thesis, 2012. http://hdl.handle.net/1807/43398.
Full text