Journal articles on the topic 'PiezoMEMS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 journal articles for your research on the topic 'PiezoMEMS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fragkiadakis, Charalampos, Subramanian Sivaramakrishnan, Thorsten Schmitz-Kempen, Peter Mardilovich, and Susan Trolier-McKinstry. "Heat generation in PZT MEMS actuator arrays." Applied Physics Letters 121, no. 16 (October 17, 2022): 162906. http://dx.doi.org/10.1063/5.0114670.
Full textRamachandramoorthy, Rajaprakash, Massimiliano Milan, Zhaowen Lin, Susan Trolier-McKinstry, Alberto Corigliano, and Horacio Espinosa. "Design of piezoMEMS for high strain rate nanomechanical experiments." Extreme Mechanics Letters 20 (April 2018): 14–20. http://dx.doi.org/10.1016/j.eml.2017.12.006.
Full textJackson, Nathan. "PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet." Micromachines 11, no. 5 (May 15, 2020): 500. http://dx.doi.org/10.3390/mi11050500.
Full textKordrostami, Zoheir, and Sajjad Roohizadegan. "A groove engineered ultralow frequency piezomems energy harvester with ultrahigh output voltage." International Journal of Modern Physics B 32, no. 20 (July 31, 2018): 1850208. http://dx.doi.org/10.1142/s0217979218502089.
Full textJackson, Nathan, Oskar Z. Olszewski, Cian O’Murchu, and Alan Mathewson. "Ultralow-frequency PiezoMEMS energy harvester using thin-film silicon and parylene substrates." Journal of Micro/Nanolithography, MEMS, and MOEMS 17, no. 01 (March 23, 2018): 1. http://dx.doi.org/10.1117/1.jmm.17.1.015005.
Full textMere, Viphretuo, Sudhanshu Tiwari, Aneesh Dash, Rakshitha Kallega, Akshay Naik, Rudra Pratap, and Shankar Kumar Selvaraja. "Photonics Integrated PiezoMEMS-PipMEMS: A Scalable Hybrid Platform for Next-Generation MEMS." IEEE Sensors Letters 4, no. 12 (December 2020): 1–4. http://dx.doi.org/10.1109/lsens.2020.3042708.
Full textPriya, Shashank, Hyun-Cheol Song, Yuan Zhou, Ronnie Varghese, Anuj Chopra, Sang-Gook Kim, Isaku Kanno, et al. "A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits." Energy Harvesting and Systems 4, no. 1 (August 27, 2019): 3–39. http://dx.doi.org/10.1515/ehs-2016-0028.
Full textEsteves, Giovanni, Chris M. Fancher, Margeaux Wallace, Raegan Johnson-Wilke, Rudeger H. T. Wilke, Susan Trolier-McKinstry, Ronald G. Polcawich, and Jacob L. Jones. "In situ X-ray diffraction of lead zirconate titanate piezoMEMS cantilever during actuation." Materials & Design 111 (December 2016): 429–34. http://dx.doi.org/10.1016/j.matdes.2016.09.011.
Full textSanchez, Luz M., Daniel M. Potrepka, Glen R. Fox, Ichiro Takeuchi, Ke Wang, Leonid A. Bendersky, and Ronald G. Polcawich. "Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators." Journal of Materials Research 28, no. 14 (July 19, 2013): 1920–31. http://dx.doi.org/10.1557/jmr.2013.172.
Full textYang, Hao, Jinyan Zhao, Wei Ren, Zuo-Guang Ye, K. B. Vinayakumar, Rosana A. Dias, Rui M. R. Pinto, Jian Zhuang, and Nan Zhang. "Lead free 0.9Na1/2Bi1/2TiO3–0.1BaZr0.2Ti0.8O3 thin film with large piezoelectric electrostrain." Applied Physics Letters 121, no. 13 (September 26, 2022): 132903. http://dx.doi.org/10.1063/5.0106934.
Full textLi, Minghua, Huamao Lin, Kan Hu, and Yao Zhu. "Oxide overlayer formation on sputtered ScAlN film exposed to air." Applied Physics Letters 121, no. 11 (September 12, 2022): 111602. http://dx.doi.org/10.1063/5.0106717.
Full textOlszewski, Oskar Z., Ruth Houlihan, Alan Blake, Alan Mathewson, and Nathan Jackson. "Evaluation of Vibrational PiezoMEMS Harvester That Scavenges Energy From a Magnetic Field Surrounding an AC Current-Carrying Wire." Journal of Microelectromechanical Systems 26, no. 6 (December 2017): 1298–305. http://dx.doi.org/10.1109/jmems.2017.2731400.
Full textYuan, Huiyu, Minh Nguyen, Tom Hammer, Gertjan Koster, Guus Rijnders, and Johan E. ten Elshof. "Synthesis of KCa2Nb3O10 Crystals with Varying Grain Sizes and Their Nanosheet Monolayer Films As Seed Layers for PiezoMEMS Applications." ACS Applied Materials & Interfaces 7, no. 49 (December 2, 2015): 27473–78. http://dx.doi.org/10.1021/acsami.5b09456.
Full textShibata, Kenji, Kazutoshi Watanabe, Toshiaki Kuroda, and Takenori Osada. "KNN lead-free piezoelectric films grown by sputtering." Applied Physics Letters 121, no. 9 (August 29, 2022): 092901. http://dx.doi.org/10.1063/5.0104583.
Full textTrigona, Carlo, Valentina Sinatra, Giuseppa Crea, Bruno Ando, and Salvatore Baglio. "Characterization of a PiezoMUMPs Microsensor for Contactless Measurements of DC Electrical Current." IEEE Transactions on Instrumentation and Measurement 69, no. 4 (April 2020): 1387–96. http://dx.doi.org/10.1109/tim.2019.2908510.
Full textGuimarães, Daniel D., Vitor Garcia, and Fabiano Fruett. "Design and Fabrication of Silicon PiezoMOS Transistors for Applications on MEMS." ECS Transactions 39, no. 1 (December 16, 2019): 425–30. http://dx.doi.org/10.1149/1.3615222.
Full textRobichaud, Alexandre, Dominic Deslandes, Paul-Vahé Cicek, and Frederic Nabki. "A System in Package Based on a Piezoelectric Micromachined Ultrasonic Transducer Matrix for Ranging Applications." Sensors 21, no. 8 (April 7, 2021): 2590. http://dx.doi.org/10.3390/s21082590.
Full textBiswal, Priyabrata, Sougata Kumar Kar, and Banibrata Mukherjee. "Design and Optimization of High-Performance Through Hole Based MEMS Energy Harvester Using PiezoMUMPs." Journal of Electronic Materials 50, no. 1 (October 30, 2020): 375–88. http://dx.doi.org/10.1007/s11664-020-08528-6.
Full textBraun, P. "Einsatz von DMS- und Piezome�technik zur direkten Schubspannungsermittlung in der Kapillarrheometrie." Rheologica Acta 29, no. 4 (July 1990): 243–51. http://dx.doi.org/10.1007/bf01339881.
Full textBraun, P. "Einsatz von DMS- und Piezome�technik zur direkten Schubspannungsermittlung in der Kapillarrheometrie." Rheologica Acta 29, no. 3 (May 1990): 243–51. http://dx.doi.org/10.1007/bf01331360.
Full textCziriák, Nobert Bence, József Szalma, János Vág, and Sándor Bogdán. "Piezosebészeti eszköz és a sagittalis csontfűrész intraossealis hőtermelésének in vitro összehasonlító vizsgálata." Fogorvosi Szemle 109, no. 3. (September 15, 2016): 88–93. http://dx.doi.org/10.33891/fsz.109.3.88-93.
Full textBa Hashwan, Saeed S., M. H. Md Khir, Y. Al-Douri, Abdelaziz Y. Ahmed, Abdullah S. Algamili, Sami S. Alabsi, and Mohammed M. Junaid. "Analytical Modeling of AIN-Based Film Bulk Acoustic Wave Resonator for Hydrogen sulfide Gas detection Based on PiezoMUMPs." Journal of Physics: Conference Series 1962, no. 1 (July 1, 2021): 012003. http://dx.doi.org/10.1088/1742-6596/1962/1/012003.
Full textTrigona, C., A. Algozino, F. Maiorca, B. Andò, and S. Baglio. "Design and Characterization of PiezoMUMPs Microsensors with Applications to Environmental Monitoring of Aromatic Compounds via Selective Supramolecular Receptors." Procedia Engineering 87 (2014): 1190–93. http://dx.doi.org/10.1016/j.proeng.2014.11.379.
Full textGonzalez, Miguel, and Yoonseok Lee. "A Study on Parametric Amplification in a Piezoelectric MEMS Device." Micromachines 10, no. 1 (December 29, 2018): 19. http://dx.doi.org/10.3390/mi10010019.
Full textSharma, Kohli, Brière, Ménard, and Nabki. "Translational MEMS Platform for Planar Optical Switching Fabrics." Micromachines 10, no. 7 (June 30, 2019): 435. http://dx.doi.org/10.3390/mi10070435.
Full textNastro, Alessandro, Marco Ferrari, Libor Rufer, Skandar Basrour, and Vittorio Ferrari. "Piezoelectric MEMS Acoustic Transducer with Electrically-Tunable Resonant Frequency." Micromachines 13, no. 1 (January 8, 2022): 96. http://dx.doi.org/10.3390/mi13010096.
Full textBugea, Calogero, Federico Berton, Antonio Rapani, Roberto Di Lenarda, Giuseppe Perinetti, Eugenio Pedullà, Antonio Scarano, and Claudio Stacchi. "In Vitro Qualitative Evaluation of Root-End Preparation Performed by Piezoelectric Instruments." Bioengineering 9, no. 3 (March 2, 2022): 103. http://dx.doi.org/10.3390/bioengineering9030103.
Full textNovokhatniy, V., O. Matyash, and I. Usenko. "ENERGY SAVING THROUGH IMPROVED TOPOLOGY OF THE CITY WATER NETWORK." Municipal economy of cities 1, no. 175 (April 3, 2023): 99–104. http://dx.doi.org/10.33042/2522-1809-2023-1-175-99-104.
Full textStrnad, Nicholas A., Daniel M. Potrepka, Brendan M. Hanrahan, Glen R. Fox, Ronald G. Polcawich, Jeffrey S. Pulskamp, Ryan R. Knight, and Ryan Q. Rudy. "Extending atomic layer deposition for use in next-generation piezoMEMS: Review and perspective." Journal of Vacuum Science & Technology A 41, no. 5 (July 11, 2023). http://dx.doi.org/10.1116/6.0002431.
Full textNi, Shu, Evert Houwman, Gertjan Koster, and Guus Rijnders. "On the importance of the SrTiO3 template and the electronic contact layer for the integration of phase-pure low hysteretic Pb(Mg0.33Nb0.67)O3-PbTiO3 layers with Si." Applied Physics A 129, no. 4 (March 21, 2023). http://dx.doi.org/10.1007/s00339-023-06447-x.
Full textTiwari, Sudhanshu, Ajay Dangi, and Rudra Pratap. "A tip-coupled, two-cantilever, non-resonant microsystem for direct measurement of liquid viscosity." Microsystems & Nanoengineering 9, no. 1 (March 23, 2023). http://dx.doi.org/10.1038/s41378-023-00483-6.
Full textTrolier-McKinstry, Susan, Wanlin Zhu, Betul Akkopru-Akgun, Fan He, Song Won Ko, Charalampos Fragkiadakis, and Peter Mardilovich. "Reliability of piezoelectric films for MEMS." Japanese Journal of Applied Physics, September 1, 2023. http://dx.doi.org/10.35848/1347-4065/acf5f8.
Full text