Journal articles on the topic 'Piezoelectric polycrystalline ceramics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Piezoelectric polycrystalline ceramics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rödel, J., and W. S. Kreher. "Effective properties of polycrystalline piezoelectric ceramics." Le Journal de Physique IV 09, PR9 (September 1999): Pr9–239—Pr9–247. http://dx.doi.org/10.1051/jp4:1999924.
Full textCowen, Benjamin, Christopher Eadie, Jules Lindau, and John Mauro. "Template alignment optimization in additively manufactured piezoelectric ceramics." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A196. http://dx.doi.org/10.1121/10.0018639.
Full textIslam, Rashed Adnan, and Shashank Priya. "Realization of high-energy density polycrystalline piezoelectric ceramics." Applied Physics Letters 88, no. 3 (January 16, 2006): 032903. http://dx.doi.org/10.1063/1.2166201.
Full textTan, Xiaoli, Hui He, and Jian-Ku Shang. "In situ Transmission Electron Microscopy Studies of Electric-field-induced Phenomena in Ferroelectrics." Journal of Materials Research 20, no. 7 (July 1, 2005): 1641–53. http://dx.doi.org/10.1557/jmr.2005.0213.
Full textLiu, Wenfeng, Lu Cheng, and Shengtao Li. "Prospective of (BaCa)(ZrTi)O3 Lead-free Piezoelectric Ceramics." Crystals 9, no. 3 (March 26, 2019): 179. http://dx.doi.org/10.3390/cryst9030179.
Full textChoi, Minkyu, Yoonsang Park, Hossein Daneshpajooh, Timo Scholehwar, Eberhard Hennig, and Kenji Uchino. "Determination of anisotropic intensive piezoelectric loss in polycrystalline ceramics." Ceramics International 47, no. 11 (June 2021): 16309–15. http://dx.doi.org/10.1016/j.ceramint.2021.02.210.
Full textUtzinger, Johannes, Paul Steinmann, and Andreas Menzel. "Computational modelling of microcracking effects in polycrystalline piezoelectric ceramics." GAMM-Mitteilungen 31, no. 2 (December 2008): 151–65. http://dx.doi.org/10.1002/gamm.200890008.
Full textNicolai, Michael, Stefan Uhlig, Andreas Schönecker, and Alexander Michaelis. "Experimental Investigation of Non-Linear Behaviour of PZT Piezoceramics at Low Temperatures." Advances in Science and Technology 56 (September 2008): 105–10. http://dx.doi.org/10.4028/www.scientific.net/ast.56.105.
Full textLEE, Ho-Yong. "“Generation III” Piezoelectric Single Crystals Developed by Solid-State Single Crystal Growth Method." Ceramist 24, no. 3 (September 30, 2021): 273–85. http://dx.doi.org/10.31613/ceramist.2021.24.3.07.
Full textZhao, H. W., Y. L. Li, R. J. Zhao, and Z. Q. Li. "Effect of sintering temperature on the structure and electrical properties of KNNS-0.03BNZ ceramics." Digest Journal of Nanomaterials and Biostructures 18, no. 3 (July 20, 2023): 813–19. http://dx.doi.org/10.15251/djnb.2023.183.813.
Full textLewis, D. J., D. Gupta, M. R. Notis, and Yoshihiko Imanaka. "Diffusion of 110mAg Tracer in Polycrystalline Piezoelectric Ceramics." Defect and Diffusion Forum 194-199 (April 2001): 1009–16. http://dx.doi.org/10.4028/www.scientific.net/ddf.194-199.1009.
Full textLisińska-Czekaj, Agata, Dionizy Czekaj, Barbara Garbarz-Glos, Wojciech Bąk, Temesgen Tadeyos Zate, and Jae-Ho Jeon. "Dielectric Spectroscopy Studies and Modelling of Piezoelectric Properties of Multiferroic Ceramics." Applied Sciences 13, no. 12 (June 16, 2023): 7193. http://dx.doi.org/10.3390/app13127193.
Full textDelibas, Bülent, Arunachalakasi Arockiarajan, and Wolfgang Seemann. "A nonlinear model of piezoelectric polycrystalline ceramics under quasi-static electromechanical loading." Journal of Materials Science: Materials in Electronics 16, no. 8 (August 2005): 507–15. http://dx.doi.org/10.1007/s10854-005-2725-2.
Full textChen, Chao-Ting, Shun-Chiu Lin, Urška Trstenjak, Matjaž Spreitzer, and Wen-Jong Wu. "Comparison of Metal-Based PZT and PMN–PT Energy Harvesters Fabricated by Aerosol Deposition Method." Sensors 21, no. 14 (July 12, 2021): 4747. http://dx.doi.org/10.3390/s21144747.
Full textIvashov, I. V., and A. S. Semenov. "Influence of crack face boundary conditions on the fracture of polycrystalline piezoelectric ceramics." Magazine of Civil Engineering 51, no. 07 (November 2014): 5–15. http://dx.doi.org/10.5862/mce.51.1.
Full textLewis, Daniel J., Devendra Gupta, Michael R. Notis, and Yoshihiko Imanaka. "Diffusion of 110mAg Tracer in Polycrystalline and Single-Crystal Lead-Containing Piezoelectric Ceramics." Journal of the American Ceramic Society 84, no. 8 (December 20, 2004): 1777–84. http://dx.doi.org/10.1111/j.1151-2916.2001.tb00914.x.
Full textShekhan, Husain N., Erkan A. Gurdal, Lalitha Ganapatibhotla, Janna K. Maranas, Ron Staut, and Kenji Uchino. "Thermal Conductivities of PZT Piezoelectric Ceramics under Different Electrical Boundary Conditions." Insight - Material Science 3, no. 1 (March 17, 2020): 10. http://dx.doi.org/10.18282/ims.v3i1.301.
Full textUršič, Hana, and Uroš Prah. "Investigations of ferroelectric polycrystalline bulks and thick films using piezoresponse force microscopy." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, no. 2223 (March 2019): 20180782. http://dx.doi.org/10.1098/rspa.2018.0782.
Full textFoschini, Cesar, Bruno Hangai, Paulo Ortega, Elson Longo, Mário Cilense, and Alexandre Simões. "Evidence of ferroelectric behaviour in CaCu3Ti4O12 thin films deposited by RF-sputtering." Processing and Application of Ceramics 13, no. 3 (2019): 219–28. http://dx.doi.org/10.2298/pac1903219f.
Full textHinterstein, Manuel, Michael Knapp, Markus Hölzel, Wook Jo, Antonio Cervellino, Helmut Ehrenberg, and Hartmut Fuess. "Field-induced phase transition in Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics." Journal of Applied Crystallography 43, no. 6 (October 13, 2010): 1314–21. http://dx.doi.org/10.1107/s0021889810038264.
Full textFan, Qiaolan, Weidong Zeng, Changrong Zhou, Zhenyong Cen, Changlai Yuan, Jianrong Xiao, and Jiafeng Ma. "Effect of Reoriented Nanodomains on Crystal Structure and Piezoelectric Properties of Polycrystalline Ferroelectric Ceramics." Journal of Electronic Materials 44, no. 10 (June 3, 2015): 3843–48. http://dx.doi.org/10.1007/s11664-015-3795-4.
Full textTang, Hua, Shujun Zhang, Yujun Feng, Fei Li, and Thomas R. Shrout. "Piezoelectric Property and Strain Behavior of Pb(Yb0.5 Nb0.5 )O3 -PbHfO3 -PbTiO3 Polycrystalline Ceramics." Journal of the American Ceramic Society 96, no. 9 (May 20, 2013): 2857–63. http://dx.doi.org/10.1111/jace.12389.
Full textZhang, Youfeng, Yali Yao, and Shasha He. "Sinterability and Dielectric Properties of LiTaO3-Based Ceramics with Addition of CoO." Materials 13, no. 7 (March 25, 2020): 1506. http://dx.doi.org/10.3390/ma13071506.
Full textMartin, Alexander, Neamul H. Khansur, Udo Eckstein, Kevin Riess, Ken-ichi Kakimoto, and Kyle G. Webber. "High temperature piezoelectric response of polycrystalline Li-doped (K,Na)NbO3 ceramics under compressive stress." Journal of Applied Physics 127, no. 11 (March 21, 2020): 114101. http://dx.doi.org/10.1063/1.5134554.
Full textSAMBASIVA RAO, K., HAILEEYESUS WORKINEH, A. SWATHI, and B. S. KALYANI. "SYNTHESIS, PIEZOELECTRIC, DIELECTRIC AND CONDUCTIVITY STUDIES ON Dy2O3 SUBSTITUTED (Bi0.94Na0.94)0.5Ba0.06TiO3 CERAMICS." Journal of Advanced Dielectrics 01, no. 04 (October 2011): 455–64. http://dx.doi.org/10.1142/s2010135x11000513.
Full textAHN, CHEOL-WOO, CHEE-SUNG PARK, and SHASHANK PRIYA. "SINTERED COMPOSITE FOR LOW TEMPERATURE COEFFICIENT OF PIEZOELECTRIC PROPERTY IN KNN BASED LEAD-FREE CERAMICS." Functional Materials Letters 03, no. 01 (March 2010): 35–39. http://dx.doi.org/10.1142/s1793604710000907.
Full textMuñoz-Saldaña, J., M. J. Hoffmann, and G. A. Schneider. "Ferroelectric domains in coarse-grained lead zirconate titanate ceramics characterized by scanning force microscopy." Journal of Materials Research 18, no. 8 (August 2003): 1777–86. http://dx.doi.org/10.1557/jmr.2003.0247.
Full textKholkin, A. L., I. K. Bdikin, D. A. Kiselev, V. V. Shvartsman, and S. H. Kim. "Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications." Journal of Electroceramics 19, no. 1 (March 6, 2007): 83–96. http://dx.doi.org/10.1007/s10832-007-9045-2.
Full textLe, Fisher, and Moon. "Effect of Composition on the Growth of Single Crystals of (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 by Solid State Crystal Growth." Materials 12, no. 15 (July 24, 2019): 2357. http://dx.doi.org/10.3390/ma12152357.
Full textDU, Xiao-Hong, Qing-Ming WANG, Uma BELEGUNDU, and Kenji UCHINO. "Piezoelectric Property Enhancement in Polycrystalline Lead Zirconate Titanate by Changing Cutting Angle." Journal of the Ceramic Society of Japan 107, no. 1242 (1999): 190–91. http://dx.doi.org/10.2109/jcersj.107.190.
Full textLong, Changbai, Wei Ren, Kun Zheng, and Huiqing Fan. "Ultrahigh-temperature piezoelectric polycrystalline ceramics: dramatically enhanced ferroelectricity, piezoelectricity and electrical resistivity in Ca1−3xBi2+3xNb2−xMnxO9." Materials Research Letters 8, no. 4 (February 14, 2020): 165–72. http://dx.doi.org/10.1080/21663831.2020.1725676.
Full textKuzenko, D. V. "Critical temperature below the Curie temperature of ferroelectric ceramics PZT." Journal of Advanced Dielectrics 11, no. 01 (February 2021): 2150006. http://dx.doi.org/10.1142/s2010135x21500065.
Full textDemczyk, B. G. "In situ transmission electron microscopy study of the paraelectric to ferroelectric (cubic to tetragonal) phase transformation in lanthanum-modified lead titanate ceramics." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 172–73. http://dx.doi.org/10.1017/s0424820100125798.
Full textNarita, Fumio, Yang Zhenjun, and Kotaro Mori. "Phase field simulation of temperature dependent dielectric and piezoelectric properties in BaTiO3 Ceramics polycrystalline ceramics: potentials of temperature energy harvesting." Proceedings of The Computational Mechanics Conference 2017.30 (2017): 051. http://dx.doi.org/10.1299/jsmecmd.2017.30.051.
Full textDunn, Martin L. "Effects of grain shape anisotropy, porosity, and microcracks on the elastic and dielectric constants of polycrystalline piezoelectric ceramics." Journal of Applied Physics 78, no. 3 (August 1995): 1533–41. http://dx.doi.org/10.1063/1.360246.
Full textPertsev, N. A., A. G. Zembilgotov, and R. Waser. "Aggregate linear properties of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective piezoelectric medium." Journal of Applied Physics 84, no. 3 (August 1998): 1524–29. http://dx.doi.org/10.1063/1.368218.
Full textLi, Fei, Shujun Zhang, Zhuo Xu, Xiaoyong Wei, Jun Luo, and Thomas R. Shrout. "Piezoelectric activity of relaxor-PbTiO3 based single crystals and polycrystalline ceramics at cryogenic temperatures: Intrinsic and extrinsic contributions." Applied Physics Letters 96, no. 19 (May 10, 2010): 192903. http://dx.doi.org/10.1063/1.3430059.
Full textAndryushina, Inna, Anatoliy Pavlenko, Sergey Zinchenko, Konstantin Andryushin, Lidiya Shilkina, Ekaterina Glazunova, Alexandr Nagaenko, Daniil Stryukov, Hizir Sadykov, and Larisa Reznichenko. "Obtaining, structure, microstructure and dielectric characteristics of ceramics and thin films of ferro-piezoelectric materials based on the PZT system." Journal of Advanced Dielectrics 10, no. 01n02 (February 2020): 2060003. http://dx.doi.org/10.1142/s2010135x20600036.
Full textBenedetti, Ivano, Vincenzo Gulizzi, and Alberto Milazzo. "A Microstructural Model for Micro-Cracking in Piezoceramics." Key Engineering Materials 774 (August 2018): 479–85. http://dx.doi.org/10.4028/www.scientific.net/kem.774.479.
Full textHossain, Mohammad J., Zhiyang Wang, Neamul H. Khansur, Justin A. Kimpton, Jette Oddershede, and John E. Daniels. "The effect of inter-granular constraints on the response of polycrystalline piezoelectric ceramics at the surface and in the bulk." Applied Physics Letters 109, no. 9 (August 29, 2016): 092905. http://dx.doi.org/10.1063/1.4962125.
Full textHuangfu, Geng, Jianwei Chen, Jie Jiao, Haosu Luo, and Yiping Guo. "Domain evolution and coercive field reduction in rhombohedral (Na0.5Bi0.5)TiO3-based crystals by alternating electric field." Applied Physics Letters 122, no. 6 (February 6, 2023): 062902. http://dx.doi.org/10.1063/5.0139594.
Full textSkaliukh, A. S. "Finite-element Modeling Irreversible Polarization Process of Ferroelectric Ceramics." Mathematics and Mathematical Modeling, no. 5 (November 12, 2018): 1–16. http://dx.doi.org/10.24108/mathm.0518.0000145.
Full textOh, Hyun-Taek, Hyun-Jae Joo, Moon-Chan Kim, and Ho-Yong Lee. "Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics." Journal of the Korean Ceramic Society 55, no. 2 (March 31, 2018): 166–73. http://dx.doi.org/10.4191/kcers.2018.55.2.04.
Full textDunn, P. E., and S. H. Carr. "A Historical Perspective on the Occurrence of Piezoelectricity in Materials." MRS Bulletin 14, no. 2 (February 1989): 22–31. http://dx.doi.org/10.1557/s0883769400063405.
Full textKovaľ, Vladimír. "High aspect ratio lead zirconate titanate tube structures: I. Template assisted fabrication - vacuum infiltration method." Processing and Application of Ceramics 6, no. 1 (2012): 37–42. http://dx.doi.org/10.2298/pac1201037k.
Full textGupta, Shashaank, Myoor K. Padmanabhan, and Roop L. Mahajan. "Favorable dynamics of switching and non-switching polarizations in ⟨001⟩pc oriented Sm:PMN-PT crystal." Applied Physics Letters 122, no. 12 (March 20, 2023): 122903. http://dx.doi.org/10.1063/5.0140442.
Full textYu, Pei Jun. "Study on Artificial Polycrystalline Piezoelectric Material with the Calibration Mechanism of the Micro-Displacement Sensor Based on Piezoelectric Ceramic." Advanced Materials Research 703 (June 2013): 312–15. http://dx.doi.org/10.4028/www.scientific.net/amr.703.312.
Full textMAMATHA, B., and P. SARAH. "DIELECTRIC, FERROELECTRIC, PIEZOELECTRIC AND IMPEDANCE STUDY OF LEAD-FREE CERAMIC: SrBi4Ti3.975Zr0.025O15." Journal of Advanced Dielectrics 02, no. 04 (October 2012): 1250023. http://dx.doi.org/10.1142/s2010135x12500233.
Full textJones, Jacob L., Benjamin J. Iverson, and Keith J. Bowman. "Texture and Anisotropy of Polycrystalline Piezoelectrics." Journal of the American Ceramic Society 90, no. 8 (August 2007): 2297–314. http://dx.doi.org/10.1111/j.1551-2916.2007.01820.x.
Full textBiglar, Mojtaba, Tomasz Trzepieciński, Feliks Stachowicz, and Magdalena Gromada. "Application of the grain boundary formulation and image processing-based algorithm in micro-mechanical analysis of piezoelectric ceramic." Mathematics and Mechanics of Solids 25, no. 7 (October 14, 2017): 1384–404. http://dx.doi.org/10.1177/1081286517735696.
Full text