Academic literature on the topic 'Piezoelectric material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Piezoelectric material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Piezoelectric material"
Abdul Rashid, Affa Rozana, Nur Insyierah Md Sarif, and Khadijah Ismail. "Development of Smart Shoes Using Piezoelectric Material." Malaysian Journal of Science Health & Technology 7, no. 1 (March 30, 2021): 49–55. http://dx.doi.org/10.33102/mjosht.v7i1.158.
Full textYu, Yu Min. "Design and Analysis of a Piezoelectric Actuator." Advanced Materials Research 308-310 (August 2011): 2131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.308-310.2131.
Full textWAN, YONGPING, and LIANGLIANG FAN. "MODELING THE PIEZOELECTRIC d33 COEFFICIENT OF THE CELLULAR PIEZOELECTRET FILM BY FINITE ELEMENT METHOD." Modern Physics Letters B 25, no. 31 (November 21, 2011): 2343–51. http://dx.doi.org/10.1142/s0217984911027558.
Full textGuo, Xin, Jialin Zhu, Xiaoping Zou, Junming Li, Jin Cheng, Chunqian Zhang, Yifei Wang, et al. "Piezoelectric Properties of 0-3 Composite Films Based on Novel Molecular Piezoelectric Material (ATHP)2PbBr4." Materials 15, no. 18 (September 14, 2022): 6378. http://dx.doi.org/10.3390/ma15186378.
Full textSoedarto, Totok, and Taufiq Arif Setyanto. "Perancangan Signal Conditioning Untuk Sensor Piezoelectric." Wave: Jurnal Ilmiah Teknologi Maritim 6, no. 1 (January 24, 2019): 13–20. http://dx.doi.org/10.29122/jurnalwave.v6i1.3320.
Full textLe, Kang, and Yu Jun Feng. "Influence of DC Bias on the Properties of the Piezoelectric Material." Materials Science Forum 852 (April 2016): 164–70. http://dx.doi.org/10.4028/www.scientific.net/msf.852.164.
Full textTani, Junji, Toshiyuki Takagi, and Jinhao Qiu. "Intelligent Material Systems: Application of Functional Materials." Applied Mechanics Reviews 51, no. 8 (August 1, 1998): 505–21. http://dx.doi.org/10.1115/1.3099019.
Full textvon Seggern, Heinz, and Tsuey T. Wang. "Polarizing of piezoelectric material." Journal of the Acoustical Society of America 79, no. 5 (May 1986): 1647. http://dx.doi.org/10.1121/1.393219.
Full textWada, Koichi. "Filter using piezoelectric material." Journal of the Acoustical Society of America 121, no. 6 (2007): 3256. http://dx.doi.org/10.1121/1.2748519.
Full textCHEN, MENG-CHENG, JIAN-JUN ZHU, and K. Y. SZE. "FINITE ELEMENT ANALYSIS OF PIEZOELECTRIC ELASTICITY WITH SINGULAR INPLANE ELECTROELASTIC FIELDS." International Journal of Computational Methods 03, no. 01 (March 2006): 115–35. http://dx.doi.org/10.1142/s0219876206000837.
Full textDissertations / Theses on the topic "Piezoelectric material"
Al-Bader, Yousef A. "Development of a piezoelectric bone substitute material." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249905.
Full textZapletal, Vít. "Analýza SMART zdrojů elektrické energie pro železniční dopravu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-378740.
Full textMtawa, Alexander Nikwanduka. "Influence of geometry and material properties on the optimum performance of the C-shape piezo-composite actuator." Thesis, Cape Peninsula University of Technology, 2008. http://hdl.handle.net/20.500.11838/1301.
Full textIn recent years, due to rapid advances in technology there has been an increasingly high demand for large displacement and large force, precise positioning, fast response, low power consuming miniature piezoelectric actuators. In certain smart structure applications, the use of curved piezoelectric actuators is necessary. The present work extends the earlier investigations on the C- shape actuator by providing a detailed investigation on the influence of geometric and material properties of the individual layers of the C-shape piezocomposite for its optimal performance as an actuator. Analytical models have. been used to optimize the geometry of the actuator. Experimental and finite element analyses (using general purpose finite element software i.e. CoventerWare and MSC. Marc) have been used for validation. The present work has established that, by maintaining the thickness of the substrate and piezoceramic layers constant; changing the external radius, for example increasing it, the stiffness of the structure decreases and thus yielding large displacement This has a negative effect on the force produced by the actuator. With fixed thickness of the substrate and varying the thickness of the piezoceramic (for fixed external radius) the result is as follows: Increasing the thickness of the piezoceramic layer has the effect of decreasing the displacement while the force increases. With fixed PZT thickness as well as the external radius, varying the substrate thickness has the following effect: As the thickness of the substrate increases the displacement increases reaching a maximum. Subsequent increase in the thickness of the substrate the displacement is reduced. The force continues increasing at least for the ratios up to 1.0, further increase of the substrate, subsequent decrease of force is also noted. In addition to changing the thickness of the substrate, the choice of different material for the substrate has the following effect: For substrate/PZT ratios of up to 0.6. an actuator with substrate material having higher elastic modulus will produce larger displacement while for ratios beyond this ratio the situation is reversed. The causes for this kind of behaviour have been addressed. In all cases both force and displacement are found to be directly proportional to applied voltage.
Tam, Yin-king, and 譚燕琼. "Organometallic complexes as coating material for crystal sorptiondetector." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1985. http://hub.hku.hk/bib/B31207443.
Full textTam, Yin-king. "Organometallic complexes as coating material for crystal sorptiondetector /." [Hong Kong : University of Hong Kong], 1985. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12319636.
Full textKuri, Salvador Rodriguez. "An investigation into photo-piezoelectric composite material for building integration." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493112.
Full textSreeramakavacham, Bindu. "FILM GROWTH OF NOVEL FREQUENCY AGILE COMPLEX-OXIDE PIEZOELECTRIC MATERIAL." Master's thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3104.
Full textM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Materials Science & Engr MSMSE
Krsmanovic, Dalibor. "High temperature ultrasonic gas flow sensor based on lead free piezoelectric material." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/245065.
Full textSinha, Dhiraj. "Radio frequency magnetic field detection using piezoelectric material incorporating a microcantilever amplifier." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611229.
Full textSanthanakrishna, Anand Kumar. "Piezoelectric ZnO Nanowires as a Tunable Interface Material for Opto-Electronic Applications." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7926.
Full textBooks on the topic "Piezoelectric material"
Piezoelectric materials and devices: Applications in engineering and medical sciences. Boca Raton, FL: Taylor & Francis, 2012.
Find full textBrockmann, Tobias H. Theory of adaptive fiber composites: From piezoelectric material behavior to dynamics of rotating structures. Dordrecht: Springer, 2009.
Find full textBhalla, Suresh, Sumedha Moharana, Visalakshi Talakokula, and Naveet Kaur. Piezoelectric Materials. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119265139.
Full textA, Parinov Ivan, ed. Piezoceramic materials and devices. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textDineva, Petia, Dietmar Gross, Ralf Müller, and Tsviatko Rangelov. Dynamic Fracture of Piezoelectric Materials. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03961-9.
Full textBowen, Christopher R., Vitaly Yu Topolov, and Hyunsun Alicia Kim. Modern Piezoelectric Energy-Harvesting Materials. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29143-7.
Full textG, Nelson Wesley, ed. Piezoelectric materials: Structure, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textJordan, T. L. Piezoelectric ceramics characterization. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.
Find full textParinov, Ivan A. Piezoelectrics and related materials: Investigations and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textBook chapters on the topic "Piezoelectric material"
Tichý*, Jan, Jiří Erhart, Erwin Kittinger*, and Jana Přívratská. "Nonlinear Material Properties." In Fundamentals of Piezoelectric Sensorics, 101–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68427-5_6.
Full textClézio, E. Le, T. Delaunay, M. Lam, and G. Feuillard. "Piezoelectric material characterization by acoustic methods." In Springer Proceedings in Physics, 283–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89105-5_25.
Full textEyraud, L. "The Material for Piezoelectric Power Transducers." In Power Sonic and Ultrasonic Transducers Design, 10–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73263-8_3.
Full textBanks-Sills, Leslie, and Yael Motola. "A Fracture Criterion for Piezoelectric Material." In IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, 1–7. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9887-0_1.
Full textFang, Daining, and Jinxi Liu. "Physical and Material Properties of Dielectrics." In Fracture Mechanics of Piezoelectric and Ferroelectric Solids, 9–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30087-5_2.
Full textAkotkar, Aman, Anand Kumar Sinsh, and S. Jaichandar. "Energy Generation from Piezoelectric Material in Automobile." In Lecture Notes in Mechanical Engineering, 65–70. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3631-1_7.
Full textKakimoto, Kenichi. "Material Design of Alkaline Niobate Piezoelectric Ceramics." In High-Performance Ceramics V, 1879–82. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1879.
Full textArya, Atulya, Shradha Shekhar, Avinash Priyam, and Vijay Nath. "Design of Energy Harvestor Using Piezoelectric Material." In Nanoelectronics, Circuits and Communication Systems, 707–16. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7486-3_60.
Full textRubio, Wilfredo Montealegre, Sandro Luis Vatanabe, Gláucio Hermogenes Paulino, and Emílio Carlos Nelli Silva. "Functionally Graded Piezoelectric Material Systems - A Multiphysics Perspective." In Advanced Computational Materials Modeling, 301–39. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632312.ch8.
Full textPalevicius, Arvydas, Giedrius Janusas, Elingas Cekas, and YatinkumarRajeshbhai Patel. "Composite Piezoelectric Material for Biomedical Micro Hydraulic System." In Bioinformatics and Biomedical Engineering, 49–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78759-6_5.
Full textConference papers on the topic "Piezoelectric material"
Ferreira, Sofia, Stanimir Valtchev, Fernando Coito, and Mikhail Mudrov. "Mechanical vibration using piezoelectric material." In 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP). IEEE, 2017. http://dx.doi.org/10.1109/optim.2017.7975047.
Full textKim, Justin Young-Hyun, Austin Cheng, and Yu-Chong Tai. "Parylene-C as a piezoelectric material." In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2011. http://dx.doi.org/10.1109/memsys.2011.5734464.
Full textRen, Gaojian. "Review of piezoelectric material power supply." In 2021 International Conference on Electronics, Circuits and Information Engineering (ECIE). IEEE, 2021. http://dx.doi.org/10.1109/ecie52353.2021.00035.
Full textLIU, Jian-jun, Xiang-hua CHEN, Hong ZUO, and Qun LI. "Energy Harvesting About Flexible Piezoelectric Material." In 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). IEEE, 2021. http://dx.doi.org/10.1109/spawda51471.2021.9445521.
Full textSayar, Ersin, and Bakhtier Farouk. "Dynamic Analysis of Piezoelectric Valveless Micropumps: Effects of Piezoelectric Transducer Material." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66215.
Full textDeGiorgi, Virginia G., and Stephanie A. Wimmer. "Influence of Geometric Features and Material Orientation in Piezoelectric Ceramic Materials." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79194.
Full textElahi, H., A. Israr, R. F. Swati, H. M. Khan, and A. Tamoor. "Stability of piezoelectric material for suspension applications." In 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE). IEEE, 2017. http://dx.doi.org/10.1109/icase.2017.8374261.
Full textRumman, Hamza, Fiseha Mekonnen Guangul, Adham Abdu, Muhammad Usman, and Abdulrahman Alkharusi. "Harvesting Electricity using Piezoelectric Material in Malls." In 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). IEEE, 2019. http://dx.doi.org/10.1109/icbdsc.2019.8645581.
Full textAkkaya Oy, Sibel, and Ali Ekber Ozdemir. "Usage of piezoelectric material and generating electricity." In 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2016. http://dx.doi.org/10.1109/icrera.2016.7884363.
Full textYuan, Xue-shuai, Fu-jun Chen, and Lin-quan Yao. "Subdomain collocation method for multilayered piezoelectric material." In 2010 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2010). IEEE, 2010. http://dx.doi.org/10.1109/spawda.2010.5744352.
Full textReports on the topic "Piezoelectric material"
Reinhardt, L., Aisha Haynes, and J. Cordes. Finite Element Method Mesh Study for Efficient Modeling of Piezoelectric Material. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada571997.
Full textTrolier-McKinstry, Susan, Wes Hackenberger, and Lynn Ewart. The Effect of Technique on the Measurement of the Electromechanical Material Properties in Piezoelectric Single Crystals. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada405767.
Full textCreighton, Steven, Peter W. Chung, and John D. Clayton. Multiscale Modeling of Piezoelectric Materials. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada494112.
Full textCollins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels, and Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada597296.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250889.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250890.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 3. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250891.
Full textCross, L. E., R. E. Newnham, A. S. Bhalla, J. P. Dougherty, and J. H. Adair. Piezoelectric and Electrostrictive Materials for Transducers Applications. Volume 4. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada250892.
Full textYoshikawa, Shoko, and S. K. Kurtz. Passive Vibration Damping Materials: Piezoelectric Ceramics Composites for Vibration Damping Applications. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada260792.
Full textYoshikawa, Shoko, R. Meyer, J. Witham, S. Y. Agadda, and G. Lesieutre. Passive Vibration Damping Materials: Piezoelectric Ceramic Composites for Vibration Damping Applications. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada298477.
Full text