Academic literature on the topic 'Piezoelectric energy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Piezoelectric energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Piezoelectric energy"

1

Zengtao Yang and Jiashi Yang. "Connected Vibrating Piezoelectric Bimorph Beams as a Wide-band Piezoelectric Power Harvester." Journal of Intelligent Material Systems and Structures 20, no. 5 (November 28, 2008): 569–74. http://dx.doi.org/10.1177/1045389x08100042.

Full text
Abstract:
We analyze coupled flexural vibration of two elastically and electrically connected piezoelectric beams near resonance for converting mechanical vibration energy to electrical energy. Each beam is a so-called piezoelectric bimorph with two layers of piezoelectrics. The 1D equations for bending of piezoelectric beams are used for a theoretical analysis. An exact analytical solution to the beam equations is obtained. Numerical results based on the solution show that the two resonances of individual beams can be tuned as close as desired by design when they are connected to yield a wide-band electrical output. Therefore, the structure can be used as a wide-band piezoelectric power harvester.
APA, Harvard, Vancouver, ISO, and other styles
2

Uchino, Kenji. "Piezoelectric Devices in the Sustainable Society." Sustainability in Environment 4, no. 4 (September 11, 2019): p181. http://dx.doi.org/10.22158/se.v4n4p181.

Full text
Abstract:
Our 21st century faces to a “sustainable society”, which enhances (a) usage of non-toxic materials, (b) disposal technology for existing hazardous materials, (c) reduction of contamination gas, (d) environmental monitoring system, (e) new energy source creation, and (f) energy-efficient device development in the piezoelectric area. With reducing their size, the electromagnetic components reduce their efficiency drastically. Thus, piezoelectric transducers with much less losses are highly sought recently. Piezoelectric devices seem to be all-around contributors and a key component to the above mentioned five R&D areas. Some of the efforts include: (a) Since the most popular piezoelectric lead zirconate titante ceramics will be regulated in European and Asian societies due to their toxicity (Pb2+ ion), lead-free piezoelectrics have been developed. (b) Since hazardous organic substances can easily be dissolved by the ultrasonic irradiation in water, a new safe disposal technology using piezoelectric transducers has been developed. (c) We demonstrated an energy recovery system on a hybrid car from its engine’s mechanical vibration to the rechargeable battery. (d) Micro ultrasonic motors based on piezoelectrics demonstrated 1/20 reduction in the volume and a 20-time increase in efficiency of the conventional electromagnetic motors. This paper introduces leading piezoelectric materials, devices, and drive/control methods, relating with the above “sustainability” technologies, aiming at further research expansion in this area.
APA, Harvard, Vancouver, ISO, and other styles
3

Mohammadi, S., and M. Abdalbeigi. "Analytical Optimization of Piezoelectric Circular Diaphragm Generator." Advances in Materials Science and Engineering 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/620231.

Full text
Abstract:
This paper presents an analytical study of the piezoelectric circular diaphragm microgenerator using strain energy method. Piezoelectrics are the intelligent materials that can be used as transducer to convert mechanical energy into electrical energy and vice versa. The aim of this paper is to optimize produced electrical energy from mechanical pressure. Therefore, the circular metal plate equipped with piezoelectric circular patch has been considered with simply and clamped supports. A comprehensive modeling, parametrical study and the effect of the boundary conditions on the performance of the microgenerator have been investigated. The system is under variable pressure from an oscillating pressure source. Results are presented for PZT and PMN-PT piezoelectric materials with steel and aluminum substrates. An optimal value for the radius and thickness of the piezoelectric layer with a special support condition has been obtained.
APA, Harvard, Vancouver, ISO, and other styles
4

Rudresha K J, Rudresha K. J., and Girisha G. K. Girisha G K. "Energy Harvesting Using Piezoelectric Materials on Microcantilevr Structure." International Journal of Scientific Research 2, no. 5 (June 1, 2012): 252–55. http://dx.doi.org/10.15373/22778179/may2013/84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cook-Chennault, Kimberly Ann, Nithya Thambi, Mary Anne Bitetto, and E. B. Hameyie. "Piezoelectric Energy Harvesting." Bulletin of Science, Technology & Society 28, no. 6 (December 2008): 496–509. http://dx.doi.org/10.1177/0270467608325374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Howells, Christopher A. "Piezoelectric energy harvesting." Energy Conversion and Management 50, no. 7 (July 2009): 1847–50. http://dx.doi.org/10.1016/j.enconman.2009.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Parinov, Ivan A., and Alexander V. Cherpakov. "Overview: State-of-the-Art in the Energy Harvesting Based on Piezoelectric Devices for Last Decade." Symmetry 14, no. 4 (April 7, 2022): 765. http://dx.doi.org/10.3390/sym14040765.

Full text
Abstract:
Technologies of energy harvesting have been developed intensively since the beginning of the twenty-first century, presenting themselves as alternatives to traditional energy sources (for instance, batteries) for small-dimensional and low-power electronics. Batteries have numerous shortcomings connected, for example, with restricted service life and the necessity of periodic recharging/replacement that create significant problems for portative and remote devices and for power equipment. Environmental energy covers solar, thermal, and oscillation energy. By this, the vibration energy exists continuously around us due to the operation of numerous artificial structures and mechanisms. Different materials (including piezoelectrics) and conversion mechanisms can transform oscillation energy into electrical energy for use in many devices of energy harvesting. Piezoelectric transducers possessing electric mechanical coupling and demonstrating a high density of power in comparison with electromagnetic and electrostatic sensors are broadly applied for the generation of energy from different oscillation energy sources. For the last decade, novel piezoelectric materials, transformation mechanisms, electrical circuits, and experimental and theoretical approaches with results of computer simulation have been developed for improving different piezoelectric devices of energy harvesting. This overview presents results, obtained in the area of piezoelectric energy harvesting for the last decade, including a wide spectrum of experimental, analytical, and computer simulation investigations.
APA, Harvard, Vancouver, ISO, and other styles
8

Camargo-Chávez, J. E., S. Arceo-Díaz, E. E. Bricio-Barrios, and R. E. Chávez-Valdez. "Piezoelectric mathematical modeling; technological feasibility in the generation and storage of electric charge." Journal of Physics: Conference Series 2159, no. 1 (January 1, 2022): 012009. http://dx.doi.org/10.1088/1742-6596/2159/1/012009.

Full text
Abstract:
Abstract Emerging technologies are efficient alternatives for satisfying the growing demand for sustainable and cheap energy sources. Piezoelectrics are one of the most promising energy sources derived from emerging technologies. These materials are capable of converting mechanical energy into electricity or vice versa. Piezoelectrics have been used for almost a hundred years to generate electrical and sound pulses. However, the use of piezoelectrics for power generation is constrained by the cost associated with equipment and infrastructure. This problem has been addressed through mathematical models that relate the physical and electrical properties of the piezoelectric material with the voltage generated. Although these models have high performance, they do not incorporate voltage rectification and electrical charge storage stages. This work presents a mathematical model that describes the relationship of the physical and electromechanical properties of a system employing a piezoelectric for energy generation. The voltage of the system and the charge stored in a capacitor are calculated through this model. Also, contour diagrams are presented as a tool for facilitating the efficiency of energy generation.
APA, Harvard, Vancouver, ISO, and other styles
9

Yazib, M. S. A., N. Saudin, M. A. Mohamed, N. A. M. Affendi, L. Mohamed, and H. Mohamed. "Comparative study of vibration energy harvesting on home appliances using piezoelectric energy harvester." Journal of Physics: Conference Series 2550, no. 1 (August 1, 2023): 012006. http://dx.doi.org/10.1088/1742-6596/2550/1/012006.

Full text
Abstract:
Abstract This project was developed to harvest vibration energy using a piezoelectric energy harvester. The availability of home appliance vibration energy is a promising solution to get clean energy resources to manipulate wasted energy. When the appliances’ vibration hits the piezoelectric energy harvester surface, pressure is applied to the piezoelectric transducers and converts mechanical energy into electrical energy. The piezoelectric energy harvester’s efficiency depends on the availability of the home appliances’ vibration energy; thus, using multiple piezoelectric transducers in series generates more power. The piezoelectric’ alternating current (AC) output is fed to a Cockroft-Walton voltage multiplier (CWVM) to convert into direct current (DC) and boost the output. Four piezoelectric transducers connected in series have successfully produced a voltage of up to 4.7 V. Its output voltage can be harnessed to power low-voltage electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
10

Meng, Yanfang, Genqiang Chen, and Maoyong Huang. "Piezoelectric Materials: Properties, Advancements, and Design Strategies for High-Temperature Applications." Nanomaterials 12, no. 7 (April 1, 2022): 1171. http://dx.doi.org/10.3390/nano12071171.

Full text
Abstract:
Piezoelectronics, as an efficient approach for energy conversion and sensing, have a far-reaching influence on energy harvesting, precise instruments, sensing, health monitoring and so on. A majority of the previous works on piezoelectronics concentrated on the materials that are applied at close to room temperatures. However, there is inadequate research on the materials for high-temperature piezoelectric applications, yet they also have important applications in the critical equipment of aeroengines and nuclear reactors in harsh and high-temperature conditions. In this review, we briefly introduce fundamental knowledge about the piezoelectric effect, and emphatically elucidate high-temperature piezoelectrics, involving: the typical piezoelectric materials operated in high temperatures, and the applications, limiting factors, prospects and challenges of piezoelectricity at high temperatures.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Piezoelectric energy"

1

Kwon, Dongwon. "Piezoelectric kinetic energy-harvesting ics." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47571.

Full text
Abstract:
Wireless micro-sensors can enjoy popularity in biomedical drug-delivery treatments and tire-pressure monitoring systems because they offer in-situ, real-time, non-intrusive processing capabilities. However, miniaturized platforms severely limit the energy of onboard batteries and shorten the lifespan of electronic systems. Ambient energy is an attractive alternative because the energy from light, heat, radio-frequency (RF) radiation, and motion can potentially be used to continuously replenish an exhaustible reservoir. Of these sources, solar light produces the highest power density, except when supplied from indoor lighting, under which conditions the available power decreases drastically. Harnessing thermal energy is viable, but micro-scale dimensions severely limit temperature gradients, the fundamental mechanism from which thermo piles draw power. Mobile electronic devices today radiate plenty of RF energy, but still, the available power rapidly drops with distance. Harvesting kinetic energy may not compete with solar power, but in contrast to indoor lighting, thermal, and RF sources, moderate and consistent vibration power across a vast range of applications is typical. Although operating conditions ultimately determine which kinetic energy-harvesting method is optimal, piezoelectric transducers are relatively mature and produce comparatively more power than their counterparts such as electrostatic and electromagnetic kinetic energy transducers. The presented research objective is to develop, design, simulate, fabricate, prototype, test, and evaluate CMOS ICs that harvest ambient kinetic energy in periodic and non-periodic vibrations using a small piezoelectric transducer to continually replenish an energy-storage device like a capacitor or a rechargeable battery. Although vibrations in surrounding environment produce abundant energy over time, tiny transducers can harness only limited power from the energy sources, especially when mechanical stimulation is weak. To overcome this challenge, the presented piezoelectric harvesters eliminate the need for a rectifier which necessarily imposes threshold limits and additional losses in the system. More fundamentally, the presented harvesting circuits condition the transducer to convert more electrical energy for a given mechanical input by increasing the electromechanical damping force of the piezoelectric transducer. The overall aim is to acquire more power by widening the input range and improving the efficiency of the IC as well as the transducer. The presented technique in essence augments the energy density of micro-scale electronic systems by scavenging the ambient kinetic energy and extends their operational lifetime. This dissertation reports the findings acquired throughout the investigation. The first chapter introduces the applications and challenges of micro-scale energy harvesting and also reviews the fundamental mechanisms and recent developments of various energy-converting transducers that can harness ambient energy in light, heat, RF radiation, and vibrations. Chapter 2 examines various existing piezoelectric harvesting circuits, which mostly adopt bridge rectifiers as their core. Chapter 3 then introduces a bridge-free piezoelectric harvester circuit that employs a switched-inductor power stage to eliminate the need for a bridge rectifier and its drawbacks. More importantly, the harvester strengthens the electrical damping force of the piezoelectric device and increases the output power of the harvester. The chapter also presents the details of the integrated-circuit (IC) implementation and the experimental results of the prototyped harvester to corroborate and clarify the bridge-free harvester operation. One of the major discoveries from the first harvester prototype is the fact that the harvester circuit can condition the piezoelectric transducer to strengthen its electrical damping force and increase the output power of the harvester. As such, Chapter 4 discusses various energy-investment strategies that increase the electrical damping force of the transducer. The chapter presents, evaluates, and compares several switched-inductor harvester circuits against each other. Based on the investigation in Chapter 4, an energy-investing piezoelectric harvester was designed and experimentally evaluated to confirm the effectiveness of the investing scheme. Chapter 5 explains the details of the IC design and the measurement results of the prototyped energy-investing piezoelectric harvester. Finally, Chapter 6 concludes the dissertation by revisiting the challenges of miniaturized piezoelectric energy harvesters and by summarizing the fundamental contributions of the research. With the same importance as with the achievements of the investigation, the last chapter lists the technological limits that bound the performance of the proposed harvesters and briefly presents perspectives from the other side of the research boundary for future investigations of micro-scale piezoelectric energy harvesting.
APA, Harvard, Vancouver, ISO, and other styles
2

Anton, Steven Robert. "Multifunctional Piezoelectric Energy Harvesting Concepts." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/27388.

Full text
Abstract:
Energy harvesting technology has the ability to create autonomous, self-powered electronic systems that do not rely on battery power for their operation. The term energy harvesting describes the process of converting ambient energy surrounding a system into useful electrical energy through the use of a specific material or transducer. A widely studied form of energy harvesting involves the conversion of mechanical vibration energy into electrical energy using piezoelectric materials, which exhibit electromechanical coupling between the electrical and mechanical domains. Typical piezoelectric energy harvesting systems are designed as add-on systems to a host structure located in a vibration rich environment. The added mass and volume of conventional vibration energy harvesting designs can hinder to the operation of the host system. The work presented in this dissertation focuses on advancing piezoelectric energy harvesting concepts through the introduction of multifunctionality in order to alleviate some of the challenges associated with conventional piezoelectric harvesting designs.

The concept of multifunctional piezoelectric self-charging structures is explored throughout this work. The operational principle behind the concept is first described in which piezoelectric layers are directly bonded to thin-film battery layers resulting in a single device capable of simultaneously harvesting and storing electrical energy when excited mechanically. Additionally, it is proposed that self-charging structures be embedded into host structures such that they support structural load during operation. An electromechanical assumed modes model used to predict the coupled electrical and mechanical response of a cantilever self-charging structure subjected to harmonic base excitation is described. Experimental evaluation of a prototype self-charging structure is then performed in order to validate the electromechanical model and to confirm the ability of the device to operate in a self-charging manner. Detailed strength testing is also performed on the prototype device in order to assess its strength properties. Static three-point bend testing as well as dynamic harmonic base excitation testing is performed such that the static bending strength and dynamic strength under vibration excitation is assessed. Three-point bend testing is also performed on a variety of common piezoelectric materials and results of the testing provide a basis for the design of self-charging structures for various applications.

Multifunctional vibration energy harvesting in unmanned aerial vehicles (UAVs) is also investigated as a case study in this dissertation. A flight endurance model recently developed in the literature is applied to model the effects of adding piezoelectric energy harvesting to an electric UAV. A remote control foam glider aircraft is chosen as the test platform for this work and the formulation is used to predict the effects of integrating self-charging structures into the wing spar of the aircraft. An electromechanical model based on the assumed modes method is then developed to predict the electrical and mechanical behavior of a UAV wing spar with embedded piezoelectric and thin-film battery layers. Experimental testing is performed on a representative aluminum wing spar with embedded self-charging structures in order to validate the electromechanical model. Finally, fabrication of a realistic fiberglass wing spar with integrated piezoelectric and thin-film battery layers is described. Experimental testing is performed in the laboratory to evaluate the energy harvesting ability of the spar and to confirm its self-charging operation. Flight testing is also performed where the fiberglass spar is used in the remote control aircraft test platform and the energy harvesting performance of the device is measured during flight.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Xiong, Haocheng. "Piezoelectric Energy Harvesting for Roadways." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51361.

Full text
Abstract:
Energy harvesting technologies have drawn much attention as an alternative power source of roadway accessories in different scales. Piezoelectric energy harvesting consisting of PZT piezoceramic disks sealed in a protective package is developed in this work to harness the deformation energy of pavement induced by traveling vehicles and generate electrical energy. Six energy harvesters are fabricated and installed at the weigh station on I-81 at Troutville, VA to perform on-site evaluation. The electrical performance of the installed harvesters is evaluated by measuring the output voltage and current generated under real traffic. Instant and average power outputs are calculated from the measured waveforms of output voltage and current. The analysis of the testing results shows that the electrical productivity of the energy harvesters are highly relevant to the axle configuration and magnitude of passing vehicles. The energy transmission efficiency of the energy harvester is also assessed.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Ersoy, Kurtulus. "Piezoelectric Energy Harvesting For Munitions Applications." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613589/index.pdf.

Full text
Abstract:
In recent years, vibration-based energy harvesting technologies have gained great importance because of reduced power requirement of small electronic components. External power source and maintenance requirement can be minimized by employment of mechanical vibration energy harvesters. Power sources that harvest energy from the environment have the main advantages of high safety, long shell life and low cost compared to chemical batteries. Electromagnetic, electrostatic and piezoelectric transduction mechanisms are the three main energy harvesting methods. In this thesis, it is aimed to apply the piezoelectric elements technology to develop means for energy storage in munitions launch. The practical problems encountered in the design of piezoelectric energy harvesters are investigated. The applicability of energy harvesting to high power needs are studied. The experience compiled in the study is to be exploited in designing piezoelectric energy harvesters for munitions applications. Piezoelectric energy harvesters for harmonic and mechanical shock loading conditions with different types of piezoelectric materials are designed and tested. The test results are compared with both responses from analytical models generated in MATLAB®
and ORCAD PSPICE®
, and finite element method models generated in ATILA®
. Optimum energy storage methods are considered.
APA, Harvard, Vancouver, ISO, and other styles
5

Alaei, Zohreh. "Power Enhancement in Piezoelectric Energy Harvesting." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188956.

Full text
Abstract:
Piezoelectric energy harvesting has been around for almost a decade to generate power from the ambient vibrations. Although the generated power is very small, but there are several ways to increase and enhance the generated power. This project presents different methods of optimizing the output power by changing the structural configuration of the energy harvesters, selection of piezoelectric material and circuit interface of these harvesters. To understand the different steps of the enhancement, the process of energy conversion by piezoelectric material has been first looked at. Different groups of piezoelectric material were studied to see what kind of materials have the ability of increasing the generated power. As mechanical configuration of the energy harvesters has a significant effect on the output voltage, their configuration such as Cantilever beam type, Cymbal type and Circular diaphragms has been described and compared. After the power generated in the piezoelectric crystal , the current is sent to through an interface circuit to get rectified and regulated. This circuit can be modified to increase the power as well. There are several types of circuits that can increase the output voltage significantly. Synchronized Switch Harvesting (SSH) techniques, Synchronous Electric Charge Extraction technique and voltage doubler are such examples. These techniques have been also studied and compared. Because of the outgrowing industry of piezoelectric energy harvesting in Medical field, their function and their progress has also been reviewed.
APA, Harvard, Vancouver, ISO, and other styles
6

Jalali, Nimra. "ZnO nanorods-based piezoelectric energy harvesters." Thesis, Queen Mary, University of London, 2015. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8948.

Full text
Abstract:
Piezoelectric nanostructures of ZnO were employed for development of vibration energy harvesters. Columnar nanorod structures of ZnO, incorporated into various heterojunction-based device prototypes, were strained to generate voltage signals. The fabricated devices’ prototypes were based on different top electrodes such as: p-n junction-type Poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS)/ZnO devices, metal-insulator-semiconductor type Poly(methyl methacrylate) (PMMA)/ZnO devices. Similarly, various bottom electrode materials based prototypes were also assembled: ZnO/indium tin oxide (ITO), ZnO/silver (Ag) and ZnO/zinc (Zn). The overall device design was based on flexible electrodes and substrates, due to which low temperature (below 100 °C) fabrication processes were implemented. Device performance measurement and characterisation techniques were explored and implemented to improve the reliability of results. These techniques included open-circuit voltage and short-circuit current output measurement, resistive load matching and impedance analysis. The analysed performance of energy harvester was assessed in relation to its constituent material properties. The parameters which affect the energy harvester performance were investigated and for this p-n junction-based (PEDOT:PSS/ZnO) devices were used. It was analysed that devices with optimum shunt (Rsh) and series resistance (Rs), which were in the ranges of 0.08 – 0.17 kΩ and 0.5 – 1.65 kΩ respectively, generated the highest peak open-circuit voltage (Voc) and peak power density (PL) of 90 – 225 mV and 36 – 54 μW cm-2. However, the p-n junction-based devices with low shunt resistance (Rsh), ranged between 0.2 – 0.3 kΩ, were considered to be affected with leakage losses, such as short-circuits. Therefore, these devices generated lower Voc and PL in the range of 20 - 60 mV and 2 - 16 μW cm-2. Similarly, the p-n junction-based devices with higher Rs, ranged between 0.3 – 0.6 kΩ, were adversely affected by I2R losses and therefore their generated power density was also dropped to 0.22 - 0.25 μW cm-2. In addition to parasitic resistance losses, the most significant phenomenon investigated in ZnO energy harvesters was, screening of polarisation ii charges in ZnO. The polarisation screening effects were observed to be related to the electrical properties of device components like electrode material type and conductivity of ZnO. Hence, the effect of electrode electrical properties on electric field screening was investigated. In this regard, device electrodes were varied and their effect on energy harvesting efficiency was studied. A comparison based on the performance of bottom electrodes like indium tin oxide (ITO), silver (Ag) and zinc foil on device performance was made. It was observed that due to lower screening effects of ITO, the ITO-based devices generated voltage output which was two orders of magnitude higher than the zinc foil-based devices. Similarly, the screening effects of top electrode materials, like PEDOT:PSS and PMMA, on device output generation were investigated. The PMMA-based devices generated average 135 mV which was higher than average 100 mV generation of PEDOT:PSS-based devices; which indicated that the PMMA-based devices had slower screening rate. On the contrary, the PMMA-based devices’ 7 times higher series resistance than PEDOT:PSS-based devices caused the PL of PMMA-based devices to be 0.4 μW cm-2, which was two orders of magnitude lower than 54 μW cm-2 generated by PEDOT:PSS-based devices. Further to electrode materials study, polarisation screening caused by electrical properties of ZnO was also anaylsed. In this regard, the surface-induced conductivity of ZnO was decreased by using surface coating of copper thiocyanate (CuSCN). The reduction in ZnO conductivity was considered to reduce the screening of polarisation charges. Consequently, the power density of ZnO devices was enhanced from 54 μW cm-2 to 434 μW cm-2.
APA, Harvard, Vancouver, ISO, and other styles
7

Wong, You Liang Lionel. "Piezoelectric Ribbons for Stretchable Energy Harvesting." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/718.

Full text
Abstract:
As we enter the age of the internet of things (IoT), more embedded devices are appearing in our everyday items, such as electrical appliances, watches, mobile phones, and even clothes. These are devices that are able to communicate with one another and collect sensing data about their environment. An emerging area of interest in this field is the wearable devices, such as smart devices for healthcare and wellness implantables. These devices require power and batteries will need to be constantly recharged, adding to the users’ inconvenience. Energy harvesters are devices that are able to harness ambient energy such as movement and convert it into useful electrical energy. As such, energy harvesters are expected to play an important role in powering such devices in order to save space and more importantly to increase the comfort and convenience of the users. This work presents a piezoelectric energy harvester that captures energy from stretchable surfaces such as the human skin, exterior of organs and even garments. The main feature of the harvester is the inclusion of a ribbon structure encased in a flexible elastomer, Ecoflex. This allows the device to stretch to tens of percents, while maintaining strain levels of the piezoelectric material within its mechanical limits, which is required since stretchable surfaces can strain to tens of percent. This device provides an efficient method of converting overall device stretch to bending stress within the piezoelectric material, and can strain both horizontally and vertically. Polyvinylidene fluoride (PVDF) and its copolymer, polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) are the material of choice due to their flexibility and magnitude of piezoelectric coefficients. A thickness of 10-28 μm is chosen for the PVDF film and the total device thickness including the Ecoflex ranges from 1-3 mm. Bimorph structure and alternately-connected electrodes ensure that charge cancellation is minimized. Static and transient finite element modeling are carried out to characterize the devices and obtain trends for design parameters. The trends obtained will allow the user to select device parameters given certain constraints such as film thickness and device effective Young’s modulus. Two fabrication approaches are used to fabricate planar PVDF, PVDF-TrFE films. The first approach involves fabricating the film starting from PVDF-TrFE powder. The powder is dissolved in a solvent and cast using an in-house stainless steel structure onto a wafer that has spincast gelatin. Gelatin acts as a release layer. Aluminum and chromium are sputtered and patterned on the wafer before a second layer of PVDF-TrFE is cast again. A top metal is then patterned and a method to etch the PVDF-TrFE is developed in order to access the bottom metal. Each PVDF-TrFE layer is 10 μm thick. To ensure that the electrodes are flexible, mesh designs are incorporated. Various measurements such as mechanical, ferroelectric and piezoresponse measurements are carried out to verify the performance of the film. The second approach uses commercial PVDF film of 28 μm, with 6 μm of silver ink as the electrodes. These silver ink allows for the metal to stretch to 10% and the mesh design is not needed. Two types of patterning the metal are devised. One method involves using a laser cutter to define the shape of a label, which then acts as a mask. Another lithographic method has been devised in order to accurately define the patterns. This method involves temporarily bonding the film to a wafer and using dry film photoresist. Top and bottom side metal alignment is carried out using backside alignment option of the photolithography tool. With the planar films, a molding method is then developed in order to mold the film into the required ribbon shape. This method involves 3D printing various assembly rigs in order to achieve the desired final shapes. A snap-in locking mechanism has also been devised to enable self-alignment of the film to the mold, which is difficult to achieve on device patterns smaller than 500 μm radius. Ecoflex is used as the elastomer since this material can stretch to 400%. Three device sizes, namely 350, 500 and 750 μm radius devices are fabricated in order to have different devices for comparison with respect to scaling of the design. These devices are able to stretch up to 40%, while still maintaining structural integrity. The 350 μm device is able to generate 292 nW of power for an active volume of 0.387 cm3 when stretched 20%. This energy density is similar to other devices, albeit being able to strain at a much higher overall level. Finally, various extensions of the harvester are explored to provide an overview of the possible future work for the harvester.
APA, Harvard, Vancouver, ISO, and other styles
8

Mahmoudiandehkordi, Soroush. "Energy Harvesting With A THUNDER Piezoelectric." Thesis, Southern Illinois University at Edwardsville, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10243311.

Full text
Abstract:

Piezoelectric materials have a unique characterization which can absorb energy from the environment and convert it to electrical energy. In this conducted research energy harvesting of the THin layer UNimorph DrivER (THUNDER) were investigated. THUNDER is a curved PZT which bring considerable benefits in compare of flat PZT such as better vibration absorption capacity and higher energy recovery efficiency. Also one of the most important characteristics of THUNDER is its low resonance frequency. Because the maximum power a harvester can achieve is at its resonance frequency. So it has application in low resonance frequency situations. In this work, general constitutive law for piezoelectric materials is reduced because it is assumed THUNDER is thin and modeled as a Euler-Bernoulli beam. To obtain mechanical-electrical coupling equations, Hamilton principle is used. Hamilton principle is using kinetic and potential energy and work due to the external force as its input. As a result, modals and natural frequency of THUNDER are obtained. Then based on boundary condition, natural frequency can be achieved. By using Rayleigh-Ritz approach and in-extensional assumption and assuming excitation is sinusoidal, discretize mechanical-electrical coupling equations can be written. For the experiment part, two modes energy harvesting circuit is used, the first one is full bridge rectifier in low-level excitation and steps down converter in high-level excitation. Also, resistor and battery are used as an external load. Because rectified voltage is equal battery voltage, so the model needs to be adjusted by putting a step-down converter in the circuit to adjust Voltage and get the maximum power from the model. In the case of the resistor as an external load, the maximum power will achieve near resonance frequency and also by increasing the amplitude of resistors, more power can be achieved by the circuit. Also, step down converter is used in two modes, continuous conduction mode(CCM) and Discontinuous conduction mode(DCM). Power harvesting in this two mode also compared.

APA, Harvard, Vancouver, ISO, and other styles
9

Erturk, Alper. "Electromechanical Modeling of Piezoelectric Energy Harvesters." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/29927.

Full text
Abstract:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The ultimate goal in this research field is to power small electronic components (such as wireless sensors) by using the vibration energy available in their environment. Among the basic transduction mechanisms that can be used for vibration-to-electricity conversion, piezoelectric transduction has received the most attention in the literature. Piezoelectric materials are preferred in energy harvesting due to their large power densities and ease of application. Typically, piezoelectric energy harvesters are cantilevered structures with piezoceramic layers that generate alternating voltage output due to base excitation. This work presents distributed-parameter electromechanical models that can accurately predict the coupled dynamics of piezoelectric energy harvesters. First the issues in the existing models are addressed and the lumped-parameter electromechanical formulation is corrected by introducing a dimensionless correction factor derived from the electromechanically uncoupled distributed-parameter solution. Then the electromechanically coupled closed-form analytical solution is obtained based on the thin-beam theory since piezoelectric energy harvesters are typically thin structures. The multi-mode electromechanical frequency response expressions obtained from the analytical solution are reduced to single-mode expressions for modal vibrations. The analytical solutions for the electromechanically coupled voltage response and vibration response are validated experimentally for various cases. The single-mode analytical equations are then used for deriving closed-form relations for parameter identification and optimization. Asymptotic analyses of the electromechanical frequency response functions are given along with expressions for the short-circuit and the open-circuit resonance frequencies. A simple experimental technique is presented to identify the optimum load resistance using only a single resistor and an open-circuit voltage measurement. A case study is given to compare the power generation performances of commonly used monolithic piezoceramics and novel single crystals with a focus on the effects of plane-stress material constants and mechanical damping. The effects of strain nodes and electrode configuration on piezoelectric energy harvesting are discussed theoretically and demonstrated experimentally. An approximate electromechanical solution using the assumed-modes method is presented and it can be used for modeling of asymmetric and moderately thick energy harvester configurations. Finally, a piezo-magneto-elastic energy harvester is introduced as a non-conventional broadband energy harvester.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Elliott, Alwyn David Thomas. "Power electronic interfaces for piezoelectric energy harvesters." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/39965.

Full text
Abstract:
Motion-driven energy harvesters can replace batteries in low power wireless sensors, however selection of the optimal type of transducer for a given situation is difficult as the performance of the complete system must be taken into account in the optimisation. In this thesis, a complete piezoelectric energy harvester system model including a piezoelectric transducer, a power conditioning circuit, and a battery, is presented allowing for the first time a complete optimisation of such a system to be performed. Combined with previous work on modelling an electrostatic energy harvesting system, a comparison of the two transduction methods was performed. The results at 100 Hz indicate that for small MEMS devices at low accelerations, electrostatic harvesting systems outperform piezoelectric but the opposite is true as the size and acceleration increases. Thus the transducer type which achieves the best power density in an energy harvesting system for a given size, acceleration and operating frequency can be chosen. For resonant vibrational energy harvesting, piezoelectric transducers have received a lot of attention due to their MEMS manufacturing compatibility with research focused on the transduction method but less attention has been paid to the output power electronics. Detailed design considerations for a piezoelectric harvester interface circuit, known as single-supply pre-biasing (SSPB), are developed which experimentally demonstrate the circuit outperforming the next best known interface's theoretical limit. A new mode of operation for the SSPB circuit is developed which improves the power generation performance when the piezoelectric material properties have degraded. A solution for tracking the maximum power point as the excitation changes is also presented.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Piezoelectric energy"

1

Erturk, Alper, and Daniel J. Inman. Piezoelectric Energy Harvesting. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Erturk, Alper. Piezoelectric energy harvesting. Chichester: Wiley, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Briscoe, Joe, and Steve Dunn. Nanostructured Piezoelectric Energy Harvesters. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09632-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rafique, Sajid. Piezoelectric Vibration Energy Harvesting. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69442-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bowen, Christopher R., Vitaly Yu Topolov, and Hyunsun Alicia Kim. Modern Piezoelectric Energy-Harvesting Materials. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29143-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hehn, Thorsten, and Yiannos Manoli. CMOS Circuits for Piezoelectric Energy Harvesters. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9288-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Leprince-Wang, Yamin. Piezoelectric ZnO Nanostructure for Energy Harvesting. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119007425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shevtsov, Sergey N., Arkady N. Soloviev, Ivan A. Parinov, Alexander V. Cherpakov, and Valery A. Chebanenko. Piezoelectric Actuators and Generators for Energy Harvesting. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75629-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Energy harvesting with piezoelectric and pyroelectric materials. Stafa-Zuerich, Switzerland: Trans Tech Publications, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saxena, Shanky, Ritu Sharma, and B. D. Pant. Design and Development of MEMS based Guided Beam Type Piezoelectric Energy Harvester. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0606-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Piezoelectric energy"

1

Tzou, Hornsen. "Tubular Shell Energy Harvester." In Piezoelectric Shells, 385–407. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1258-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Marqui, Carlos. "Piezoelectric Energy Harvesting." In Dynamics of Smart Systems and Structures, 267–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29982-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yeo, Hong G., and Susan Trolier-McKinstry. "Piezoelectric Energy Generation." In Ferroelectric Materials for Energy Applications, 33–59. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807505.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tzou, Hornsen. "Linear/Nonlinear Piezoelectric Shell Energy Harvesters." In Piezoelectric Shells, 357–84. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1258-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Di Paolo Emilio, Maurizio. "Piezoelectric Transducers." In Microelectronic Circuit Design for Energy Harvesting Systems, 47–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47587-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Jae Yeong. "Piezoelectric MEMS Energy Harvesters." In Micro Energy Harvesting, 201–22. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527672943.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Uchino, Kenji. "Piezoelectric Energy-Harvesting Systems." In Micro Mechatronics, 387–418. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019. |Includes biblographical references and index.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429260308-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rafique, Sajid. "Introduction." In Piezoelectric Vibration Energy Harvesting, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69442-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rafique, Sajid. "Overview of Vibration Energy Harvesting." In Piezoelectric Vibration Energy Harvesting, 9–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69442-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rafique, Sajid. "Distributed Parameter Modelling and Experimental Validation." In Piezoelectric Vibration Energy Harvesting, 31–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69442-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Piezoelectric energy"

1

Zargarani, Anahita, and Nima Mahmoodi. "Investigating Piezoelectric Energy Harvesting Circuits for Piezoelectric Flags." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9011.

Full text
Abstract:
This paper provides a comparison between two different energy harvesting circuits for a piezoelectric flag subjected to uniform flow. Between two circuits tested, one is Simple Resistive Load, and the other one is the standard AC-DC circuit. To experimentally investigate these circuits, the piezoelectric flag output voltage has been studied under various wind speeds in a wind tunnel. The simple resistive load circuit provides an alternating voltage, and not a DC voltage. The standard AC-DC circuit is used to convert the AC voltage into a DC voltage; however, the power dropped as a result of the voltage drop across the forward-biased diodes.
APA, Harvard, Vancouver, ISO, and other styles
2

Farhangdoust, Saman, Gary E. Georgeson, and Jeong-Beom Ihn. "MetaSub piezoelectric energy harvesting." In Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, edited by Kerrie Gath and Norbert G. Meyendorf. SPIE, 2020. http://dx.doi.org/10.1117/12.2559331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yeo, Hong Goo, Charles Yeager, Xiaokun Ma, J. Israel Ramirez, Kaige G. Sun, Christopher Rahn, Thomas N. Jackson, and Susan Trolier-McKinstry. "Piezoelectric MEMS Energy Harvesters." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7736.

Full text
Abstract:
The development of self-powered wireless microelectromechanical (MEMS) sensors hinges on the ability to harvest adequate energy from the environment. When solar energy is not available, mechanical energy from ambient vibrations, which are typically low frequency, is of particular interest. Here, higher power levels were approached by better coupling mechanical energy into the harvester, using improved piezoelectric layers, and efficiently extracting energy through the use of low voltage rectifiers. Most of the available research on piezoelectric energy harvesters reports Pb(Zr,Ti)O3 (PZT) or AlN thin films on Si substrates, which are well-utilized for microfabrication. However, to be highly reliable under large vibrations and impacts, flexible passive layers such as metal foil with high fracture strength would be more desirable than brittle Si substrates for MEMS energy harvesting. In addition, metallic substrates readily enable tuning the resonant frequency down by adding proof masses. In order to extract the maximum power from such a device, a high level of (001) film orientation enables an increase in the energy harvesting figures of merit due to the coupling of strong piezoelectricity and low dielectric permittivity. Strongly {001} oriented PZT could be deposited by chemical solution deposition or RF magnetron sputtering and ex situ annealing on (100) oriented LaNiO3 / HfO2 / Ni foils. The comparatively high thermal expansion coefficient of the Ni facilitates development of a strong out-of-plane polarization. 31 mode cantilever beam energy harvesters were fabricated using strongly {001} textured 1∼3 μm thick PZT films on Ni foils with dielectric permittivity of ∼ 350 and low loss tangent (<2%) at 100 Hz. The resonance frequency of the cantilevers (50∼75 Hz) was tuned by changing the beam size and proof mass. A cantilever beam with 3 μm thickness of PZT film and 0.4 g proof mass exhibited a maximum output power of 64.5 μW under 1 g acceleration vibration with a 100 kΩ load resistance after poling at 50 V (EC ∼ 16 V) for 10 min at room temperature. Under 0.3g acceleration, the average power of the device is 9 μW at a resonance frequency of ∼70 Hz. Excellent agreement between the measured and modeled data was obtained using a linear analytical model for an energy harvesting system, using an Euler-Bernoulli beam model. It was also demonstrated that up to an order of magnitude more power could be harvested by more efficiently utilizing the available strain using a parabolic mode shape for the vibrating structure. Additionally, voltage rectifying electronics in the form of ZnO thin film transistors are deposited directly on the cantilever. This relieves the role of voltage rectification from the interfacing circuitry and provides a technique improved harvesting relative to solid state diode rectification because the turn-on bias can be reduced to zero.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmadabadi, Zahra Nili, and Siamak Esmaeilzadeh Khadem. "Optimal Vibration Control and Energy Scavenging Using Collocated Nonlinear Energy Sinks and Piezoelectric Elements." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86299.

Full text
Abstract:
This paper presents an optimal design for a system comprising multiple nonlinear energy sinks (NESs) and piezoelectric-based vibration energy harvesters attached to a free–free beam under shock excitation. The energy harvesters are used for scavenging vibration energy dissipated by the NESs. Grounded and ungrounded configurations are examined, and the systems parameters are optimized globally to maximize the dissipated energy by the NESs. The performance of the system was optimized using a dynamic optimization approach. Compared to the system with only one NES, using multiple NESs resulted in a more effective realization of nonlinear energy pumping particularly in the ungrounded configuration. Having multiple piezoelectic elements also increased the harvested energy in the grounded configuration relative to the system with only one piezoelectric element.
APA, Harvard, Vancouver, ISO, and other styles
5

Anton, Steven R., and Kevin M. Farinholt. "Piezoelectret Foam-Based Vibration Energy Harvester for Low-Power Energy Generation." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8224.

Full text
Abstract:
The use of energy harvesting systems to provide power to low-power electronic devices has the potential to create autonomous, self-powered electronics. While research has been performed to study the harvesting of ambient energy through a wide variety of transduction mechanisms, this paper presents the investigation of a novel material for vibration-based energy harvesting. Piezoelectret foam, a polymer-based electret material exhibiting piezoelectric properties, is investigated for low-power energy generation. An overview of the fabrication and operation of piezoelectret foams is first given. Mechanical testing is then performed to evaluate the tensile properties of the material, where anisotropy in the length direction is found along with Young’s moduli between 0.5–1 GPa and tensile strengths from 35–70 MPa. Dynamic electromechanical characterization is performed in order to measure the piezoelectric d33 coefficient of the foam over a wide frequency range. The d33 coefficient is found to be relatively constant at 35 pC/N from 5 Hz – 1 kHz. Lastly, energy harvesting tests are performed to evaluate the ability of piezoelectric foam to harvest vibration energy. Frequency response measurements of foam samples excited along the length direction confirm the anisotropic behavior of the material. Harmonic excitation of a pre-tensioned 15.2 cm × 15.2 cm sample at a frequency of 60 Hz and displacement of ± 73 μm yields an average power of 5.8 μW delivered to a 1 mF storage capacitor through a simple diode bridge rectifier. The capacitor is charged to 4.67 V in 30 minutes, proving the ability of piezoelectret foam to supply power to low-power electronics.
APA, Harvard, Vancouver, ISO, and other styles
6

Abdal-Kadhim, Ali Mohammed, and Kok Swee Leong. "Piezoelectric impact-driven energy harvester." In 2016 IEEE International Conference on Power and Energy (PECon). IEEE, 2016. http://dx.doi.org/10.1109/pecon.2016.7951596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pinkston, Caroline S., and T. G. Engel. "High Energy Piezoelectric Pulse Generator." In 15th IEEE International Pulsed Power Conference. IEEE, 2005. http://dx.doi.org/10.1109/ppc.2005.300774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rao, Zheng, Hua Li, and Hornsen Tzou. "Breathing cylindrical piezoelectric energy harvesters." In 2011 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA 2011). IEEE, 2011. http://dx.doi.org/10.1109/spawda.2011.6167299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rincon-Mora, Gabriel Alfonso. "Miniaturized energy-harvesting piezoelectric chargers." In 2014 IEEE Custom Integrated Circuits Conference - CICC 2014. IEEE, 2014. http://dx.doi.org/10.1109/cicc.2014.6946074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mousselmal, H. D., P. J. Cottinet, L. Quiquerez, B. Remaki, and L. Petit. "A multiaxial piezoelectric energy harvester." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Henry Sodano. SPIE, 2013. http://dx.doi.org/10.1117/12.2009621.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Piezoelectric energy"

1

Kan, Jiangming, Robert J. Ross, Xiping Wang, and Wenbin Li. Energy harvesting from wood floor vibration using a piezoelectric generator. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2017. http://dx.doi.org/10.2737/fpl-rn-347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pulskamp, Jeffrey S. Modeling, Fabrication, and Testing of a Piezoelectric MEMS Vibrational Energy Reclamation Device. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada430925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Galili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs, and Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, October 1994. http://dx.doi.org/10.32747/1994.7570549.bard.

Full text
Abstract:
The objectives of this project were to develop nondestructive methods for detection of internal properties and firmness of fruits and vegetables. One method was based on a soft piezoelectric film transducer developed in the Technion, for analysis of fruit response to low-energy excitation. The second method was a dot-matrix piezoelectric transducer of North Carolina State University, developed for contact-pressure analysis of fruit during impact. Two research teams, one in Israel and the other in North Carolina, coordinated their research effort according to the specific objectives of the project, to develop and apply the two complementary methods for quality control of agricultural commodities. In Israel: An improved firmness testing system was developed and tested with tropical fruits. The new system included an instrumented fruit-bed of three flexible piezoelectric sensors and miniature electromagnetic hammers, which served as fruit support and low-energy excitation device, respectively. Resonant frequencies were detected for determination of firmness index. Two new acoustic parameters were developed for evaluation of fruit firmness and maturity: a dumping-ratio and a centeroid of the frequency response. Experiments were performed with avocado and mango fruits. The internal damping ratio, which may indicate fruit ripeness, increased monotonically with time, while resonant frequencies and firmness indices decreased with time. Fruit samples were tested daily by destructive penetration test. A fairy high correlation was found in tropical fruits between the penetration force and the new acoustic parameters; a lower correlation was found between this parameter and the conventional firmness index. Improved table-top firmness testing units, Firmalon, with data-logging system and on-line data analysis capacity have been built. The new device was used for the full-scale experiments in the next two years, ahead of the original program and BARD timetable. Close cooperation was initiated with local industry for development of both off-line and on-line sorting and quality control of more agricultural commodities. Firmalon units were produced and operated in major packaging houses in Israel, Belgium and Washington State, on mango and avocado, apples, pears, tomatoes, melons and some other fruits, to gain field experience with the new method. The accumulated experimental data from all these activities is still analyzed, to improve firmness sorting criteria and shelf-life predicting curves for the different fruits. The test program in commercial CA storage facilities in Washington State included seven apple varieties: Fuji, Braeburn, Gala, Granny Smith, Jonagold, Red Delicious, Golden Delicious, and D'Anjou pear variety. FI master-curves could be developed for the Braeburn, Gala, Granny Smith and Jonagold apples. These fruits showed a steady ripening process during the test period. Yet, more work should be conducted to reduce scattering of the data and to determine the confidence limits of the method. Nearly constant FI in Red Delicious and the fluctuations of FI in the Fuji apples should be re-examined. Three sets of experiment were performed with Flandria tomatoes. Despite the complex structure of the tomatoes, the acoustic method could be used for firmness evaluation and to follow the ripening evolution with time. Close agreement was achieved between the auction expert evaluation and that of the nondestructive acoustic test, where firmness index of 4.0 and more indicated grade-A tomatoes. More work is performed to refine the sorting algorithm and to develop a general ripening scale for automatic grading of tomatoes for the fresh fruit market. Galia melons were tested in Israel, in simulated export conditions. It was concluded that the Firmalon is capable of detecting the ripening of melons nondestructively, and sorted out the defective fruits from the export shipment. The cooperation with local industry resulted in development of automatic on-line prototype of the acoustic sensor, that may be incorporated with the export quality control system for melons. More interesting is the development of the remote firmness sensing method for sealed CA cool-rooms, where most of the full-year fruit yield in stored for off-season consumption. Hundreds of ripening monitor systems have been installed in major fruit storage facilities, and being evaluated now by the consumers. If successful, the new method may cause a major change in long-term fruit storage technology. More uses of the acoustic test method have been considered, for monitoring fruit maturity and harvest time, testing fruit samples or each individual fruit when entering the storage facilities, packaging house and auction, and in the supermarket. This approach may result in a full line of equipment for nondestructive quality control of fruits and vegetables, from the orchard or the greenhouse, through the entire sorting, grading and storage process, up to the consumer table. The developed technology offers a tool to determine the maturity of the fruits nondestructively by monitoring their acoustic response to mechanical impulse on the tree. A special device was built and preliminary tested in mango fruit. More development is needed to develop a portable, hand operated sensing method for this purpose. In North Carolina: Analysis method based on an Auto-Regressive (AR) model was developed for detecting the first resonance of fruit from their response to mechanical impulse. The algorithm included a routine that detects the first resonant frequency from as many sensors as possible. Experiments on Red Delicious apples were performed and their firmness was determined. The AR method allowed the detection of the first resonance. The method could be fast enough to be utilized in a real time sorting machine. Yet, further study is needed to look for improvement of the search algorithm of the methods. An impact contact-pressure measurement system and Neural Network (NN) identification method were developed to investigate the relationships between surface pressure distributions on selected fruits and their respective internal textural qualities. A piezoelectric dot-matrix pressure transducer was developed for the purpose of acquiring time-sampled pressure profiles during impact. The acquired data was transferred into a personal computer and accurate visualization of animated data were presented. Preliminary test with 10 apples has been performed. Measurement were made by the contact-pressure transducer in two different positions. Complementary measurements were made on the same apples by using the Firmalon and Magness Taylor (MT) testers. Three-layer neural network was designed. 2/3 of the contact-pressure data were used as training input data and corresponding MT data as training target data. The remaining data were used as NN checking data. Six samples randomly chosen from the ten measured samples and their corresponding Firmalon values were used as the NN training and target data, respectively. The remaining four samples' data were input to the NN. The NN results consistent with the Firmness Tester values. So, if more training data would be obtained, the output should be more accurate. In addition, the Firmness Tester values do not consistent with MT firmness tester values. The NN method developed in this study appears to be a useful tool to emulate the MT Firmness test results without destroying the apple samples. To get more accurate estimation of MT firmness a much larger training data set is required. When the larger sensitive area of the pressure sensor being developed in this project becomes available, the entire contact 'shape' will provide additional information and the neural network results would be more accurate. It has been shown that the impact information can be utilized in the determination of internal quality factors of fruit. Until now,
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography