Academic literature on the topic 'Piezoelectric Actuators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Piezoelectric Actuators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Piezoelectric Actuators"
Kanchan, Mithun, Mohith Santhya, Ritesh Bhat, and Nithesh Naik. "Application of Modeling and Control Approaches of Piezoelectric Actuators: A Review." Technologies 11, no. 6 (November 1, 2023): 155. http://dx.doi.org/10.3390/technologies11060155.
Full textBazghaleh, Mohsen, Steven Grainger, and Morteza Mohammadzaheri. "A review of charge methods for driving piezoelectric actuators." Journal of Intelligent Material Systems and Structures 29, no. 10 (October 11, 2017): 2096–104. http://dx.doi.org/10.1177/1045389x17733330.
Full textZhong, Bowen, Zhan Liao, Xi Zhang, Ziqi Jin, and Lining Sun. "Modeling of Rapid Response Characteristics of Piezoelectric Actuators for Ultra-Precision Machining." Materials 16, no. 6 (March 11, 2023): 2272. http://dx.doi.org/10.3390/ma16062272.
Full textJiang, Xishan, Ning Wang, Jing Zheng, and Jie Pan. "Experimental Validation of Two Types of Force Actuators: A Performance Comparison." Sensors 24, no. 12 (June 18, 2024): 3950. http://dx.doi.org/10.3390/s24123950.
Full textLiang, Kang, Chong Li, Yujian Tong, Jiwen Fang, and Wei Zhong. "Design of a Low-Frequency Harmonic Rotary Piezoelectric Actuator." Actuators 10, no. 1 (December 27, 2020): 4. http://dx.doi.org/10.3390/act10010004.
Full textChang, Shyang-Jye, and Jing Chen. "Design and Fabrication of the Large Thrust Force Piezoelectric Actuator." Advances in Materials Science and Engineering 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/912587.
Full textFurutani, Katsushi, and Taizo Makino. "Influence of Matrix Circuit Switching Device Junction Capacitance on Piezoelectric Actuator Drive Performance." International Journal of Automation Technology 3, no. 3 (May 5, 2009): 313–18. http://dx.doi.org/10.20965/ijat.2009.p0313.
Full textZhou, Bo, Xiao Ma, Shuai Wang, and Shifeng Xue. "Least-squares method for laminated beams with distributed braided piezoelectric composite actuators." Journal of Intelligent Material Systems and Structures 31, no. 18 (July 25, 2020): 2165–76. http://dx.doi.org/10.1177/1045389x20943962.
Full textChen, Yan Hong, T. Li, and Jan Ma. "Electrophoretic Deposition of Functionally Graded Monomorph." Key Engineering Materials 314 (July 2006): 89–94. http://dx.doi.org/10.4028/www.scientific.net/kem.314.89.
Full textZhou, Bo, Xiao Ma, and Shifeng Xue. "Nonlinear Analysis of Laminated Beams with Braided Fiber Piezoelectric Composite Actuators." International Journal of Applied Mechanics 12, no. 04 (May 2020): 2050043. http://dx.doi.org/10.1142/s175882512050043x.
Full textDissertations / Theses on the topic "Piezoelectric Actuators"
Hack, Thorsten. "Stick-slip piezoelectric actuators." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624403.
Full textHaigh, Richard. "Novel piezoelectric thick film actuators." Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/3814.
Full textGomis-Bellmunt, Oriol. "Identification and control of piezoelectric actuators." Saarbrücken VDM Verlag Dr. Müller, 2007. http://d-nb.info/988454696/04.
Full textSpangler, Ronald L. 1964. "Piezoelectric actuators for helicopter rotor control." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14462.
Full textArnau, Cubillo Albert. "Contributions to aerostructures morphing with piezoelectric actuators." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669624.
Full textDes dels primers models desenvolupats durant el segle XIX, les aplicacions per a materials piezoelèctrics han anat creixent progressivament. La relació que presenten aquests materials entre el comportament mecànic i el comportament elèctric els converteix en candidats ideals en l'estudi d'estructures deformables. L'aplicació de piezoelèctrics en aeronàutica es concep tradicionalment des de dues perspectives: com a sensors o com a actuadors. Ambdues presenten potencials beneficis i aplicacions. Tot i que en els últims anys la recerca s'ha concentrat en l'estudi d'integració dels materials en sistemes que permeten controlar la salut de l'estructura (Structural Health Monitoring), l'aplicació de piezoelèctrics com a actuadors d'estructures deformables desperta l'interès de la comunitat científica. En l'estadi actual, la tecnologia necessària per deformar estructures de forma controlada utilitzant materials piezoelèctrics no està suficientment desenvolupada. No obstant, la recerca en aquest camp està en continu desenvolupament i s'apropa a solucions que permetran integrar-la en aplicacions industrials. L'objectiu de la tesi és estudiar la possibilitat d'utilitzar deformacions produïdes mitjançant actuadors piezoelèctrics en estructures aeronàutiques actuals. L'anàlisi està orientat des de punts de vista teòric i experimental i es centra en el comportament estàtic i dinàmic de solucions tecnològiques amb actuadors i tecnologies d'amplificació disponibles comercialment. La recerca que es presenta en la tesi estudia dues aplicacions diferents en l'ús d'aquest tipus d'actuadors: com a actuadors en regim estàtic, produint deformacions de la superfície aerodinàmica, i com a actuadors dinàmics, que controlin una superfície de control convencional. L'arquitectura de la solució tecnològica emprada ha estat diferent en cada aplicació: en la deformació estàtica de la superfície aerodinàmica l'actuador és de tipus "patch" mentre que en el cas dinàmic és de tipus "stack". Els experiments estàtics desenvolupats tenen com a objectiu demostrar la capacitat dels piezoelèctrics com a elements que produeixin deformacions en l'estructura (morphing). Aquest objectiu es demostra analitzant les deflexions produïdes en el caire de fuga d'un perfil aerodinàmic. Els resultats experimentals obtinguts són optimistes ja que les diferents configuracions d'actuadors es comporten tal i com prediuen els models. En règim estàtic, les deformacions produïdes en el caire de fuga son substancials. Això permet assegurar que la configuració utilitzada en els experiments és prou madura com per seguir investigant, per exemple, en túnel de vent. Malgrat això, les deformacions produïdes encara no són suficientment significatives com per integrar l'experiment en un model més gran. L'escalabilitat és un dels reptes més importants que presenta la tecnologia en aplicacions de "morphing". Els resultats dinàmics demostren una bona actuació de l'actuador integrat en un sistema anti-flameig en els experiments en túnel de vent. Els experiments demostren la capacitat del sistema de mantenir-se estable a velocitats mes enllà de l'aparició del flameig. El següent pas en aquesta línia de recerca es l'investigació en models més complexos en quant a aparició de flameig. Amb el desenvolupament d'una nova generació de materials piezoelèctrics ceràmics avançats, que promet coeficients piezoelectrics el doble d'alts en comparació amb els materials basats en PZT disponibles actualment, l'arquitectura experimentada en règim estàtic és un molt bon candidat en aplicacions a escala més gran. Aquesta propera generació de materials es presenta com un primer pas en solucionar els problemes d'escalabilitat que presenta la tecnologia actualment.
Brünahl, Jürgen. "Physics of piezoelectric shear mode inkjet actuators." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3535.
Full textThis thesis describes work on piezoelectric shear modeactuators used in dropon- demand ink printing applications.These actuators comprise an array of ink channels micromachinedinto bulk Pb(ZrxTi1-x)O3(PZT) ceramics.
During this study, a new pulsed spectroscopic technique wasdeveloped to investigate functional properties of a singlechannel wall of the actuator. The pulse technique is based onrecording the transient current in response to a short voltagepulse applied to the channel wall. An electric field appliedperpendicular to the polarization will cause a shear motion ofthe wall. If a voltage pulse with a fast rise time is highenough in amplitude to actuate the wall, it will act like atuning fork and oscillate at its resonant frequencies.Because of the piezoelectric effect, the mechanicaloscillations of the wall can be seen as oscillations in thetransient current.
Beside the pulsed technique, dielectric spectroscopy,ferroelectric hysteresis loop tracing and stroboscopy were usedas characterization techniques. The results obtained arediscussed in respect to temperature dependence, frequencydispersion, ferroelectric fatigue and acoustic resonancemodes.
Another field of interest was the temperature inside theactuator. An electric circuit, based on the voltage dividerprinciple, was built to monitor the ink temperature as afunction of the printing pattern.Dummy walls,located at the beginning and the end of the channel wall array,were used as temperature sensing elements. Since the dielectricpermittivity of the PZT channel walls depends on temperature,the capacitance of thedummy wallschanges withtemperature. The information obtained by this measurementtechnique was used to investigate alternative materials for thepassive components of the actuator.
A further part was the development of a new actuator designcalled aChevron actuator. Chevron actuatorsinclude an additional PZT layer with polarization in theopposite direction to the base plate polarization. Thus, thewhole channel wall is used as the active part instead of usingjust the upper half as in the standard actuator. The mainadvantage of this technique is a reduced power consumption ofthe actuator and therefore less heat dissipation.
Different approaches were used to construct Chevronactuators. Experiments determined the efficiency of theactuators and these results were used to make improvements. TheChevron actuators were characterized by the above mentionedtechniques and compared with standard Xaar actuators.
Mansoor, Muhammad bin [Verfasser], Peter [Akademischer Betreuer] Woias, and Frank [Akademischer Betreuer] Goldschmidtböing. "Nonlinear resonant piezoelectric actuators for turbulence manipulation." Freiburg : Universität, 2019. http://d-nb.info/1192660803/34.
Full textBaillargeon, Brian P. "Active Vibration Suppression of Smart Structures Using Piezoelectric Shear Actuators." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/BailargeonBP2003.pdf.
Full textAlmajid, Abdulhakim A. "Design of high performance piezo composites actuators /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/7130.
Full textAnusha, Anisetti. "Non-linear Shunting of Piezo-actuators for Vibration Suppression." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1208834134.
Full textBooks on the topic "Piezoelectric Actuators"
Segel, Joshua E. Piezoelectric actuators. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textRupitsch, Stefan Johann. Piezoelectric Sensors and Actuators. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57534-5.
Full textUchino, Kenji. Piezoelectric Actuators and Ultrasonic Motors. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1463-9.
Full textPiezoelectric actuators and ultrasonic motors. Boston: Kluwer Academic Publishers, 1997.
Find full textShevtsov, Sergey N., Arkady N. Soloviev, Ivan A. Parinov, Alexander V. Cherpakov, and Valery A. Chebanenko. Piezoelectric Actuators and Generators for Energy Harvesting. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75629-5.
Full textSharma, Pankaj. Vibration Analysis of Functionally Graded Piezoelectric Actuators. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3717-8.
Full textYoung-Min, Han, ed. Piezoelectric actuators: Control applications of smart materials. Boca Raton: Taylor & Francis, 2010.
Find full textBallas, R. G. Piezoelectric multilayer beam bending actuators: Static and dynamic behavior and aspects of sensor integration. Berlin: Springer, 2007.
Find full textGoldfarb, Michael. Modeling piezoelectric stack actuators for control of micromanipulation. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textDausch, David E. Compositional effects on electromagnetic degradation of RAINBOW actuators. Hampton, Va: National Aeronautics and Space Administration, Dryden Flight Research Center, 1998.
Find full textBook chapters on the topic "Piezoelectric Actuators"
Tajitsu, Yoshiro. "Piezoelectric Polymers." In Soft Actuators, 275–87. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6850-9_15.
Full textTajitsu, Yoshiro. "Piezoelectric Polymers." In Soft Actuators, 203–15. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54767-9_15.
Full textTzou, H. S. "Multi-Layered Shell Actuators." In Piezoelectric Shells, 155–86. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_5.
Full textTzou, Hornsen. "Multi-layered Shell Actuators." In Piezoelectric Shells, 131–54. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1258-1_5.
Full textRupitsch, Stefan Johann. "Piezoelectric Ultrasonic Transducers." In Piezoelectric Sensors and Actuators, 261–339. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57534-5_7.
Full textUchino, Kenji. "Designing with Piezoelectric Actuators." In Ceramic Transactions Series, 507–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118380802.ch45.
Full textSteinkopff, Thorsten, and Andreas Wolff. "Modeling of Piezoelectric Actuators." In Functional Materials, 379–90. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607420.ch64.
Full textRupitsch, Stefan Johann. "Introduction." In Piezoelectric Sensors and Actuators, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57534-5_1.
Full textRupitsch, Stefan Johann. "Piezoelectric Positioning Systems and Motors." In Piezoelectric Sensors and Actuators, 511–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57534-5_10.
Full textRupitsch, Stefan Johann. "Physical Basics." In Piezoelectric Sensors and Actuators, 7–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57534-5_2.
Full textConference papers on the topic "Piezoelectric Actuators"
Tzou, H. S., and J. P. Zhong. "Distributed Orthogonal Filtering of Piezoelectric Shell Actuators." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0220.
Full textJiang, X. N., P. W. Rehrig, W. S. Hackenberger, J. Moore, S. Chodimella, and B. Patrick. "Single Crystal Piezoelectric Actuators for Advanced Deformable Mirrors." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60504.
Full textMeyer, H., P. Stadelmann, C. Robert, A. Boegli, P. A. Farine, P. Margairaz, and J. Burger. "Piezoelectric Actuators Characterization." In 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE). IEEE, 2012. http://dx.doi.org/10.1109/icicee.2012.187.
Full textJiang, Xiaoning, William B. Cook, and Wesley S. Hackenberger. "Cryogenic piezoelectric actuators." In SPIE Optical Engineering + Applications, edited by Penny G. Warren, Cheryl J. Marshall, Robert K. Tyson, Michael Lloyd-Hart, James B. Heaney, and E. Todd Kvamme. SPIE, 2009. http://dx.doi.org/10.1117/12.826341.
Full textQiu, Jinhao, Junji Tani, Teppei Morita, and Hirofumi Takahashi. "High Durability of Functionally Graded Piezoelectric Bending Actuators." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21493.
Full textKommepalli, Hareesh K. R., Christopher D. Rahn, and Srinivas A. Tadigadapa. "Optimization of Piezoelectric Uniflex Microactuators." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87594.
Full textClaeyssen, Frank, Nicolas Lhermet, and T. Maillard. "Magnetostrictive actuators compared to piezoelectric actuators." In European Workshop on Smart Structures in Engineering and Technology, edited by Brian Culshaw. SPIE, 2003. http://dx.doi.org/10.1117/12.508734.
Full textAc¸ıkalın, Tolga, Ioan Sauciuc, and Suresh V. Garimella. "Piezoelectric Actuators for Low-Form-Factor Electronics Cooling." In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73288.
Full textCollinger, J. C., W. C. Messner, and J. A. Wickert. "Vibration Control With Magnetically Mounted Piezoelectric Actuators." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67369.
Full textUchino, K. "Piezoelectric and Electrostrictive Actuators." In Sixth IEEE International Symposium on Applications of Ferroelectrics. IEEE, 1986. http://dx.doi.org/10.1109/isaf.1986.201218.
Full textReports on the topic "Piezoelectric Actuators"
Sayir, Ali, and Alp Sehirlioglu. Piezoelectric Ceramics for High Temperature Actuators. Fort Belvoir, VA: Defense Technical Information Center, July 2009. http://dx.doi.org/10.21236/ada583233.
Full textSayir, Ali. Piezoelectric Ceramics for High Temperature Actuators. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada589651.
Full textRahn, Christopher D., and Srinivas A. Tadigadapa. High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada567097.
Full textNear, Craig D. Flexible Fabrication of High Performance Piezoelectric Actuators by Injection Molding. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada379116.
Full textBirman, Victor. Physically Nonlinear Behavior of Piezoelectric Actuators Subject to High Electric Fields. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada430182.
Full textBailey, Thomas, Alexander Gruzen, and Paul Madden. RCS/Piezoelectric Distributed Actuator Study. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada201276.
Full textBooth, Janice C., Tracy Hudson, Brian A. English, Michael R. Whitley, and Michael S. Kranz. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567661.
Full textHall, Asha, and Mark Bundy. Overview of Piezoelectric Actuator Displacement Measurements Utilizing a MTI-2100 Fotonic Sensor. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada540429.
Full textLynch, Christopher S., and Chad Landis. Development of a Non-Linear Element Code for the Improvement of Piezoelectric Actuator Design and Reliability. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada459521.
Full text