Contents
Academic literature on the topic 'Pièges (géologie pétrolière) – Simulation, Méthodes de'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pièges (géologie pétrolière) – Simulation, Méthodes de.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Pièges (géologie pétrolière) – Simulation, Méthodes de"
Atfeh, Bilal. "Méthode des lignes de courant appliquée à la modélisation des bassins." Phd thesis, Université de Provence - Aix-Marseille I, 2003. http://tel.archives-ouvertes.fr/tel-00008599.
Full textTroncoso, Alan. "Conditional simulations of reservoir models using Sequential Monte-Carlo methods." Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLM055.
Full textA sequential Monte Carlo method, called particle filtering, has been used in a spatial context to produce simulations of two reservoir models that respect the observed facies at wells. The first one, the Boolean model, is an object-based model. It canbe used to model two-facies reservoirs: One porous facies, and an impermeable facies that acts as a barrier for the fluidcirculation. The model is mathematically tractable: There exists statistical methods to infer its parameters as well as aniterative conditional simulation algorithm. However, the convergence rate of this algorithm is difficult to establish. Asequential algorithm based on the particle filtering is proposed as an alternative. It finally appears that this sequentialalgorithm outperforms the iterative algorithm in terms of quality of results and computational time.The second model, Flumy, is a model of sedimentary processes. It is used for representing the formation of meanderingchannelized systems. This model can reproduce the heterogeneity induced by the complex geometries of sedimentary deposits.The current algorithm implemented in Flumy modifies dynamically the processes for fitting the data at best to produceconditional simulations. The set-up of this algorithm requires a deep knowledge of the processes to modify them and avoidartifacts and biases. For this reason, another conditioning algorithm, called sequential, has been developed. It consists in building the reservoir by stacking horizontal layers using particle filtering, thus allowing the observed facies to beassimilated in each layer. These two algorithms have been compared on a synthetic case and on a real case (Loranca Basin,Spain). Both give comparable results, but they differ in terms of the resources required for their implementation: whereasthe sequential algorithm needs high computer power, the dynamic algorithm requires a fine understanding of the processes to be modified
Moyen, Rémi. "Paramétrisation 3D de l'espace en géologie sédimentaire : le modèle GeoChron." Vandoeuvre-les-Nancy, INPL, 2005. http://docnum.univ-lorraine.fr/public/INPL_T_2005_MOYEN_R.pdf.
Full textReservoir modelling requires building a volumic mesh usually adapted to faults and horizons of the domain, on which petrophysical property models are computed. The common practice consists in using stratigraphic curvilinear grids formed of hexahedral cells whose indexes (i, j, k) constitute a sampling of a " 3D parametric function (u, v,t) where (u, v) correspond to the "paleo-geographic" coordinates tangent to the horizons and (t), viewed as an analog to the geological age of the terrains, is approximately orthogonal to the horizons. These grids are suited to the property-modelling geostatistical algorithms but their topological regularity induces errors or approximations in complex fault networks or folded environments. The GeoChron model corrects these drawbacks by clearly segragating the geometry of the domain of study (modelled by an unstructured tetrahedralised mesh), the link between this geometry and the geometry of the layers at the time or deposition (thanks to a 3D parametric function (u,v,t)) and the property model (computed in a regular fine-scaled grid). After exposing the mathematical framework of this model which emphasises the similarity with time stratigraphic (or Wheeler) diagrams used in sedimentology, we show two practical ways of building such a parameterisation and their implementation in the GOCAD geomodelling software. Then we show how the (t) component of the parametric function can be used to automatically compute a geometric estimate of the throw vector in any point of a fault surface. Finally, we present Borne applications concerning petrophysical property modelling, deformation estimation or seismic data integration
Battaïa, Guillaume. "Expérimentation versus simulation du transport réactif en milieu poreux, capture des profils de concentration et évolution texturale des solides." Saint-Etienne, EMSE, 2009. http://tel.archives-ouvertes.fr/tel-00466764.
Full textA new type of plug flow reactor is developed. It reproduces a 1D porous medium composed of quartz and reactive solids exposed to the percolation of an aqueous phase, whose concentration profile can be captured through sampling ports. The reaction of CO₂ saturated solutions (5-8 bar) at 40-50°C with carbonate (calcite, dolomite) generates reproducible dissolution fronts migrating downstream with stationary shape. This shape evidences an increase in reactive surface area with increasing dissolution, in agreement with the observed skeletal solid textures. Diopside dissolution in acidic solutions, pH=2, 60°C, generates linear concentration profiles as predicted far from equilibrium. In the initial non-stoichiometric dissolution stage, a Si-dominated surface layer is formed. SEM data suggest an anisotropic distribution of this layer
Wietzerbin, Liliane. "Modélisation et paramétrisation d'objets naturels de formes complexes en trois dimensions : application à la simulation stochastique de la distribution d'hétérogénéités au sein des réservoirs pétroliers." Vandoeuvre-les-Nancy, INPL, 1994. http://docnum.univ-lorraine.fr/public/INPL_T_1994_WIETZERBIN_L.pdf.
Full textTendil, Anthony. "Contrôles tectoniques, climatiques et paléogéographiques sur l'architecture stratigraphique de la plateforme carbonatée urgonienne provençale (France) : approches sédimentologiques, géochimiques et numériques intégrées." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0230.
Full textThe analysis of carbonate systems is at the heart of major economic and societal challenges, especially in the energy field since they represent significant oil and gas reserves. The present thesis focuses on the Urgonian Provence platform (upper Barremian–lower Aptian interval) which is considered as a valid outcrop analogue of middle East carbonate reservoirs. About thirty stratigraphic sections, including newly acquired cores, are considered throughout the Provence domain. The recognition of biostratigraphically constrained exposure and drowning surfaces enables us to restore the regional palaeogeographic evolution along with the stratigraphic architecture. Several phases of platform progradation toward the adjacent basins, interrupted by episodes of changes in carbonate production, are identified in Provence. A comparable stratigraphic scenario is proposed for the peri-Vocontian Urgonian platforms. In Provence, the reservoir compartmentalisation of the Urgonian platform is mainly controlled by the sequence stratigraphic context that induced a distinction between early cemented carbonates and those preserving part of their original porosity. The geological rules provided in this study 1) are implemented into a 3-D numerical model intended for fluid-flow simulations at the scale of the Fontaine-de-Vaucluse karstic aquifer, whose karst spring is the fifth largest in the world, and 2) help in predicting the sedimentary and petrophysical heterogeneities of carbonate systems