Journal articles on the topic 'PI3K TARGET'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'PI3K TARGET.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Diacovo, Thomas, Dosh Whye, Evgeni Efimenko, Jianchung Chen, Valeria Tosello, Kim De Keersmaecker, Adam Kashishian, et al. "Therapeutic Utility of PI3Kγ Inhibition in Leukemogenesis and Tumor Cell Survival." Blood 120, no. 21 (November 16, 2012): 1492. http://dx.doi.org/10.1182/blood.v120.21.1492.1492.
Full textBorsari, Chiara, and Matthias P. Wymann. "Targeting Phosphoinositide 3-Kinase – Five Decades of Chemical Space Exploration." CHIMIA 75, no. 12 (December 9, 2021): 1037. http://dx.doi.org/10.2533/chimia.2021.1037.
Full textBarberis, Laura, and Emilio Hirsch. "Targeting phosphoinositide 3-kinase γ to fight inflammation and more." Thrombosis and Haemostasis 99, no. 02 (2008): 279–85. http://dx.doi.org/10.1160/th07-10-0632.
Full textMiller, Michelle, Philip Thompson, and Sandra Gabelli. "Structural Determinants of Isoform Selectivity in PI3K Inhibitors." Biomolecules 9, no. 3 (February 26, 2019): 82. http://dx.doi.org/10.3390/biom9030082.
Full textMercurio, Laura, Martina Morelli, Claudia Scarponi, Giovanni Luca Scaglione, Sabatino Pallotta, Cristina Albanesi, and Stefania Madonna. "PI3Kδ Sustains Keratinocyte Hyperproliferation and Epithelial Inflammation: Implications for a Topically Druggable Target in Psoriasis." Cells 10, no. 10 (October 2, 2021): 2636. http://dx.doi.org/10.3390/cells10102636.
Full textLaurent, Pierre-Alexandre, Cédric Garcia, Marie-Pierre Gratacap, Bart Vanhaesebroeck, Pierre Sié, Bernard Payrastre, and Anne-Dominique Terrisse. "The class I phosphoinositide 3-kinases α and β control antiphospholipid antibodies-induced platelet activation." Thrombosis and Haemostasis 115, no. 06 (2016): 1138–46. http://dx.doi.org/10.1160/th15-08-0661.
Full textKuracha, Murali R., Venkatesh Govindarajan, Brian W. Loggie, Martin Tobi, and Benita L. McVicker. "Pictilisib-Induced Resistance Is Mediated through FOXO1-Dependent Activation of Receptor Tyrosine Kinases in Mucinous Colorectal Adenocarcinoma Cells." International Journal of Molecular Sciences 24, no. 15 (August 2, 2023): 12331. http://dx.doi.org/10.3390/ijms241512331.
Full textXenou, Lydia, and Evangelia A. Papakonstanti. "p110δ PI3K as a therapeutic target of solid tumours." Clinical Science 134, no. 12 (June 2020): 1377–97. http://dx.doi.org/10.1042/cs20190772.
Full textMaffei, Angelo, Giuseppe Lembo, and Daniela Carnevale. "PI3Kinases in Diabetes Mellitus and Its Related Complications." International Journal of Molecular Sciences 19, no. 12 (December 18, 2018): 4098. http://dx.doi.org/10.3390/ijms19124098.
Full textChen, Shiyi, Wenkang Huang, Xiaoyu Li, Lijuan Gao, and Yiping Ye. "Identifying Active Compounds and Mechanisms of Citrus changshan-Huyou Y. B. Chang against URTIs-Associated Inflammation by Network Pharmacology in Combination with Molecular Docking." Evidence-Based Complementary and Alternative Medicine 2022 (July 13, 2022): 1–10. http://dx.doi.org/10.1155/2022/2156157.
Full textHutter, Grit, Yvonne Zimmermann, Anna-Katharina Zoellner, Philip Irrgang, Oliver Weigert, Wolfgang Hiddemann, and Martin Dreyling. "Combination of PI3K and PDPK1 Inhibitors Is Highly Effective in Mantle Cell Lymphoma." Blood 124, no. 21 (December 6, 2014): 3123. http://dx.doi.org/10.1182/blood.v124.21.3123.3123.
Full textCourtney, Kevin D., Ryan B. Corcoran, and Jeffrey A. Engelman. "The PI3K Pathway As Drug Target in Human Cancer." Journal of Clinical Oncology 28, no. 6 (February 20, 2010): 1075–83. http://dx.doi.org/10.1200/jco.2009.25.3641.
Full textBrosinsky, Paulin, Julia Bornbaum, Björn Warga, Lisa Schulz, Klaus-Dieter Schlüter, Alessandra Ghigo, Emilio Hirsch, Rainer Schulz, Gerhild Euler, and Jacqueline Heger. "PI3K as Mediator of Apoptosis and Contractile Dysfunction in TGFβ1-Stimulated Cardiomyocytes." Biology 10, no. 7 (July 16, 2021): 670. http://dx.doi.org/10.3390/biology10070670.
Full textMeadows, Sarah, Sorensen Rick, Yahiaoui Anella, Jia Liu, Li Li, Peng Yue, Christophe Queva, and Stacey Tannheimer. "Up-Regulation of the PI3K Signaling Pathway Mediates Resistance to Idelalisib." Blood 126, no. 23 (December 3, 2015): 3707. http://dx.doi.org/10.1182/blood.v126.23.3707.3707.
Full textBeck, Patrick, Kasen Reed Hutchings, Eileen Xu, Erin McDaid, Vincent Bui, Chinkal Patel, Jaime Solis, et al. "PIK3CB as a potential target to regulate chemosensitivity in glioblastoma." Journal of Clinical Oncology 41, no. 16_suppl (June 1, 2023): e14051-e14051. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e14051.
Full textMolins, Joaquim Bellmunt, Lillian Werner, Marta Guix, Elizabeth Ann Guancial, Fabio Augusto Barros Schutz, Robert O'Brien, Edward C. Stack, et al. "PI3KCA mutations in advanced urothelial carcinoma: A potential therapeutic target?" Journal of Clinical Oncology 30, no. 15_suppl (May 20, 2012): 4582. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.4582.
Full textCao, Biyin, Jingyu Zhu, Man Wang, Yang Yu, Huixin Qi, Kunkun Han, Zubin Zhang, et al. "A Novel PI3K Inhibitor Identified By a High Throughput Virtual Screen Displays Potent Activity Against Multiple Myeloma." Blood 124, no. 21 (December 6, 2014): 4722. http://dx.doi.org/10.1182/blood.v124.21.4722.4722.
Full textLobo, Vítor, Ashly Rocha, Tarsila G. Castro, and Maria Alice Carvalho. "Synthesis of Novel 2,9-Disubstituted-6-morpholino Purine Derivatives Assisted by Virtual Screening and Modelling of Class I PI3K Isoforms." Polymers 15, no. 7 (March 29, 2023): 1703. http://dx.doi.org/10.3390/polym15071703.
Full textGuenther, Andreas, Renate Burger, Wolfram Klapper, Matthias Staudinger, and Martin Gramatzki. "Selective Inhibition Of The PI3K-Alpha Isoform Blocks Myeloma Cell Growth and Survival." Blood 122, no. 21 (November 15, 2013): 5364. http://dx.doi.org/10.1182/blood.v122.21.5364.5364.
Full textJeong, Jae Seok, Jong Seung Kim, So Ri Kim, and Yong Chul Lee. "Defining Bronchial Asthma with Phosphoinositide 3-Kinase Delta Activation: Towards Endotype-Driven Management." International Journal of Molecular Sciences 20, no. 14 (July 18, 2019): 3525. http://dx.doi.org/10.3390/ijms20143525.
Full textChen, Yingwei, Bao-Can Wang, and Yongtao Xiao. "PI3K: A potential therapeutic target for cancer." Journal of Cellular Physiology 227, no. 7 (March 20, 2012): 2818–21. http://dx.doi.org/10.1002/jcp.23038.
Full textRathinaswamy, Manoj K., Udit Dalwadi, Kaelin D. Fleming, Carson Adams, Jordan T. B. Stariha, Els Pardon, Minkyung Baek, et al. "Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation." Science Advances 7, no. 35 (August 2021): eabj4282. http://dx.doi.org/10.1126/sciadv.abj4282.
Full textSmith, Stephen F., Shannon E. Collins, and Pascale G. Charest. "Ras, PI3K and mTORC2 – three's a crowd?" Journal of Cell Science 133, no. 19 (October 1, 2020): jcs234930. http://dx.doi.org/10.1242/jcs.234930.
Full textGong, Grace Q., Jackie D. Kendall, James M. J. Dickson, Gordon W. Rewcastle, Christina M. Buchanan, William A. Denny, Peter R. Shepherd, and Jack U. Flanagan. "Combining properties of different classes of PI3Kα inhibitors to understand the molecular features that confer selectivity." Biochemical Journal 474, no. 13 (June 26, 2017): 2261–76. http://dx.doi.org/10.1042/bcj20161098.
Full textNarayanankutty, Arunaksharan. "PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence." Current Drug Targets 20, no. 12 (August 22, 2019): 1217–26. http://dx.doi.org/10.2174/1389450120666190618123846.
Full textKang, Byung Woog, and Ian Chau. "Molecular target: pan-AKT in gastric cancer." ESMO Open 5, no. 5 (September 2020): e000728. http://dx.doi.org/10.1136/esmoopen-2020-000728.
Full textBheemanaboina, Rammohan R. Y. "Isoform-Selective PI3K Inhibitors for Various Diseases." Current Topics in Medicinal Chemistry 20, no. 12 (June 1, 2020): 1074–92. http://dx.doi.org/10.2174/1568026620666200106141717.
Full textUche, Uzodinma U., Ann R. Piccirillo, Shunsuke Kataoka, Stephanie J. Grebinoski, Louise M. D’Cruz, and Lawrence P. Kane. "PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt." Journal of Experimental Medicine 215, no. 12 (November 14, 2018): 3165–79. http://dx.doi.org/10.1084/jem.20172018.
Full textGoncalves, Marcus D., and Azeez Farooki. "Management of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia." Integrative Cancer Therapies 21 (January 2022): 153473542110731. http://dx.doi.org/10.1177/15347354211073163.
Full textThillai, Kiruthikah, Debashis Sarker, and Claire Wells. "PAK4 as a potential therapeutic target in pancreatic ductal adenocarcinoma (PDAC)." Journal of Clinical Oncology 35, no. 15_suppl (May 20, 2017): e23139-e23139. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.e23139.
Full textSmith, Greg C., Wee Kiat Ong, Gordon W. Rewcastle, Jackie D. Kendall, Weiping Han, and Peter R. Shepherd. "Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo." Biochemical Journal 442, no. 1 (January 27, 2012): 161–69. http://dx.doi.org/10.1042/bj20111913.
Full textJia, Wen-Qing, Xiao-Yan Feng, Ya-Ya Liu, Zhen-Zhen Han, Zhi Jing, Wei-Ren Xu, and Xian-Chao Cheng. "Identification of Phosphoinositide-3 Kinases Delta and Gamma Dual Inhibitors Based on the p110δ/γ Crystal Structure." Letters in Drug Design & Discovery 17, no. 6 (June 29, 2020): 772–86. http://dx.doi.org/10.2174/1570180816666190730163431.
Full textZhang, Xuewei, Masumi Ishibashi, Kazuyuki Kitatani, Shogo Shigeta, Hideki Tokunaga, Masafumi Toyoshima, Muneaki Shimada, and Nobuo Yaegashi. "Potential of Tyrosine Kinase Receptor TIE-1 as Novel Therapeutic Target in High-PI3K-Expressing Ovarian Cancer." Cancers 12, no. 6 (June 26, 2020): 1705. http://dx.doi.org/10.3390/cancers12061705.
Full textRezende, Denise C., Lorena Zaida Pacheco, Luis Arthur F. Pelloso, Maria L. Chauffaille, Marçal C. A. Silva, Elisa Kimura, Rafael L. Casaes-Rodrigues, Helena Segreto, Mihoko Yamamoto, and Daniella Marcia Maranhao Bahia Kerbauy. "PI3K/AKT Pathway as a Potential Therapeutic Target In Myelodysplastic Syndrome." Blood 116, no. 21 (November 19, 2010): 1871. http://dx.doi.org/10.1182/blood.v116.21.1871.1871.
Full textBlunt, Matthew D., Matthew J. Carter, Marta Larrayoz, Maria Montserrat Aguilar, Sarah Murphy, Mark Reynolds, Thomas Tipton, et al. "The Dual PI3K/mTOR Inhibitor PF-04691502 Induces Substantial Apoptosis in Chronic Lymphocytic Leukemia Cells in Vitro and Prolongs Survival in the Eµ-TCL1 Mouse Model." Blood 124, no. 21 (December 6, 2014): 832. http://dx.doi.org/10.1182/blood.v124.21.832.832.
Full textChen, Yu-Chen Enya, Melinda Lea Burgess, Antje Blumenthal, Sally Mapp, Peter Mollee, Devinder Gill, and Nicholas Andrew Saunders. "Activation of Fc Gamma Receptor-Dependent Responses to Therapeutic Antibodies By Nurse like Cells Requires PI3Kdelta." Blood 132, Supplement 1 (November 29, 2018): 3128. http://dx.doi.org/10.1182/blood-2018-99-109719.
Full textBosch, Ana, Zhiqiang Li, Anna Bergamaschi, Haley Ellis, Eneda Toska, Aleix Prat, Jessica J. Tao, et al. "PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer." Science Translational Medicine 7, no. 283 (April 15, 2015): 283ra51. http://dx.doi.org/10.1126/scitranslmed.aaa4442.
Full textGiulino Roth, Lisa, Herman van Besien, Anna Rodina, Tony Taldone, Hediye Erdjument-Bromage, Matthew J. Barth, Gabriela Chiosis, and Ethel Cesarman. "Targeting the Hsp90 Oncoproteome in Burkitt Lymphoma." Blood 126, no. 23 (December 3, 2015): 592. http://dx.doi.org/10.1182/blood.v126.23.592.592.
Full textPopova, Nadezhda V., and Manfred Jücker. "The Role of mTOR Signaling as a Therapeutic Target in Cancer." International Journal of Molecular Sciences 22, no. 4 (February 9, 2021): 1743. http://dx.doi.org/10.3390/ijms22041743.
Full textDent, Paul, Steven Grant, Paul B. Fisher, and David T. Curiel. "PI3K: a rational target for ovarian cancer therapy?" Cancer Biology & Therapy 8, no. 1 (January 2009): 27–30. http://dx.doi.org/10.4161/cbt.8.1.7365.
Full textMalik, Nazma, Thomas Macartney, Annika Hornberger, Karen E. Anderson, Hannah Tovell, Alan R. Prescott, and Dario R. Alessi. "Mechanism of activation of SGK3 by growth factors via the Class 1 and Class 3 PI3Ks." Biochemical Journal 475, no. 1 (January 2, 2018): 117–35. http://dx.doi.org/10.1042/bcj20170650.
Full textMabrouk, Mohammed El, Quy N. Diep, Karim Benkirane, Rhian M. Touyz, and Ernesto L. Schiffrin. "SAM68: a downstream target of angiotensin II signaling in vascular smooth muscle cells in genetic hypertension." American Journal of Physiology-Heart and Circulatory Physiology 286, no. 5 (May 2004): H1954—H1962. http://dx.doi.org/10.1152/ajpheart.00134.2003.
Full textYan, Zhao, Guangmei Liu, Yang Yang, Ling Chen, Ying Shang, and Qian Hong. "Identifying mechanisms of Epimedii Folium against Alzheimer’s disease via a network pharmacology approach Epimedii Folium treats Alzheimer’s disease via PI3K-AKT." European Journal of Inflammation 19 (January 2021): 205873922110414. http://dx.doi.org/10.1177/20587392211041435.
Full textGao, Haotian, Zaolin Li, Kai Wang, Yuhan Zhang, Tong Wang, Fang Wang, and Youjun Xu. "Design, Synthesis, and Biological Evaluation of Sulfonamide Methoxypyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors." Pharmaceuticals 16, no. 3 (March 20, 2023): 461. http://dx.doi.org/10.3390/ph16030461.
Full textZapevalova, Maria V., Ekaterina S. Shchegravina, Irina P. Fonareva, Diana I. Salnikova, Danila V. Sorokin, Alexander M. Scherbakov, Alexander A. Maleev, et al. "Synthesis, Molecular Docking, In Vitro and In Vivo Studies of Novel Dimorpholinoquinazoline-Based Potential Inhibitors of PI3K/Akt/mTOR Pathway." International Journal of Molecular Sciences 23, no. 18 (September 17, 2022): 10854. http://dx.doi.org/10.3390/ijms231810854.
Full textWang, Xiaohui, Lin Zhou, Tao Zhang, Hui Chen, Xinhao Song, and Feng Wang. "Effect and Mechanism of Schizandrin A in the Treatment of Liver Cancer Using Network Pharmacology, Molecular Docking, and Target Validation." Natural Product Communications 18, no. 5 (May 2023): 1934578X2311769. http://dx.doi.org/10.1177/1934578x231176916.
Full textLi, Jun-min, Zi-zhen Xu, Ai-hua Wang, and Jiong Hu. "Activation of PI3K/Akt/mTOR Pathway in Diffuse Large B-Cell Lymphomas: Clinical Significance and Inhibitory Effect by Rituximab." Blood 114, no. 22 (November 20, 2009): 1934. http://dx.doi.org/10.1182/blood.v114.22.1934.1934.
Full textCaforio, Matteo, Emmanuel de Billy, Biagio De Angelis, Stefano Iacovelli, Concetta Quintarelli, Valeria Paganelli, and Valentina Folgiero. "PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches." Cancers 13, no. 16 (August 11, 2021): 4040. http://dx.doi.org/10.3390/cancers13164040.
Full textKnight, Z. A., and K. M. Shokat. "Chemically targeting the PI3K family." Biochemical Society Transactions 35, no. 2 (March 20, 2007): 245–49. http://dx.doi.org/10.1042/bst0350245.
Full textZuo, Ximeng, Xiaoguang Shi, Xuedan Zhang, Zhenzhou Chen, Zhenrui Yang, Xiaojuan Pan, Rui Lai, and Ze Zhao. "Postoperative Ileus with the Topical Application of Tongfu Decoction Based on Network Pharmacology and Experimental Validation." Evidence-Based Complementary and Alternative Medicine 2022 (March 28, 2022): 1–12. http://dx.doi.org/10.1155/2022/2347419.
Full text