Journal articles on the topic 'Phytoremediation enhanced by microorganisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Phytoremediation enhanced by microorganisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
ANDARISTA UTOMO, ADZALIA, and SARWOKO MANGKOEDIHARDJO. "Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil." Current World Environment 13, Special issue 1 (November 25, 2018): 22–24. http://dx.doi.org/10.12944/cwe.13.special-issue1.04.
Full textPtaszek, Natalia, Magdalena Pacwa-Płociniczak, Magdalena Noszczyńska, and Tomasz Płociniczak. "Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil." Agronomy 10, no. 7 (July 1, 2020): 947. http://dx.doi.org/10.3390/agronomy10070947.
Full textPino, Nancy J., Luisa M. Muñera, and Gustavo A. Peñuela. "Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil." Soil and Sediment Contamination: An International Journal 25, no. 4 (April 27, 2016): 419–30. http://dx.doi.org/10.1080/15320383.2016.1148010.
Full textZhao, Chong, Guosen Zhang, and Jinhui Jiang. "Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture." International Journal of Environmental Research and Public Health 18, no. 2 (January 19, 2021): 810. http://dx.doi.org/10.3390/ijerph18020810.
Full textAlarcón, Alejandro, Fred T. Davies, Robin L. Autenrieth, and David A. Zuberer. "Arbuscular Mycorrhiza and Petroleum-Degrading Microorganisms Enhance Phytoremediation of Petroleum-Contaminated Soil." International Journal of Phytoremediation 10, no. 4 (July 8, 2008): 251–63. http://dx.doi.org/10.1080/15226510802096002.
Full textJin, Zhong Min, Wei Sha, Yan Fu Zhang, Jing Zhao, and Hongyang Ji. "Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover." Canadian Journal of Microbiology 59, no. 7 (July 2013): 449–55. http://dx.doi.org/10.1139/cjm-2012-0650.
Full textGuo, Shuyu, Bo Feng, Chunqiao Xiao, Qi Wang, and Ruan Chi. "Phosphate-solubilizing microorganisms to enhance phytoremediation of excess phosphorus pollution in phosphate mining wasteland soil." Bioremediation Journal 25, no. 3 (February 16, 2021): 271–81. http://dx.doi.org/10.1080/10889868.2021.1884528.
Full textIrawati, Wahyu, Adolf Jan Nexson Parhusip, Nida Sopiah, and Juniche Anggelique Tnunay. "The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation using Eichhornia crasippes [(Mart.) Solms]." KnE Life Sciences 3, no. 5 (September 11, 2017): 208. http://dx.doi.org/10.18502/kls.v3i5.995.
Full textDhawi, Faten. "The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming." Metabolites 13, no. 2 (February 9, 2023): 247. http://dx.doi.org/10.3390/metabo13020247.
Full textIqra Tabassum, Sumaira Mazhar, and Beenish Sarfraz. "Phytoremediation of Lead Contaminated Soil Using Sorghum Plant in Association with Indigenous Microbes." Scientific Inquiry and Review 6, no. 3 (September 15, 2022): 79–93. http://dx.doi.org/10.32350/sir.63.05.
Full textBorowik, Agata, Jadwiga Wyszkowska, and Jan Kucharski. "Microbiological Study in Petrol-Spiked Soil." Molecules 26, no. 9 (May 1, 2021): 2664. http://dx.doi.org/10.3390/molecules26092664.
Full textGao, Yang, Chiyuan Miao, Yafeng Wang, Jun Xia, and Pei Zhou. "Metal-resistant microorganisms and metal chelators synergistically enhance the phytoremediation efficiency ofSolanum nigrumL. in Cd- and Pb-contaminated soil." Environmental Technology 33, no. 12 (June 2012): 1383–89. http://dx.doi.org/10.1080/09593330.2011.629006.
Full textVocciante, Marco, Martina Grifoni, Danilo Fusini, Gianniantonio Petruzzelli, and Elisabetta Franchi. "The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses." Applied Sciences 12, no. 3 (January 25, 2022): 1231. http://dx.doi.org/10.3390/app12031231.
Full textNjoku, Kelechi L., Eme O. Ude, Temitope O. Jegede, Omotoyosi Z. Adeyanju, and Patricia O. Iheme. "Characterization of hydrocarbon degrading microorganisms from Glycine max and Zea mays phytoremediated crude oil contaminated soil." Environmental Analysis Health and Toxicology 37, no. 2 (April 11, 2022): e2022008. http://dx.doi.org/10.5620/eaht.2022008.
Full textOmoregie, Gloria Omorowa, Abraham Goodness Ogofure, Beckley Ikhajiagbe, and Geoffrey Obinna Anoliefo. "Quantitative and qualitative basement of microbial presence during phytoremediation of heavy metal polluted soil using Chromolaena odorata." Ovidius University Annals of Chemistry 31, no. 2 (January 1, 2020): 145–51. http://dx.doi.org/10.2478/auoc-2020-0023.
Full textZheng, Yilin, Meng Cui, Lei Ni, Yafei Qin, Jinhua Li, Yu Pan, and Xingguo Zhang. "Heterologous Expression of Human Metallothionein Gene HsMT1L Can Enhance the Tolerance of Tobacco (Nicotiana nudicaulis Watson) to Zinc and Cadmium." Genes 13, no. 12 (December 19, 2022): 2413. http://dx.doi.org/10.3390/genes13122413.
Full textDang, Nga Diep Yen, and Trong Thi Kim Pham. "Evaluation of the effect of microorganisms in Arachis pintoi roots on the potential of copper absorption in land." Science and Technology Development Journal 18, no. 4 (December 30, 2015): 138–52. http://dx.doi.org/10.32508/stdj.v18i4.934.
Full textWhite, Philip J. "Phytoremediation assisted by microorganisms." Trends in Plant Science 6, no. 11 (November 2001): 502. http://dx.doi.org/10.1016/s1360-1385(01)02093-3.
Full textShuang, Cui, Han Qing, and Bai Song. "Enhanced technology of phytoremediation." E3S Web of Conferences 261 (2021): 04034. http://dx.doi.org/10.1051/e3sconf/202126104034.
Full textTiodar, Emanuela D., Cristina L. Văcar, and Dorina Podar. "Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives." International Journal of Environmental Research and Public Health 18, no. 5 (March 2, 2021): 2435. http://dx.doi.org/10.3390/ijerph18052435.
Full textCao, Xiu Feng, and Li Ping Liu. "Using Microorganisms to Facilitate Phytoremediation in Mine Tailings with Multi Heavy Metals." Advanced Materials Research 1094 (March 2015): 437–40. http://dx.doi.org/10.4028/www.scientific.net/amr.1094.437.
Full textHrynkiewicz, Katarzyna, Michał Złoch, Tomasz Kowalkowski, Christel Baum, and Bogusław Buszewski. "Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils." Environmental Reviews 26, no. 3 (September 2018): 316–32. http://dx.doi.org/10.1139/er-2018-0023.
Full textKhan, Abdul G. "Mycorrhizoremediation—An enhanced form of phytoremediation." Journal of Zhejiang University SCIENCE B 7, no. 7 (July 2006): 503–14. http://dx.doi.org/10.1631/jzus.2006.b0503.
Full textJankong, P., P. Visoottiviseth, and S. Khokiattiwong. "Enhanced phytoremediation of arsenic contaminated land." Chemosphere 68, no. 10 (August 2007): 1906–12. http://dx.doi.org/10.1016/j.chemosphere.2007.02.061.
Full textKamnev, Alexander A., and Daniël van der Lelie. "Chemical and Biological Parameters as Tools to Evaluate and Improve Heavy Metal Phytoremediation." Bioscience Reports 20, no. 4 (August 1, 2000): 239–58. http://dx.doi.org/10.1023/a:1026436806319.
Full textIqbal, Muhammad, Altaf Ahmad, M. K. A. Ansari, M. I. Qureshi, Ibrahim M. Aref, P. R. Khan, S. S. Hegazy, Hashim El-Atta, Azamal Husen, and Khalid R. Hakeem. "Improving the phytoextraction capacity of plants to scavenge metal(loid)-contaminated sites." Environmental Reviews 23, no. 1 (March 2015): 44–65. http://dx.doi.org/10.1139/er-2014-0043.
Full textDemarco, Carolina Faccio, Maurízio Silveira Quadro, Filipe Selau Carlos, Simone Pieniz, Luiza Beatriz Gamboa Araújo Morselli, and Robson Andreazza. "Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives." Sustainability 15, no. 2 (January 11, 2023): 1411. http://dx.doi.org/10.3390/su15021411.
Full textFeng, Yuming. "Interactions among Rhizosphere Microorganisms, Mechanisms and Potential Application in Phytoremediation." SHS Web of Conferences 144 (2022): 01003. http://dx.doi.org/10.1051/shsconf/202214401003.
Full textSiciliano, Steven D., and James J. Germida. "Enhanced phytoremediation of chlorobenzoates in rhizosphere soil." Soil Biology and Biochemistry 31, no. 2 (February 1999): 299–305. http://dx.doi.org/10.1016/s0038-0717(98)00120-5.
Full textKhan, Irfan Ullah, Shan-Shan Qi, Farrukh Gul, Sehrish Manan, Justice Kipkorir Rono, Misbah Naz, Xin-Ning Shi, Haiyan Zhang, Zhi-Cong Dai, and Dao-Lin Du. "A Green Approach Used for Heavy Metals ‘Phytoremediation’ Via Invasive Plant Species to Mitigate Environmental Pollution: A Review." Plants 12, no. 4 (February 6, 2023): 725. http://dx.doi.org/10.3390/plants12040725.
Full textCirillo, Clelia, Barbara Bertoli, Giovanna Acampora, and Loredana Marcolongo. "Bagnoli Urban Regeneration through Phytoremediation." Encyclopedia 2, no. 2 (April 24, 2022): 882–92. http://dx.doi.org/10.3390/encyclopedia2020058.
Full textKim, Kwang Jin, Eun Ha Yoo, and Stanley J. Kays. "Decay Kinetics of Toluene Phytoremediation Stimulation." HortScience 47, no. 8 (August 2012): 1195–98. http://dx.doi.org/10.21273/hortsci.47.8.1195.
Full textYasseen, Bassam T., and Roda F. Al-Thani. "Endophytes and Halophytes to Remediate Industrial Wastewater and Saline Soils: Perspectives from Qatar." Plants 11, no. 11 (June 2, 2022): 1497. http://dx.doi.org/10.3390/plants11111497.
Full textAsilian, Ebrahim, Reza Ghasemi-Fasaei, Abdolmajid Ronaghi, Mozhgan Sepehri, and Ali Niazi. "Chemical- and microbial-enhanced phytoremediation of cadmium-contaminated calcareous soil by maize." Toxicology and Industrial Health 35, no. 5 (May 2019): 378–86. http://dx.doi.org/10.1177/0748233719842752.
Full textAllamin, Ibrahim Alkali, and Mohd Yunus Shukor. "Phytoremediation of PAHs in Contaminated Soils: A Review." Bioremediation Science and Technology Research 9, no. 2 (December 31, 2021): 1–6. http://dx.doi.org/10.54987/bstr.v9i2.609.
Full textMaldaner, Joseila, Gerusa Pauli Kist Steffen, Cleber Witt Saldanha, Ricardo Bemfica Steffen, Luciane Almeri Tabaldi, Evandro Luiz Missio, Rosana Matos De Morais, and Rejane Flores. "Combining tolerant species and microorganisms for phytoremediation in aluminium-contaminated areas." International Journal of Environmental Studies 77, no. 1 (January 16, 2019): 108–21. http://dx.doi.org/10.1080/00207233.2018.1560838.
Full textWyszkowska, Jadwiga, Edyta Boros-Lajszner, Agata Borowik, and Jan Kucharski. "The Role of Cellulose in Microbial Diversity Changes in the Soil Contaminated with Cadmium." Sustainability 14, no. 21 (October 31, 2022): 14242. http://dx.doi.org/10.3390/su142114242.
Full textLiu, Zhongchuang, Li-ao Wang, Shimin Ding, and Hongyan Xiao. "Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L." Ecotoxicology and Environmental Safety 160 (September 2018): 171–77. http://dx.doi.org/10.1016/j.ecoenv.2018.05.041.
Full textShahid, M., A. Austruy, G. Echevarria, M. Arshad, M. Sanaullah, M. Aslam, M. Nadeem, W. Nasim, and C. Dumat. "EDTA-Enhanced Phytoremediation of Heavy Metals: A Review." Soil and Sediment Contamination: An International Journal 23, no. 4 (December 16, 2013): 389–416. http://dx.doi.org/10.1080/15320383.2014.831029.
Full textJeong, Seulki, Hee Sun Moon, Woojin Yang, and Kyoungphile Nam. "Applicability of Enhanced-phytoremediation for Arsenic-contaminated Soil." Journal of Soil and Groundwater Environment 21, no. 1 (February 28, 2016): 40–48. http://dx.doi.org/10.7857/jsge.2016.21.1.040.
Full textVan Aken, Benoit. "Transgenic plants for enhanced phytoremediation of toxic explosives." Current Opinion in Biotechnology 20, no. 2 (April 2009): 231–36. http://dx.doi.org/10.1016/j.copbio.2009.01.011.
Full textCameselle, Claudio, Reshma A. Chirakkara, and Krishna R. Reddy. "Electrokinetic-enhanced phytoremediation of soils: Status and opportunities." Chemosphere 93, no. 4 (October 2013): 626–36. http://dx.doi.org/10.1016/j.chemosphere.2013.06.029.
Full textQamar, Fouzia, and Samrah Tahir Khan. "Phytoremediation- A Green Technology for Cleaning the Environment." Lahore Garrison University Journal of Life Sciences 2, no. 1 (April 22, 2020): 87–102. http://dx.doi.org/10.54692/lgujls.2018.020149.
Full textDalCorso, Giovanni, Elisa Fasani, Anna Manara, Giovanna Visioli, and Antonella Furini. "Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation." International Journal of Molecular Sciences 20, no. 14 (July 11, 2019): 3412. http://dx.doi.org/10.3390/ijms20143412.
Full textCRIȘAN, Ioana, Roxana VIDICAN, Anca PLEȘA, and Tania MIHĂIESCU. "Phytoremediation Potential of Iris spp." Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 78, no. 1 (May 14, 2021): 1. http://dx.doi.org/10.15835/buasvmcn-agr:2020.0046.
Full textZhang, Jing, Rui Yin, Xiangui Lin, Weiwei Liu, Ruirui Chen, and Xuanzhen Li. "Interactive Effect of Biosurfactant and Microorganism to Enhance Phytoremediation for Removal of Aged Polycyclic Aromatic Hydrocarbons from Contaminated Soils." JOURNAL OF HEALTH SCIENCE 56, no. 3 (2010): 257–66. http://dx.doi.org/10.1248/jhs.56.257.
Full textGladkov, Evgeny A., Dmitry V. Tereshonok, Anna Y. Stepanova, and Olga V. Gladkova. "Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding." Diversity 15, no. 2 (January 26, 2023): 175. http://dx.doi.org/10.3390/d15020175.
Full textIhtisham, Muhammad, Azam Noori, Saurabh Yadav, Mohammad Sarraf, Pragati Kumari, Marian Brestic, Muhammad Imran, Fuxing Jiang, Xiaojun Yan, and Anshu Rastogi. "Silver Nanoparticle’s Toxicological Effects and Phytoremediation." Nanomaterials 11, no. 9 (August 24, 2021): 2164. http://dx.doi.org/10.3390/nano11092164.
Full textJaskulak, Marta, and Anna Grobelak. "Potential applications of plant in vitro cultures in phytoremediation studies." Challenges of Modern Technology 8, no. 2 (June 30, 2017): 11–17. http://dx.doi.org/10.5604/01.3001.0012.2613.
Full textIbragimova, T. M., P. Sh Mammadova, E. R. Babayev, K. R. Gahramanova, and A. E. Almammadova. "Biotechnological method of cleaning oil-contaminated soils." World of petroleum products 02 (2022): 20–23. http://dx.doi.org/10.32758/2782-3040-2022-0-2-20-23.
Full text