Academic literature on the topic 'Phytoremediation enhanced by microorganisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phytoremediation enhanced by microorganisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phytoremediation enhanced by microorganisms"
ANDARISTA UTOMO, ADZALIA, and SARWOKO MANGKOEDIHARDJO. "Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil." Current World Environment 13, Special issue 1 (November 25, 2018): 22–24. http://dx.doi.org/10.12944/cwe.13.special-issue1.04.
Full textPtaszek, Natalia, Magdalena Pacwa-Płociniczak, Magdalena Noszczyńska, and Tomasz Płociniczak. "Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil." Agronomy 10, no. 7 (July 1, 2020): 947. http://dx.doi.org/10.3390/agronomy10070947.
Full textPino, Nancy J., Luisa M. Muñera, and Gustavo A. Peñuela. "Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil." Soil and Sediment Contamination: An International Journal 25, no. 4 (April 27, 2016): 419–30. http://dx.doi.org/10.1080/15320383.2016.1148010.
Full textZhao, Chong, Guosen Zhang, and Jinhui Jiang. "Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture." International Journal of Environmental Research and Public Health 18, no. 2 (January 19, 2021): 810. http://dx.doi.org/10.3390/ijerph18020810.
Full textAlarcón, Alejandro, Fred T. Davies, Robin L. Autenrieth, and David A. Zuberer. "Arbuscular Mycorrhiza and Petroleum-Degrading Microorganisms Enhance Phytoremediation of Petroleum-Contaminated Soil." International Journal of Phytoremediation 10, no. 4 (July 8, 2008): 251–63. http://dx.doi.org/10.1080/15226510802096002.
Full textJin, Zhong Min, Wei Sha, Yan Fu Zhang, Jing Zhao, and Hongyang Ji. "Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover." Canadian Journal of Microbiology 59, no. 7 (July 2013): 449–55. http://dx.doi.org/10.1139/cjm-2012-0650.
Full textGuo, Shuyu, Bo Feng, Chunqiao Xiao, Qi Wang, and Ruan Chi. "Phosphate-solubilizing microorganisms to enhance phytoremediation of excess phosphorus pollution in phosphate mining wasteland soil." Bioremediation Journal 25, no. 3 (February 16, 2021): 271–81. http://dx.doi.org/10.1080/10889868.2021.1884528.
Full textIrawati, Wahyu, Adolf Jan Nexson Parhusip, Nida Sopiah, and Juniche Anggelique Tnunay. "The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation using Eichhornia crasippes [(Mart.) Solms]." KnE Life Sciences 3, no. 5 (September 11, 2017): 208. http://dx.doi.org/10.18502/kls.v3i5.995.
Full textDhawi, Faten. "The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming." Metabolites 13, no. 2 (February 9, 2023): 247. http://dx.doi.org/10.3390/metabo13020247.
Full textIqra Tabassum, Sumaira Mazhar, and Beenish Sarfraz. "Phytoremediation of Lead Contaminated Soil Using Sorghum Plant in Association with Indigenous Microbes." Scientific Inquiry and Review 6, no. 3 (September 15, 2022): 79–93. http://dx.doi.org/10.32350/sir.63.05.
Full textDissertations / Theses on the topic "Phytoremediation enhanced by microorganisms"
Afegbua, Seniyat Larai. "Importance of plants and microorganisms in the Phytoremediation of brownfield sites." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5450/.
Full textSaunders, Aaron M. "The physiology of microorganisms in enhanced biological phosphorous removal /." [St. Lucia, Qld.], 2005. http://adt.library.uq.edu.au/public/adt-QU20060322.224547/index.html.
Full textWu, Shengchun. "Enhanced phytoextraction of metal contaminated soils using beneficial microorganisms." HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/589.
Full textSengupta, Atanu. "Detection of biological species by surface enhanced Raman scattering /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8523.
Full textHii, Yiik Siang. "Isolation and Microencapsulation of Phosphate Solubilizing Microorganisms for Enhanced Agricultural Growth on Peat." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/82187.
Full textMichelini, Lucia. "Sulfonamide accumulation and effects on herbaceous and woody plants and microorganisms." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422567.
Full textUna delle vie principali attraverso cui i farmaci possono entrare nell'ambiente consiste nell’ampio uso che se ne fa in zootecnia. Infatti, in Europa questi principi attivi sono venduti nell’ordine di centinaia di tonnellate annue per singola nazione, per il solo utilizzo in ambito veterinario. In seguito alla somministrazione, fino al 90% della dose utilizzata di farmaco può essere escreta inalterata e, in seguito all'utilizzo del letame come ammendante organico, suolo e acque possono risultare contaminate. Il presente studio si concentra sugli effetti e sull’accumulo in piante legnose ed erbacee di sulfamidici, un gruppo di agenti antimicrobici (d'ora in poi chiamati antibiotici) frequentemente rilevati negli ecosistemi agrari, la cui persistenza rappresenta un serio rischio per gli organismi viventi ad essi connessi. La tesi è articolata in 7 capitoli. Nella prima parte (capitolo 1) è descritta la situazione generale relativa alla presenza di antibiotici negli ambienti agrari e al loro impatto sulla crescita e lo sviluppo di organismi viventi ad essi esposti. Successivamente, dal capitolo 2 al capitolo 6, sono presentate varie prove sperimentali, alcune effettuate in laboratorio ed altre in serra. In particolare, il capitolo 2 si occupa della risposta di piante di Salix fragilis L. all’antibiotico sulfadimetossina, aggiunto alla soluzione nutritiva in concentrazioni da 155 a 620 mg l-1, nonché del potenziale accumulo nei tessuti vegetali. Lo studio mostra la tendenza di questa specie legnosa di assorbire e accumulare la molecola attiva a livello di apparato radicale. Il capitolo 3 ripercorre il disegno sperimentale adottato nella prova descritta nel capitolo 2, con la differenza che, in questo caso, le piante di Salix fragilis L. sono state esposte a dosi di sulfadimetossina che approssimano quelle registrate in alcuni ambientali agrari, ovvero da 0.01 a 10 mg l-1. Lo studio ha mostrato che non appaiono effetti negativi sulla crescita delle piante di salice fino alla dose di 1 mg l-1. Tuttavia, aumentando il livello del principio attivo sono state evidenziate delle importanti alterazioni sull’architettura radicale. I capitoli 4 e 5 considerano, rispettivamente, gli effetti e l'accumulo di un altro sulfamidico in piante di Salix fragilis L. e Zea mays L., coltivate in un terreno arricchito con 10 mg e 200 kg-1 di sulfadiazina e il suo impatto sulle comunità microbiche e sulle attività enzimatiche associate al suolo e alla radice delle due specie vegetali. L'ultimo studio, presentato nel capitolo 6, si concentra sugli effetti indotti da circa 10 mg l-1 di sulfadimetossina e sulfametazina sulla struttura e sulla funzionalità di radici di Hordeum vulgare L. I risultati provano che i sulfamidici causano importanti effetti sulla morfologia dell'apparato radicale e sull’integrità delle membrane delle cellule radicali. Concludendo, si è evidenziato (capitolo 7) che il Salix fragilis L. accumula e tollera meglio di Zea mays L. e Hordeum vulgare L. le molecole attive testate, mentre le specie erbacee sembrano essere più vulnerabili a questi inquinanti, di cui ne viene sconsigliato l’eventuale utilizzo nel campo del fitorimedio. Inoltre, in capitolo 7 rimarca le conseguenze negative sulla diversità funzionale e strutturale delle comunità microbiche del suolo.
Van, Zwieten Lukas. "Enhanced biodegradation of phenoxyacetate and triazine herbicides by plant-microbial rhizoplane associations and adapted soil microorganisms." Thesis, The University of Sydney, 1995. https://hdl.handle.net/2123/26900.
Full textCabrera, Motta José Alfonso. "Isolation, characterization and interactions of soil microorganisms involved in the enhanced biodegradation of non-fumigant organophosphate nematicides." Göttingen Cuvillier, 2009. http://d-nb.info/996598324/04.
Full textWillis, Robert M. "ncreased Production and Extraction Efficiency of Triacylglycerides from Microorganisms and an Enhanced Understanding of the Pathways Involved in the Production of Triacylglycerides and Fatty Alcohols." DigitalCommons@USU, 2013. http://digitalcommons.usu.edu/etd/1530.
Full textWillis, Robert M. "Increased Production and Extraction Efficiency of Triacylglycerides from Microorganisms and an Enhanced Understanding of the Pathways Involved in the Production of Triacylglycerides and Fatty Alcohols." DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1530.
Full textBooks on the topic "Phytoremediation enhanced by microorganisms"
Johnson, A. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textA, Johnson, and Singhal Naresh 1963-, eds. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textSmith, Geoffrey B. Development of a laser-based detection system for water-borne pathogens. Las Cruces, N.M: New Mexico Water Resources Research Institute, New Mexico State University, 2004.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Enhanced Characterization of Microorganisms in the Spacecraft Environment. Independently Published, 2018.
Find full textPlant Growth Promoting Microorganisms: Microbial Resources for Enhanced Agricultural Productivity. Nova Science Publishers, Incorporated, 2019.
Find full textRaj, Niranjan S., and A. C. Udayashankar. Plant Growth Promoting Microorganisms: Microbial Resources for Enhanced Agricultural Productivity. Nova Science Publishers, Incorporated, 2019.
Find full textBook chapters on the topic "Phytoremediation enhanced by microorganisms"
Tabinda, Amtul Bari, Ajwa Tahir, Maryam Dogar, Abdullah Yasar, Rizwan Rasheed, and Mahnoor. "Role of Microorganisms in the Remediation of Toxic Metals from Contaminated Soil." In Phytoremediation, 231–59. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17988-4_12.
Full textKaur, Charanjeet, Babli Bhandari, Alok Srivastava, and Vijai Pal Singh. "Rhizobacteria Versus Chelating Agents: Tool for Phytoremediation." In Microorganisms for Sustainability, 249–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2679-4_9.
Full textMajumder, Anrini, and Sumita Jha. "Hairy Roots: A Promising Tool for Phytoremediation." In Microorganisms in Environmental Management, 607–29. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2229-3_27.
Full textCrowley, David E., Sam Alvey, and Eric S. Gilbert. "Rhizosphere Ecology of Xenobiotic-Degrading Microorganisms." In Phytoremediation of Soil and Water Contaminants, 20–36. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0664.ch002.
Full textPoonam and Narendra Kumar. "Natural and Artificial Soil Amendments for the Efficient Phytoremediation of Contaminated Soil." In Microorganisms for Sustainability, 1–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9664-0_1.
Full textAnand, Sangeeta, Sushil Kumar Bharti, Sanjeev Kumar, S. C. Barman, and Narendra Kumar. "Phytoremediation of Heavy Metals and Pesticides Present in Water Using Aquatic Macrophytes." In Microorganisms for Sustainability, 89–119. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9664-0_4.
Full textGhosh, Dipita, B. S. Manisha Singh, Manish Kumar, Subodh Kumar Maiti, and Nabin Kumar Dhal. "Role of Endophytic Microorganisms in Phosphate Solubilization and Phytoremediation of Degraded Soils." In Microorganisms for Sustainability, 387–400. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5029-2_16.
Full textAkhundova, Elmira, and Yamen Atakishiyeva. "Interaction Between Plants and Biosurfactant Producing Microorganisms in Petroleum Contaminated Absheron Soils." In Phytoremediation for Green Energy, 115–22. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7887-0_7.
Full textDeb, Vishal Kumar, Ahmad Rabbani, Shashi Upadhyay, Priyam Bharti, Hitesh Sharma, Devendra Singh Rawat, and Gaurav Saxena. "Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, Mechanisms, Challenges, and Future Perspectives." In Microorganisms for Sustainability, 161–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2679-4_6.
Full textProchazka, Marek. "SERS Investigations of Cells, Viruses and Microorganisms." In Surface-Enhanced Raman Spectroscopy, 127–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_6.
Full textConference papers on the topic "Phytoremediation enhanced by microorganisms"
Gao, L. D., R. J. Zheng, T. An, S. Zhang, and M. L. Pang. "Enhanced Phytoremediation of Pb-contaminated Soil with -Cyclodextrin." In 5th International Conference on Advanced Design and Manufacturing Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icadme-15.2015.176.
Full textChen, Tao, Chengxun Sun, and Weiwei Chen. "Tween80-enhanced phytoremediation of polychlorinated biphenyls-contaminated soil." In The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0031.
Full textCulha, Mustafa, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Microorganisms." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482861.
Full textReddy, Krishna R., Gema Amaya-Santos, and Girish Kumar. "Environmental Sustainability Assessment of Soil Amendments for Enhanced Phytoremediation." In ASCE India Conference 2017. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482025.014.
Full textJadhav, Madhavi Vitthal. "Enhanced Coal bed Methane Recovery Using Microorganisms." In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/105117-ms.
Full textAngelova, Violina. "PHYTOREMEDIATION POTENTIAL OF ENHANCED TOBACCO IN SOIL CONTAMINATED WITH HEAVY METALS." In 2nd International Scientific Conference. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2018. http://dx.doi.org/10.31410/itema.2018.1049.
Full textPremuzic, E. T., and M. Lin. "Prospects for Thermophilic Microorganisms in Microbial Enhanced Oil Recovery (MEOR)." In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/21015-ms.
Full textOsmolovskaya, N. G., V. Yu Samuta, M. V. Bogomazova, O. N. Kuzina, and V. V. Kurilenko. "PHYTOREMEDIATION POTENTIAL OF SOME ORNAMENTAL PLANTS IN RELATION TO URBAN SOILS POLLUTION WITH HEAVY METALS." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1103-1105.
Full textChen, T., C. X. Sun, G. G. Lin, and Weiwei Chen. "Change in enzymatic activity in Tween80-enhanced phytoremediation of polychlorinated biphenyl-contaminated soil." In The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0026.
Full textAl-Harbawee, W. E. Q., D. I. Bashmakov, and A. S. Lukatkin. "ASSESSMENT OF PHYTOREMEDIATION POTENTIAL OF HERBACEOUS PLANTS FROM CENTRAL RUSSIA FOR INDUSTRIAL WASTEWATER CONTAINING HEAVY METALS." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1021-1024.
Full textReports on the topic "Phytoremediation enhanced by microorganisms"
Li, Jiangxia, Jun Zhang, Steven Larson, John Ballard, Kai Guo, Zikri Arslan, Youhua Ma, Charles Waggoner, Jeremy White, and Fengxiang Han. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. Engineer Research and Development Center (U.S.), June 2020. http://dx.doi.org/10.21079/11681/37237.
Full textM.J. McInerney, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp, and D. Nagle. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/834168.
Full textM.J. McInerney, K.E. Duncan, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp, Randy R. Simpson, N.Ravi, and D. Nagle. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/860919.
Full textM.J. McInerney, R.M. Knapp, Jr D.P. Nagle, Kathleen Duncan, N. Youssef, M.J. Folmsbee, and S. Maudgakya. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/822122.
Full textNegri, M. Cristina. Microorganisms Associated with Hydrocarbon Contaminated Sites and Reservoirs for Microbially Enhanced Oil Recovery (MEOR). Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1118140.
Full textWeinberg, Zwi G., Richard E. Muck, Nathan Gollop, Gilad Ashbell, Paul J. Weimer, and Limin Kung, Jr. effect of lactic acid bacteria silage inoculants on the ruminal ecosystem, fiber digestibility and animal performance. United States Department of Agriculture, September 2003. http://dx.doi.org/10.32747/2003.7587222.bard.
Full textFreeman, Stanley, Russell Rodriguez, Adel Al-Abed, Roni Cohen, David Ezra, and Regina Redman. Use of fungal endophytes to increase cucurbit plant performance by conferring abiotic and biotic stress tolerance. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7613893.bard.
Full textWilson, Charles, and Edo Chalutz. Biological Control of Postharvest Diseases of Citrus and Deciduous Fruit. United States Department of Agriculture, September 1991. http://dx.doi.org/10.32747/1991.7603518.bard.
Full textLitaor, Iggy, James Ippolito, Iris Zohar, and Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600037.bard.
Full text