Academic literature on the topic 'Physics detectors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physics detectors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Physics detectors"
Balkova, Y., M. Urbaniak, A. Makhnev, S. Puławski, S. Kowalski, J. Kulawik, F. Guber, and D. Serebryakov. "New beam position detectors for NA61/SHINE experiment." Journal of Instrumentation 17, no. 08 (August 1, 2022): C08019. http://dx.doi.org/10.1088/1748-0221/17/08/c08019.
Full textZareef, F., A. Oblakowska-Mucha, and T. Szumlak. "Silicon detectors beyond LHC — RD50 status report." Journal of Instrumentation 17, no. 11 (November 1, 2022): C11004. http://dx.doi.org/10.1088/1748-0221/17/11/c11004.
Full textKohagura, J., T. Cho, M. Hirata, T. Okamura, T. Tamano, K. Yatsu, S. Miyoshi, K. Hirano, and H. Maezawa. "New methods for semiconductor charge-diffusion-length measurements using synchrotron radiation." Journal of Synchrotron Radiation 5, no. 3 (May 1, 1998): 874–76. http://dx.doi.org/10.1107/s0909049597017524.
Full textMadejczyk, P., W. Gawron, A. Kębłowski, K. Mlynarczyk, D. Stępień, P. Martyniuk, A. Rogalski, J. Rutkowski, and J. Piotrowski. "Higher Operating Temperature IR Detectors of the MOCVD Grown HgCdTe Heterostructures." Journal of Electronic Materials 49, no. 11 (August 24, 2020): 6908–17. http://dx.doi.org/10.1007/s11664-020-08369-3.
Full textRothe, J., G. Angloher, F. Ardellier-Desages, A. Bento, L. Canonica, A. Erhart, N. Ferreiro, et al. "NUCLEUS: Exploring Coherent Neutrino-Nucleus Scattering with Cryogenic Detectors." Journal of Low Temperature Physics 199, no. 1-2 (December 10, 2019): 433–40. http://dx.doi.org/10.1007/s10909-019-02283-7.
Full textAndreazza, Attilio. "Development of Detectors for Physics at the Terascale." International Journal of Modern Physics: Conference Series 46 (January 2018): 1860007. http://dx.doi.org/10.1142/s2010194518600078.
Full textMartyniuk, P., and A. Rogalski. "Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector." Bulletin of the Polish Academy of Sciences: Technical Sciences 61, no. 1 (March 1, 2013): 211–20. http://dx.doi.org/10.2478/bpasts-2013-0020.
Full textFanelli, C. "Design of detectors at the electron ion collider with artificial intelligence." Journal of Instrumentation 17, no. 04 (April 1, 2022): C04038. http://dx.doi.org/10.1088/1748-0221/17/04/c04038.
Full textHiginbotham, D. W. "EIC detector overview." Journal of Instrumentation 17, no. 02 (February 1, 2022): C02018. http://dx.doi.org/10.1088/1748-0221/17/02/c02018.
Full textDudas, D., V. Kafka, M. Marcisovsky, G. Neue, M. Marcisovska, P. Prusa, I. Koniarova, and M. Semmler. "Radiation hardness of PantherPix hybrid pixel detector." Journal of Instrumentation 16, no. 12 (December 1, 2021): P12007. http://dx.doi.org/10.1088/1748-0221/16/12/p12007.
Full textDissertations / Theses on the topic "Physics detectors"
Howard, Alexander Sinclair. "Diamond detectors for particle physics." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300575.
Full textKuns, Kevin A. "Future Networks of Gravitational Wave Detectors| Quantum Noise and Space Detectors." Thesis, University of California, Santa Barbara, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13810824.
Full textThe current network of three terrestrial interferometric gravitational wave detectors have observed ten binary black holes and one binary neutron star to date in the frequency band from 10 Hz to 5 kHz. Future detectors will increase the sensitivity by up to a factor of 10 and will push the sensitivity band down to lower frequencies. However, observing sources lower than a few Hz requires going into space where the interferometer arms can be longer and where there is no seismic noise. A new 100 km space detector, TianGO, sensitive to the frequency band from 10 mHz to 100 Hz is described. Through its excellent ability to localize sources in the sky, TianGO can use binary black holes as standard candles to help resolve the current tension between measurements of the Hubble constant. Furthermore, all of the current and future detectors, on both the ground and in space, are limited by quantum shot noise at high frequencies, and some will be limited by quantum radiation pressure at low frequencies as well. Much effort is made to use squeezed states of light to reduce this quantum noise, however classical noise and losses severely limit this reduction. One would ideally design a gravitational wave transducer that, using its own ability to generate ponderomotive squeezing due to the radiation pressure mediated interaction between the optical modes of the light and the mechanical modes of the mirrors, approaches the fundamental limits to quantum measurement. First steps in this direction are described and it is shown that it is feasible that a large scale 40 m interferometer can observe this ponderomotive squeezing in the near future. Finally, a method of removing the effects of the vacuum fluctuations responsible for the quantum noise in gravitational wave detectors and its application to testing for the presence of deviations from general relativity is described.
Brooks, Francis Dey. "Physics and applications of scintillation detectors." Thesis, Rhodes University, 1996. http://hdl.handle.net/10962/d1005268.
Full textMedinaceli, Villegas Eduardo <1976>. "Astroparticle physics with nuclear track detectors." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/850/1/Tesi_Medinaceli_Eduardo.pdf.
Full textMedinaceli, Villegas Eduardo <1976>. "Astroparticle physics with nuclear track detectors." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/850/.
Full textWalsh, Susanne. "The development of gallium arsenide microstrip detectors for the ATLAS inner detector." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286518.
Full textSkogeby, Richard. "Resolution Improvements and Physical Modelling of a Straw Tracker : The NA62 Experiment at CERN." Thesis, Umeå universitet, Institutionen för fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-140175.
Full textChmill, Valery. "Radiation tests of semiconductor detectors." Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4026.
Full textCARNITI, PAOLO. "Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/198964.
Full textThe present dissertation describes design, qualification and operation of several electronic instrumentations for High Energy Particle Physics experiments (LHCb) and Neutrino Physics experiments (CUORE and CUPID). Starting from 2019, the LHCb experiment at the LHC accelerator will be upgraded to operate at higher luminosity and several of its detectors will be redesigned. The RICH detector will require a completely new optoelectronic readout system. The development of such system has already reached an advanced phase, and several tests at particle beam facilities allowed to qualify the performance of the entire system. In order to achieve a higher stability and a better power supply regulation for the front-end chip, a rad-hard low dropout linear regulator, named ALDO, has been developed. Design strategies, performance tests and results from the irradiation campaign are presented. In the Neutrino Physics field, large-scale bolometric detectors, like those adopted by CUORE and its future upgrade CUPID, offer unique opportunities for the study of neutrinoless double beta decay. Their operation requires particular strategies in the readout instrumentation, which is described here in its entirety. The qualification and optimization of the working parameters as well as the integration of the system in the experimental area are also thoroughly discussed, together with the latest upgrades of two electronic subsystems for the future CUPID experiment.
Fernández, Tejero Javier. "Design and Optimization of Advanced Silicon Strip Detectors for High Energy Physics Experiments." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670498.
Full textLa Organización Europea para la Investigación Nuclear (CERN) está implementando actualmente una importante actualización del Gran Colisionador de Hadrones (LHC) de 27 kilómetros, con el objetivo de expandir el alcance de la física, aumentando la luminosidad y desencadenando la consiguiente multiplicación de interacciones por haz de partículas. Las nuevas condiciones operativas del LHC de alta luminosidad (HL-LHC) tendrán un impacto directo en los sensores de trazado de silicio de los detectores principales, los experimentos ATLAS y CMS, causando un gran aumento de la ocupación del detector y daños por radiación. Esta tesis doctoral investiga el diseño y la optimización de una nueva generación de detectores de micropistas de silicio capaces de soportar las severas condiciones operativas esperadas para la actualización HL-LHC. En primer lugar, el estudio aborda el desarrollo de los detectores de micropistas de silicio desde el punto de vista del diseño. Se presentan elementos básicos del dispositivo y se discute su diseño en base a consideraciones de rendimiento. Se presenta una nueva herramienta de generación de diseño automático (ALGT) basada en Python, con el objetivo de abordar la necesidad de prototipos de detectores de micropistas de gran tamaño en las etapas de I + D de la actualización del trazador interno (ITk) de ATLAS. El ALGT se utiliza para diseñar un prototipo de sensor de micropistas de gran tamaño, varios sensores en miniatura y diodos. Estos dispositivos se generan y se organizan en un diseño de oblea completo de 6 pulgadas, para la participación de Infineon Technologies AG en la encuesta de mercado para la fabricación de sensores de micropistas para el ITk de ATLAS. Además, se presentan diseños de una amplia gama de estructuras de test microelectrónicas con diferentes aplicaciones. Se propone un conjunto de estructuras de test para el desarrollo de tecnologías de micropistas, junto con un chip de test capaz de cubrir todos los tests planificados para el Quality Assurance (QA) durante la producción de los sensores de micropistas de ATLAS. Por otro lado, para mejorar la conexión de lectura, también se proponen varios diseños de adaptadores de “pitch” integrados (EPA) para minimizar los posibles inconvenientes asociados con la introducción de una segunda capa de metal en la estructura del sensor. Se realiza una caracterización extensa en el marco de la encuesta de mercado de los sensores de micropistas para ATLAS ITk. Los dispositivos fabricados por las empresas candidatas, Infineon Technologies AG y Hamamatsu Photonics K.K., se evalúan antes y después de irradiaciones con protones, neutrones y gammas, hasta las fluencias esperadas al final de la vida útil del HL-LHC. Las estructuras de test y los chips de test para QA diseñados también se caracterizan, con el objetivo de validar su diseño, ampliar la evaluación de la tecnología de micropistas y proporcionar valores de referencia para los tests de producción de ATLAS. Se presentan estudios y desarrollos adicionales con aplicación en experimentos de física de altas energías (HEP) en general. Temas candentes, como la sensibilidad a la humedad de los sensores de gran tamaño o la efectividad del “punch-through protection” en un escenario de pérdida de haz, se investigan ampliamente. También se muestra un estudio completo de las nuevas estructuras de EPA propuestas y los resultados de los primeros sensores de micropistas fabricados en obleas de 6 pulgadas en el Centro Nacional de Microelectrónica (IMB-CNM). Los diseños y las caracterizaciones presentadas contribuyen a definir el diseño final de los sensores de micropistas de ATLAS para la actualización HL-LHC, y las investigaciones adicionales revelan conclusiones de interés general que pueden sentar las bases para futuros desarrollos.
The European Organization for Nuclear Research (CERN) is currently implementing a major upgrade of the 27-kilometre Large Hadron Collider (LHC), with the aim to expand the physics reach, increasing the luminosity and triggering the consequent multiplication of interactions per bunch crossing. The new High-Luminosity LHC (HL-LHC) operational conditions will have a direct impact in the silicon tracking sensors of the main detectors, the ATLAS and CMS experiments, causing a large increase of detector occupancy and radiation damage. This PhD thesis investigates the design and optimization of a new generation of silicon strip detectors able to withstand the severe operational conditions expected for the HL-LHC upgrade. Firstly, the study tackles the development of the silicon strip detectors from a layout design point of view. Basic device elements are presented and its design is discussed based on performance considerations. A new python-based Automatic Layout Generation Tool (ALGT) is presented, with the aim to address the need for large area prototypes of strip detectors at the R&D stages of the ATLAS Inner-Tracker (ITk) upgrade. The ALGT is used to design a large area strip sensor prototype, several miniature sensors and diodes. These devices are generated, and arranged in a full 6-inch wafer layout design, for the participation of Infineon Technologies AG in the ATLAS ITk strip sensor Market Survey. In addition, layout designs of a wide range of microelectronic test structures with different applications are presented. A set of test structures for the development of strip technologies is proposed, along with a test chip able to cover all the routine tests planned for the Quality Assurance (QA) works during the ATLAS strip sensor production. On the other hand, in order to improve the readout connection, several designs of Embedded Pitch Adaptors (EPA) are also proposed to minimize the possible drawbacks associated to the introduction of a second metal layer on the sensor structure. An extensive characterization is performed in the frame of the ATLAS ITk strip sensor Market Survey. Devices fabricated by the candidate foundries, Infineon Technologies AG and Hamamatsu Photonics K.K., are evaluated before and after proton, neutron and gamma irradiations, up to fluences expected at the end of the HL-LHC lifetime. Test structures and QA test chips designed are also characterized, with the objective to validate its design, expand the technology evaluation and provide reference values for the ATLAS production tests. Additional studies and developments are presented with application in High Energy Physics (HEP) experiments in general. Hot topics, such as the humidity sensitivity of large area sensors or the effectiveness of the punch-through protection in a beam-loss scenario, are extensively investigated. A complete study of the new EPA structures proposed, and results of the first strip sensors fabricated in 6-inch wafers at Centro Nacional de Microelectrónica (IMB-CNM), are also shown. The layout designs and characterizations presented, contribute to define the final design of the ATLAS strip sensors for the HL-LHC upgrade, and the additional investigations reveal conclusions of general interest that can lay the foundation for future developments.
Books on the topic "Physics detectors"
Villa, Francesco. Vertex Detectors. Boston, MA: Springer US, 1988.
Find full textSem1conductor radiation detectors: Device physics. Berlin: Springer, 1999.
Find full textLutz, Gerhard. Semiconductor radiation detectors: Device physics. Berlin: Springer, 1999.
Find full textMandelis, Andreas. Physics, chemistry, and technology of solid state gas sensordevices. New York, NY: Wiley, 1993.
Find full textKleinknecht, Konrad. Detectors for particle radiation. Cambridge: Cambridge University Press, 1986.
Find full textDetectors for particle radiation. Cambridge [Cambridgeshire]: Cambridge University Press, 1990.
Find full textKleinknecht, K. Detectors for particle radiation. Cambridge [Cambridgeshire]: Cambridge University Press, 1986.
Find full textDetectors for particle radiation. 2nd ed. New York: Cambridge University Press, 1998.
Find full textConstantinos, Christofides, ed. Physics, chemistry, and technology of solid state gas sensor devices. New York: Wiley, 1993.
Find full textC, Liu H., ed. Quantum well infrared photodetectors: Physics and applications. Berlin: Springer, 2007.
Find full textBook chapters on the topic "Physics detectors"
Bianchini, Lorenzo. "Particle Detectors." In UNITEXT for Physics, 107–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70494-4_2.
Full textBethge, Klaus, Gerhard Kraft, Peter Kreisler, and Gertrud Walter. "Detectors." In Biological and Medical Physics, Biomedical Engineering, 53–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08608-7_4.
Full textPretzl, Klaus. "Cryogenic Detectors." In Particle Physics Reference Library, 871–912. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35318-6_19.
Full textHilke, H. J., and W. Riegler. "Gaseous Detectors." In Particle Physics Reference Library, 91–136. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35318-6_4.
Full textCamilleri, Leslie. "Neutrino Detectors." In Particle Physics Reference Library, 337–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35318-6_8.
Full textGilewsky, V. V., I. S. Satsounkevich, V. M. Dunin, and A. S. Lobko. "Antineutrino Detectors." In Springer Proceedings in Physics, 237–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21970-3_17.
Full textSeiden, A. "B Physics at PEP and SLC." In Vertex Detectors, 19–36. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2545-9_2.
Full textCerrito, Lucio. "Elements of Accelerator Physics." In Radiation and Detectors, 73–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53181-6_5.
Full textPoggiani, Rosa. "Detectors: General Characteristics." In UNITEXT for Physics, 39–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44729-2_4.
Full textPoggiani, Rosa. "Optical Astronomy: Detectors." In UNITEXT for Physics, 65–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44732-2_5.
Full textConference papers on the topic "Physics detectors"
Ullom, J. N. "Physics and applications of NIS junctions." In LOW TEMPERATURE DETECTORS: Ninth International Workshop on Low Temperature Detectors. American Institute of Physics, 2002. http://dx.doi.org/10.1063/1.1457613.
Full textMorello, Carlo. "Detectors for CR Physics." In 4th School on Cosmic Rays and Astrophysics. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.118.0027.
Full textRenker, Dieter. "Photodetectors in high energy physics." In International Workshop on new Photon-Detectors. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.051.0001.
Full textGiubellino, P. "Silicon detectors." In Instrumentation in elementary particle physics. AIP, 2000. http://dx.doi.org/10.1063/1.1361757.
Full textNappi, E. "RICH detectors." In Instrumentation in elementary particle physics. AIP, 2000. http://dx.doi.org/10.1063/1.1361758.
Full textGiubellino, P. "Silicon Detectors." In INSTRUMENTATION IN ELEMENTARY PARTICLE PHYSICS. AIP, 2003. http://dx.doi.org/10.1063/1.1604078.
Full textNakamura, Kenzo. "Neutrino detectors." In Instrumentation in elementary particle physics. AIP, 1998. http://dx.doi.org/10.1063/1.55071.
Full textAltuzarra, Antonio Cerdeira. "Semiconductor detectors for medical applications." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56380.
Full textGersabeck, Marco. "LHCb Alignment Tracking and Physics Performance." In 19th International Workshop on Vertex Detectors. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.113.0014.
Full textBRAU, James. "Detectors R&D." In European Physical Society Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.084.0018.
Full textReports on the topic "Physics detectors"
Battaglia, M., T. Barklow, M. Peskin, Y. Okada, S. Yamashita, and P. Zerwas. Physics Benchmarks for the ILC Detectors. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/882830.
Full textKISER, MATTHEW. Pixel Array Germanium Detectors for Nuclear Physics:. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1637895.
Full textBrau, James E., Juan Fuster, Leah Hesla, Monika Illenseer, Perrine Royole-Degieux, Rika Takahashi, Barbara Warmbein, Sakue Yamada, Hitoshi Yamamoto, and Min Zhang. International Linear Collider Physics and detectors: 2011 Status Report. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1406543.
Full textBrau, James, Juan Fuster, Leah Hesla, Monika Illenseer, Perrine Royole-Degieux, Rika Takahashi, Barbara Warmbein, Sakue Yamada, Hitoshi Yamamoto, and Min Zhang. International Linear Collider Physics and detectors: 2011 Status Report. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1155818.
Full textBerger, E., M. Demarteau, J. Repond, L. Xia, and H. Weerts. CLIC CDR - physics and detectors: CLIC conceptual design report. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1035023.
Full textGidal, G., B. Armstrong, and A. Rittenberg. Major detectors in elementary particle physics. Supplement revision May 1985. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/5485185.
Full textPrettyman, T. H., D. J. Mercer, C. Cooper, P. A. Russo, M. Rawool-Sullivan, D. A. Close, P. N. Luke, M. Amman, and S. Soldner. Physics-based generation of gamma-ray response functions for CDZNTE detectors. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/527538.
Full textBodnarczuk, Mark. An Operational Approach to High-Energy Physics Detectors at Fermilab. 1. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/1156274.
Full textAuthor, Not Given. Report of the HEPAP subpanel on major detectors in non-accelerator particle physics. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5818166.
Full textVarner, R. L., J. L. Blankenship, J. R. Beene, and R. A. Todd. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/672048.
Full text