Academic literature on the topic 'Physical modeling and simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Physical modeling and simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Physical modeling and simulation"
Kebch, A. El, N. Dlimi, D. Saifaoui, A. Dezairi, and M. El Mouden. "Modeling and simulation of physical sputtering." Molecular Crystals and Liquid Crystals 627, no. 1 (March 3, 2016): 183–89. http://dx.doi.org/10.1080/15421406.2015.1137676.
Full textWang, Haosheng, and Hongen Zhong. "Modeling and Simulation of Spacecraft Power System Based on Modelica." E3S Web of Conferences 233 (2021): 04033. http://dx.doi.org/10.1051/e3sconf/202123304033.
Full textBora, Tanujjal, Adrien Dousse, Kunal Sharma, Kaushik Sarma, Alexander Baev, G. Louis Hornyak, and Guatam Dasgupta. "Modeling nanomaterial physical properties: theory and simulation." International Journal of Smart and Nano Materials 10, no. 2 (November 3, 2018): 116–43. http://dx.doi.org/10.1080/19475411.2018.1541935.
Full textThompson, Bradley, and Hwan-Sik Yoon. "Internal Combustion Engine Modeling Framework in Simulink: Gas Dynamics Modeling." Modelling and Simulation in Engineering 2020 (September 3, 2020): 1–16. http://dx.doi.org/10.1155/2020/6787408.
Full textZhou, Hao, Mengyao Zhao, Linbo Wu, and Xiaohong Chen. "Simulating Timing Behaviors for Cyber-Physical Systems Using Modelica." International Journal of Software Science and Computational Intelligence 11, no. 3 (July 2019): 44–67. http://dx.doi.org/10.4018/ijssci.2019070103.
Full textLee, Chun-Woo, Ju-Hee Lee, Bong-Jin Cha, Hyun-Young Kim, and Ji-Hoon Lee. "Physical modeling for underwater flexible systems dynamic simulation." Ocean Engineering 32, no. 3-4 (March 2005): 331–47. http://dx.doi.org/10.1016/j.oceaneng.2004.08.007.
Full textFormigoni, A., E. F. Rodrigues, J. R. Maiellaro, L. T. Kawamoto Junior, M. A. Cipriano, and R. S. Lira. "Physical Distribution Routing Using Computational Modeling and Simulation." Journal of Mechatronics 2, no. 4 (December 1, 2014): 329–33. http://dx.doi.org/10.1166/jom.2014.1078.
Full textZhang, Shi Hong, Hong Wu Song, Ming Cheng, and Zhong Tang Wang. "A Mathmatical Approach for Modeling Real Hot Forming Process Using Physical Simulation Results." Materials Science Forum 575-578 (April 2008): 502–7. http://dx.doi.org/10.4028/www.scientific.net/msf.575-578.502.
Full textJeffrey, Jeffrey, Didi Widya Utama, and Gatot Soeharsono. "RANCANG BANGUN KONTRUKSI DAN SISTEM GERAK SUMBU PADA MESIN FUSED DEPOSITION MODELLING." POROS 14, no. 2 (September 20, 2017): 99. http://dx.doi.org/10.24912/poros.v14i2.842.
Full textWagner, Neal. "Comparing the Complexity and Efficiency of Composable Modeling Techniques for Multi-Scale and Multi-Domain Complex System Modeling and Simulation Applications: A Probabilistic Analysis." Systems 12, no. 3 (March 14, 2024): 96. http://dx.doi.org/10.3390/systems12030096.
Full textDissertations / Theses on the topic "Physical modeling and simulation"
Latorre, Malcolm. "The Physical Axon : Modeling, Simulation and Electrode Evaluation." Doctoral thesis, Linköpings universitet, Avdelningen för medicinsk teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138587.
Full textElektroder används inom sjukvården, både för att mäta biologiska signaler, t.ex. hjärtats aktivitet med EKG, eller för att stimulera vävnad, t.ex. vid djup hjärnstimulering (DBS). För båda användningsområdena är det viktigt med en grundläggande förståelse av elektrodens interaktion med vävnaden. Det finns ingen standardiserad metod för att utvärdera medicinsk elektroders dataöverföringsfunktion. I den här avhandlingen presenteras en metod för att underlätta elektrodtestning. En hårdvarumodell av ett axon (Paxon) har utvecklats. Paxon kan programmeras för att efterlikna repeterbara aktionspotentialer från en perifer nerv. Längs axonet finns 40 noder, vilka var och en består av en tunn (20 μm) guldtråd inbäddad i harts och därefter kopplad till elektronik. Denna testbädd har använts för att undersöka EKG elektroders egenskaper. EKG elektroderna visade på variationer i orientering och position i relation till Paxon. Detta har en direkt inverkan på den registrerade signalen. Även andra elektrotyper kan testas i Paxon, t.ex. DBS elektroder. En teoretisk jämförelse mellan två neuronmodeller med olika komplexitet, anpassade för användning vid DBS studier, har utförts. Modellerna konfigurerades för att studera inverkan på aktiveringsavstånd från olika axondiametrar, stimulationspuls och stimulationsstyrka. Då båda modellerna visade likvärdiga aktiveringsavstånd och beräkningstid så förordas den enklare neuronmodellen för DBS simuleringar. En enklare modell kan lättare introduceras i klinisk verksamhet. Simuleringarna stöder tidigare resultat som visat att det elektriska fältet är en bra parameter för presentation av resultat vid simulering av DBS. Metoden exemplifieras vid simulering av aktiveringsavstånd och elektriska fältets utbredning för olika typer av DBS elektroder i en patient-specifik studie.
Sjöstedt, Carl-Johan. "Modeling and Simulation of Physical Systems in a Mechatronic Context." Doctoral thesis, KTH, Maskinkonstruktion (Avd.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10522.
Full textQC 20100810
Esmael, Muzeyen Hassen. "Modeling Basic Physical Links in Acumen." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-18119.
Full textCozza, Dario. "Modeling and physical studies of kesterite solar cells." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4302.
Full textThis thesis deals with modeling and simulations of kesterite solar cells with the aim of studying their physical mechanisms and improving the design of the devices. Synthetic kesterites are thin film materials made of cheap/earth-abundant elements. Two numerical models for a Cu2ZnSnSe4 (CZTSe) and a Cu2ZnSnS4 (CZTS) solar cell are proposed. The provided values of the material parameters, for all the layers of the solar cell, are obtained either from comparisons/analysis of data found in literature or, in some cases, from direct measurements. 1D and 2D simulations are performed: the software SCAPS is used to study the impact of the Molybdenum and the MoSe2 layers, present at the back contact of CZTSe solar cells. We investigate also the ideal properties of alternative interfacial layers that could replace the MoSe2 layer to improve the device performances. The transfer matrix method (TMM) and SCAPS are employed together to perform optoelectronic simulations with the aim of optimizing the thickness of the buffer (CdS) and the window (ITO) layers in order to maximize the short circuit current (JSC ) of the device. Finally Silvaco is used to perform 2D simulations of the CZTSe grain boundaries (GBs) present inside the polycrystalline kesterite absorbers. For the latter work, experimental Kelvin probe force microscopy (KPFM) characterizations are performed in order to find possible correlations between the performance losses and the electrical activity of the GBs
Sjöstedt, Carl-Johan. "Modeling and simulation of physical systems in a mechatronic context /." Stockholm : Skolan för indutstriell teknik och managemnet, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10522.
Full textDu, Dongping. "Physical-Statistical Modeling and Optimization of Cardiovascular Systems." Scholar Commons, 2002. http://scholarcommons.usf.edu/etd/5875.
Full textSadeghi, Reineh Maryam. "Physical Modeling and Simulation Analysis of an Advanced Automotive Racing Shock Absorber using the 1D Simulation Tool AMESim." Thesis, Linköpings universitet, Fluida och mekatroniska system, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92146.
Full textSan, Omer. "Multiscale Modeling and Simulation of Turbulent Geophysical Flows." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28031.
Full textPh. D.
Shen, Wensheng. "Computer Simulation and Modeling of Physical and Biological Processes using Partial Differential Equations." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/501.
Full textREN, QIANGGUO. "A BDI AGENT BASED FRAMEWORK FOR MODELING AND SIMULATION OF CYBER PHYSICAL SYSTEMS." Master's thesis, Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/213130.
Full textM.S.E.E.
Cyber-physical systems refer to a new generation of synergy systems with integrated computational and physical processes which interact with one other. The development and simulation of cyber-physical systems (CPSs) are obstructed by the complexity of the subsystems of which they are comprised, fundamental differences in the operation of cyber and physical elements, significant correlative dependencies among the elements, and operation in dynamic and open environments. The Multiple Belief-Desire-Intention (BDI) agent system (BDI multi-agent system) is a promising choice for overcoming these challenges, since it offers a natural way to decompose complex systems or large scale problems into decentralized, autonomous, interacting, more or less intelligent entities. In particular, BDI agents have the ability to interact with, and expand the capabilities of, the physical world through computation, communication, and control. A BDI agent has its philosophical grounds on intentionality and practical reasoning, and it is natural to combine a philosophical model of human practical reasoning with the physical operation and any cyber infrastructure. In this thesis, we introduce the BDI Model, discuss implementations of BDI agents from an ideal theoretical perspective as well as from a more practical perspective, and show how they can be used to bridge the cyber infrastructure and the physical operation using the framework. We then strengthen the framework's performance using the state-of-the-art parallel computing architecture and eventually propose a BDI agent based software framework to enable the efficient modeling and simulation of heterogeneous CPS systems in an integrated manner.
Temple University--Theses
Books on the topic "Physical modeling and simulation"
1957-, Ebrom Daniel A., and McDonald John A. 1931-, eds. Seismic physical modeling. Tulsa, Okla: Society of Exploration Geophysicists, 1994.
Find full textA, Ebrom Daniel, and McDonald John A, eds. Seismic physical modeling. Tulsa, Okla: Society of Exploration Geophysicists, 1994.
Find full textAutomated modeling of physical systems. Berlin: Springer, 1995.
Find full textIntroduction to physical modeling with Modelica. Boston: Kluwer Academic Publishers, 2001.
Find full textLisle, Curtis. Physical modeling for interaction in real-time simulation. Orlando, FL: Institute for Simulation and Training, University of Central Florida, 1996.
Find full textFritzson, Peter. Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118094259.
Full textIntroduction to modeling and simulation of technical and physical systems with Modelica. Hoboken, N.J: Wiley, 2011.
Find full textWarnatz, Jürgen. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Find full textDar, S. M. Physical and computer modeling of roof bolt systems. Washington, DC: Bureau of Mines, U.S. Dept. of the Interior, 1989.
Find full textJ, Kirkby M., ed. Computer simulation in physical geography. 2nd ed. Chichester: J. Wiley, 1993.
Find full textBook chapters on the topic "Physical modeling and simulation"
Ringleb, Stacie I. "Physical Modeling." In Modeling and Simulation in the Medical and Health Sciences, 65–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003206.ch4.
Full textde Baynast, A., M. Bohge, D. Willkomm, and J. Gross. "Physical Layer Modeling." In Modeling and Tools for Network Simulation, 135–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12331-3_9.
Full textPal, Snehanshu, and K. Vijay Reddy. "Physical Property Evaluation by MD Simulation." In Molecular Dynamics for Materials Modeling, 23–33. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003323495-2.
Full textWu, Yizhi, Yongsheng Ding, and Hongan Xu. "Comprehensive Fuzzy Evaluation Model for Body Physical Exercise Risk." In Life System Modeling and Simulation, 227–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74771-0_26.
Full textWeitnauer, Erik, Robert Haschke, and Helge Ritter. "Evaluating a Physics Engine as an Ingredient for Physical Reasoning." In Simulation, Modeling, and Programming for Autonomous Robots, 144–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17319-6_16.
Full textEl Hefni, Baligh, and Daniel Bouskela. "Averaged Physical Quantities." In Modeling and Simulation of Thermal Power Plants with ThermoSysPro, 43–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05105-1_3.
Full textKryzhanovsky, Georgy Alekseevich, Anatoly Ivanovich Kozlov, Oleg Ivanovich Sauta, Yuri Grigoryevich Shatrakov, and Ivan Nikolaevich Shestakov. "Physical Modeling of Transport Processes—Simulation Modeling, Training Complexes." In Modeling of Transportation Aviation Processes, 133–49. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7607-0_7.
Full textTraoré, Mamadou K. "Multi-Perspective Modeling and Holistic Simulation." In Complexity Challenges in Cyber Physical Systems, 81–110. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119552482.ch4.
Full textHojny, Marcin. "Integration of Physical and Computer Simulation." In Modeling Steel Deformation in the Semi-Solid State, 25–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40863-7_4.
Full textHojny, Marcin. "Integration of Physical and Computer Simulation." In Modeling Steel Deformation in the Semi-Solid State, 31–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67976-1_4.
Full textConference papers on the topic "Physical modeling and simulation"
Henriksson, Dan, and Hilding Elmqvist. "Cyber-Physical Systems Modeling and Simulation with Modelica." In The 8th International Modelica Conference, Technical Univeristy, Dresden, Germany. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11063502.
Full textLarkin, Dale, Kevin J. Lynch, George Ball, Kyle Collins, Matt Schmit, Ted A. Bapty, and Justin B. Knight. "Ontology-Driven Metamodel Validation in Cyber-Physical Systems." In AIAA Modeling and Simulation Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4005.
Full text"Physical Display for Visualization of Three-Dimensional Surfaces." In The 34th European Modeling & Simulation Symposium. CAL-TEK srl, 2022. http://dx.doi.org/10.46354/i3m.2022.emss.049.
Full text"Comparative Analysis of Digital Twin and Cyber-Physical System Concepts." In The 35th European Modeling & Simulation Symposium. CAL-TEK srl, 2023. http://dx.doi.org/10.46354/i3m.2023.emss.016.
Full textROBERT, Sylvain, Benoit DELINCHANT, Bruno HILAIRE, and Tanguy YANN. "Plumes: Towards A Unified Approach To Building Physical Modeling." In 2017 Building Simulation Conference. IBPSA, 2013. http://dx.doi.org/10.26868/25222708.2013.2039.
Full textLuo, Shiying, Yu Jian, and Qiang Gao. "Synchronous generator modeling and semi - physical simulation." In 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2019. http://dx.doi.org/10.1109/icems.2019.8921721.
Full textMezghanni, Mariem, Theo Bodrito, Malika Boulkenafed, and Maks Ovsjanikov. "Physical Simulation Layer for Accurate 3D Modeling." In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01315.
Full textGrosswindhager, Stefan, Andreas Voigt, and Martin Kozek. "Efficient Physical Modelling of District Heating Networks." In Modelling and Simulation. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.735-094.
Full textPoursoltan, Milad, Nathalie Pinede, Bruno Vallespir, and Mamadou Kaba Traore. "A New Modeling Framework For Cyber-Physical And Human Systems." In 2022 Annual Modeling and Simulation Conference (ANNSIM). IEEE, 2022. http://dx.doi.org/10.23919/annsim55834.2022.9859402.
Full textDourado, E., Lev Sarkisov, Joaquín Marro, Pedro L. Garrido, and Pablo I. Hurtado. "Physical adsorption in porous materials: Molecular modelling, theory and applications." In MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082306.
Full textReports on the topic "Physical modeling and simulation"
Svobodny, Thomas P. Mathematical Modeling, Simulation, and Control of Physical Processes. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada455803.
Full textManion, Charles. Physical Component Libraries for SysPhS Modeling and Simulation in Manufacturing. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.ir.8490.
Full textZhu, Minjie, and Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Full textPollock, Guylaine M., William Dee Atkins, Moses Daniel Schwartz, Adrian R. Chavez, Jorge Mario Urrea, Nicholas Pattengale, Michael James McDonald, et al. Modeling and simulation for cyber-physical system security research, development and applications. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/1028942.
Full textCollins, Joseph B. Standardizing an Ontology of Physics for Modeling and Simulation. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada610086.
Full textSabharwall, Piyush, Ching-Sheng Lin, Joshua E. Hansel, Vincent Laboure, David Andrs, William M. Hoffman, Stephen R. Novascone, Andrew E. Slaughter, and Richard C. Martineau. Integrated Modeling and Simulation Capability For Full Scale Multi-Physics Simulation and Visualization of MicroReactor Concept. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1643493.
Full textRohmer, Damien, Arkadiusz Sitek, and Grant T. Gullberg. Simulation of the Beating Heart Based on Physically Modeling aDeformable Balloon. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/908496.
Full textTackett, Gregory B. Distributed Virtual Newtonian Physics as a Modeling and Simulation Grand Challenge. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada422094.
Full textAldemir, Tunc, Richard Denning, Umit Catalyurek, and Stephen Unwin. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1214664.
Full textLevine, Edward R., and Louis Goodman. Modeling Improved Parameterizations of Shallow Water Ocean Physics into Simulation Models for AUVs. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612403.
Full text