Academic literature on the topic 'Phoxonic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phoxonic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phoxonic":

1

Zhao, Shuyi, Linlin Lei, Qin Tang, Feng Xin, and Tianbao Yu. "Dual Optical and Acoustic Negative Refraction in Phoxonic Crystals." Photonics 9, no. 12 (November 28, 2022): 908. http://dx.doi.org/10.3390/photonics9120908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We report dual optical and acoustic negative refraction based on a defect-free phoxonic crystal within a triangular lattice. The phoxonic negative refraction is achieved based on abnormal dispersion effect, by intentionally creating convex equal-frequency contours for both photonic and phononic modes. As a potential application, negative refraction imaging for both photonic and phononic modes is also achieved. Numerical simulations based on the finite element method demonstrate the coexistence of negative refraction and the resultant imaging for electromagnetic and acoustic waves. Compared with the defect-based bandgap effects that need low fault tolerance, phoxonic negative refraction relying on passbands has considerable advantages in realizing controllable propagation of waves. The new scheme for the simultaneous control of electromagnetic and acoustic waves provides a potential platform for designing novel phoxonic devices.
2

Alonso-Redondo, Elena, Hannah Huesmann, El-Houssaine El Boudouti, Wolfgang Tremel, Bahram Djafari-Rouhani, Hans-Juergen Butt, and George Fytas. "Phoxonic Hybrid Superlattice." ACS Applied Materials & Interfaces 7, no. 23 (April 9, 2015): 12488–95. http://dx.doi.org/10.1021/acsami.5b01247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pennec, Yan, Vincent Laude, Nikos Papanikolaou, Bahram Djafari-Rouhani, Mourad Oudich, Said El Jallal, Jean Charles Beugnot, Jose M. Escalante, and Alejandro Martínez. "Modeling light-sound interaction in nanoscale cavities and waveguides." Nanophotonics 3, no. 6 (December 1, 2014): 413–40. http://dx.doi.org/10.1515/nanoph-2014-0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe interaction of light and sound waves at the micro and nanoscale has attracted considerable interest in recent years. The main reason is that this interaction is responsible for a wide variety of intriguing physical phenomena, ranging from the laser-induced cooling of a micromechanical resonator down to its ground state to the management of the speed of guided light pulses by exciting sound waves. A common feature of all these phenomena is the feasibility to tightly confine photons and phonons of similar wavelengths in a very small volume. Amongst the different structures that enable such confinement, optomechanical or phoxonic crystals, which are periodic structures displaying forbidden frequency band gaps for light and sound waves, have revealed themselves as the most appropriate candidates to host nanoscale structures where the light-sound interaction can be boosted. In this review, we describe the theoretical tools that allow the modeling of the interaction between photons and acoustic phonons in nanoscale structures, namely cavities and waveguides, with special emphasis in phoxonic crystal structures. First, we start by summarizing the different optomechanical or phoxonic crystal structures proposed so far and discuss their main advantages and limitations. Then, we describe the different mechanisms that make light interact with sound, and show how to treat them from a theoretical point of view. We then illustrate the different photon-phonon interaction processes with numerical simulations in realistic phoxonic cavities and waveguides. Finally, we introduce some possible applications which can take enormous benefit from the enhanced interaction between light and sound at the nanoscale.
4

Djafari-Rouhani, Bahram, Said El-Jallal, Mourad Oudich, and Yan Pennec. "Optomechanic interactions in phoxonic cavities." AIP Advances 4, no. 12 (December 2014): 124602. http://dx.doi.org/10.1063/1.4903226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Papanikolaou, N., I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude. "Light modulation in phoxonic nanocavities." Microelectronic Engineering 90 (February 2012): 155–58. http://dx.doi.org/10.1016/j.mee.2011.04.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Djafari-Rouhani, Bahram, Said El-Jallal, and Yan Pennec. "Phoxonic crystals and cavity optomechanics." Comptes Rendus Physique 17, no. 5 (May 2016): 555–64. http://dx.doi.org/10.1016/j.crhy.2016.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Bihang, Zhong Wang, Yixiang Tan, and Tianbao Yu. "Simultaneous localization of photons and phonons in defect-free dodecagonal phoxonic quasicrystals." Modern Physics Letters B 32, no. 07 (March 5, 2018): 1850096. http://dx.doi.org/10.1142/s0217984918500963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In dodecagonal phoxonic quasicrytals (PhXQCs) with a very high rotational symmetry, we demonstrate numerically large phoxonic band gaps (PhXBGs, the coexistence of photonic and phononic band gaps). By computing the existence and dependence of PhXBGs on the choice of radius of holes, we find that PhXQCs can possess simultaneous photonic and phononic band gaps over a rather wide range of geometric parameters. Furthermore, localized modes of THz photons and tens of MHz phonons may exist inside and outside band gaps in defect-free PhXQCs. The electromagnetic and elastic field can be confined simultaneously around the quasicrytals center and decay in a length scale of several basic cells. As a kind of quasiperiodic structures, 12-fold PhXQCs provide a good candidate for simultaneously tailoring electromagnetic and elastic waves. Moreover, these structures exhibit some interesting characteristics due to the very high symmetry.
8

Rosello-Mecho, Xavier, Gabriele Frigenti, Daniele Farnesi, Martina Delgado-Pinar, Miguel V. Andrés, Fulvio Ratto, Gualtiero Nunzi Conti, and Silvia Soria. "Microbubble PhoXonic resonators: Chaos transition and transfer." Chaos, Solitons & Fractals 154 (January 2022): 111614. http://dx.doi.org/10.1016/j.chaos.2021.111614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ZHOU Zhi-cheng, 周志成, 何灵娟 HE Ling-juan, 陈华英 CHEN Hua-ying, 于天宝 YU Tian-bao, and 刘念华 LIU Nian-hua. "The Sensing Characteristics of Phoxonic Crystal Microcavity." Acta Sinica Quantum Optica 24, no. 2 (2018): 198–203. http://dx.doi.org/10.3788/jqo20182402.0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZHOU Zhi-cheng, 周志成, 何灵娟 HE Ling-juan, 陈华英 CHEN Hua-ying, 于天宝 YU Tian-bao, and 刘念华 LIU Nian-hua. "The Sensing Characteristics of Phoxonic Crystal Microcavity." Acta Sinica Quantum Optica 24, no. 2 (2018): 198–203. http://dx.doi.org/10.3788/jqo20182402.0702.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phoxonic":

1

Escalante, Fernández José María. "Theoretical study of light and sound interaction in phoxonic crystal structures." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/33754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
En esta tesis se realiza un estudio teórico de la interacción luz-sonido en estructuras foxonicas, con las cuales es posible el control de la luz y el sonido a la misma vez. Esta interacción en dichas estructuras se estudia, tanto desde un punto de vista macroscópico (diseño de estructuras para el confinamiento y guiado de ondas electromagnéticas y elásticas) como microscópico (estudio de la interacción fotón-fonón en microcavidades y desarrollo teórico de modelos cuánticos para la comprensión de dicha interacción).
Escalante Fernández, JM. (2013). Theoretical study of light and sound interaction in phoxonic crystal structures [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33754
TESIS
2

Rolland, Quentin. "Couplages acousto-optiques dans les cristaux photoniques et phononiques." Thesis, Valenciennes, 2013. http://www.theses.fr/2013VALE0034/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse concerne l’étude théorique des mécanismes de couplage acousto-optique dans les matériaux nanostructurés : les cristaux à bandes interdites simultanées photoniques et phononiques, dénommés aussi cristaux phoXoniques. Le but de ce travail est d’explorer le potentiel de ces structures : réduire la consommation énergétique et la taille des composants, en exploitant les phénomènes de confinement et d’ondes lentes. Pour cette étude, des modèles numériques par éléments finis sont développés, ils visent à établir les conditions pour une efficacité accrue et à déterminer les paramètres des réseaux propres à favoriser de larges bandes interdites. La recherche des modes propres confinés optiques et acoustiques propices à l’interaction acousto-optique est ensuite entreprise. Des modèles numériques sont créés pour déterminer le couplage acousto-optique en tenant compte des mécanismes de couplage tels que l’effet photoélastique, optomécanique ou électrooptique.Plusieurs configurations d’interactions sont étudiées afin de déterminer l’impact de l’anisotropie des matériaux, des éléments de symétrie des modes de cavité, de la nature des réseaux et des matériaux qui les constituent tels que le silicium et le niobate de lithium.Enfin, un travail de conception à vocation applicatif est proposé. Il met en avant la possibilité d’exploiter les mécanismes de couplage dans un dispositif de type modulateur confiné dans une cavité acousto-optique
Theoretical acousto-optic couplings mechanisms in nano-structured materials are investigated in the present thesis: the photonic and phononic crystals with simultaneous bandgaps, also named phoxonic crystals. The aim of the study consists in exploring their potential in order to reduce energy consumption, sizes of devices, by taking advantage ofthe confinement property and slow wave phenomena.For our investigations, numerical models, using finite element method, were developed to determine optimized conditions for a better efficiency and suitable parameters promoting wide bandgaps. Acoustic and optical confined modes search favorable for acousto-optic interaction is performed. Numerical models were created to compute the acousto-opticcouplings by taking into account various coupling mechanisms such as the photo-elastic, opto-mechanic and electro-optic effects.Many interaction configurations are investigated in order to determine the impact of material anisotropy, the cavity mode symmetries, various lattices or different materials such as silicon and lithium niobate.Finally, a first approach for a designed component is proposed. It shows the possibility to use coupling mechanisms for a device such as an optical modulator by using acousto-optic confined modes in a cavity
3

Akiki, Rock. "Cristaux phononiques aléatoires." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILN027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Au début des années 1990, une nouvelle discipline de la physique est apparue à travers l'étude des cristaux phononiques. Ce travail s'intéresse aux cristaux phononiques, cristaux artificiels dont les propriétés physiques peuvent être modulées par la nature et/ou la géométrie de leurs composants. Ces matériaux ont ainsi permis la manipulation et le contrôle des ondes élastiques avec des structurations d'inclusions dans l'ordre de grandeur de la longueur d'onde excitatrice. Avec les années 2000, les métamatériaux acoustiques ouvrent de nouvelles perspectives, basées sur le concept physique de milieu effectif aux grandes longueurs d'onde. L'origine des métamatériaux acoustique s'appuie alors sur le concept physique de la résonance propre des inclusions et offrent ainsi de nouvelles applications comme la réfraction négative, le cloaking ou l'hyperfocalisation. Ce travail est une première approche sur l'effet du désordre dans des métamatériaux acoustiques. Pour cela, nous étudions une structure de métamatériau acoustique formée de cylindres sur un substrat semi-infini. Les effets des matériaux et de la géométrie constitutifs des cylindres et de la surface sur les ondes acoustiques de surface seront étudiés. Nous étudions alors le couplage entre piliers et la possibilité de propagation le long d'une chaine. Nous mettons en évidence l'effet de couplage élastique entre piliers à partir du mode de compression et la possibilité de propagation et de contrôle des ondes acoustiques dans les milieux sub-longueur d'onde. L'étude est étendue à une surface à deux dimensions et une distribution périodique, hyperuniforme et aléatoire de la position des piliers
In the early 1990s, a new discipline of physics appeared through the study of phononic crystals. This work focuses on phononic crystals, artificial crystals whose physical properties can be modulated by the nature and/or the geometry of their components. These materials have allowed the manipulation and control of elastic waves with inclusion structures in the order of magnitude of the exciting wavelength. With the 2000's, acoustic metamaterials open new perspectives, based on the physical concept of effective medium at long wavelengths. The origin of acoustic metamaterials is based on the physical concept of eigen resonance of inclusions and thus offer new applications such as negative refraction, cloaking or hyperfocusing. This work is a first approach on the effect of disorder in acoustic metamaterials. For this purpose, we study an acoustic metamaterial structure formed by cylinders on a semi-infinite substrate. The effects of material and geometry of both the cylinders and the surface on the surface acoustic waves is studied. We then study the coupling between pillars and the possibility of propagation along a chain. We highlight the effect of elastic coupling between pillars from the compression mode and the possibility of propagation and control of acoustic waves in sub-wavelength regime. The study is then extended to a two-dimensional surface with a periodic, hyperuniform, and random distribution of the position of the pillars
4

Chang, Chieh-Chun, and 張捷君. "Optomechanical coupling in a slot-mode phoxonic-crystal nanobeam cavity." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/jfccx2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立臺灣海洋大學
機械與機電工程學系
107
In this thesis, we discuss the optomechanical coupling effect and acoustic phonons driven by optical forces in a slot-mode phoxonic crystal by means of finite-element method analysis. Due to the band gap of the photonic crystal and the design of air gap region, we can strongly confine the slot-mode photon in the defect region. Further, we add several air cylinder in the defect in order to increase interaction surface area between slot-mode photonic and the acoustic phonons that can amplify the optomchanical coupling. We use both optomechanical coupling rate g and the overlap integral to judge the potential coupling effect initially. And we obtain the highest coupling rate g = 1.3 MHz and 2.8 MHz for the mode frequency in and out of the complete band gap, respectively. Then we actually apply the external forces on the structure and calculate the frequency response. And finally see the peaks on the frequency spectrum, demonstrate that we excite acoustic phonons by optical forces and reach a strong optomechanical coupling interaction successfully.
5

Hsu, Tsung-Hao, and 徐琮皓. "Acousto-optic Interaction in Medium-wave Infrared based on Aluminium Nitride Phoxonic Crystals Nano-beam Structure." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/b98h9h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chiu, Chien-Chang, and 邱健彰. "Structural Deformation and Strain Effect on Photonic Crystal Waveguide,Acousto-optic Interaction in Phoxonic Crystals Nano-beam Structure." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/47172993483163033563.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phoxonic":

1

Bentarki, Houda, Abdelkader Makhoute, and Tőkési Karoly. "Signatures of the Mode Symmetries in Sapphire PhoXonic Cavities." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 108–17. IGI Global, 2023. http://dx.doi.org/10.4018/979-8-3693-0497-6.ch007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The acousto-optic couplings mechanisms are investigated theoretically in photonic and phononic crystals with simultaneous band gaps. The authors have focused on the acousto-optic couplings inside a phoXonic cavity by taking into account two coupling mechanisms, the photo elastic effect and effect of movement of the interfaces. They discuss the symmetry of modes to distinguish those that don't interfere in an efficient way. They calculate the modulation of the frequency of the photonic mode during a period of acoustic oscillations with a finite element method (FE) (COMSOL®Multiphysics). The two mechanisms presented in the numerical calculations produce additive or subtractive effects in total acousto-optical coupling while depending on whether they are in phase or out of phase.

Conference papers on the topic "Phoxonic":

1

Lucklum, Ralf, Yan Pennec, Antoine Kraych, Mikhail Zubtsov, and Bahram Djafari-Rouhani. "Phoxonic crystal sensor." In SPIE Photonics Europe, edited by Hernán R. Míguez, Sergei G. Romanov, Lucio C. Andreani, and Christian Seassal. SPIE, 2012. http://dx.doi.org/10.1117/12.922553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Psarobas, Ioannis E., and Vassilios Yannopapas. "Dynamically tuned zero-gap phoXonic systems." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Theodore E. Matikas. SPIE, 2012. http://dx.doi.org/10.1117/12.915037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharma, Anurag, Jyoti Kedia, and Neena Gupta. "Phoxonic crystal waveguide for MWIR sensing." In Women in Optics and Photonics in India 2023, edited by Shanti Bhattacharya, Sujatha Narayanan Unni, Anita Mahadevan-Jansen, and Asima Pradhan. SPIE, 2024. http://dx.doi.org/10.1117/12.3029582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Farnesi, D., G. C. Righini, G. Nunzi Conti, and S. Soria. "Nonlinear Optical Phenomena in Phoxonic Microbubble Resonators." In Nonlinear Photonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/np.2018.npth3c.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Laude, Vincent, Jean-Charles Beugnot, Sarah Benchabane, Yan Pennec, Bahram Djafari-Rouhani, Nikos Papanikolaou, and Alejandro Martinez. "Design of waveguides in silicon phoxonic crystal slabs." In 2010 International Ultrasonics Symposium. IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Papanikolaou, N., I. E. Psarobas, G. Gantzounis, E. Almpanis, N. Stefanou, B. Djafari-Rouhani, B. Bonello, V. Laude, and A. Martinez. "PhoXonic architectures for tailoring the acousto-optic interaction." In SPIE Optics + Optoelectronics, edited by Mario Bertolotti. SPIE, 2011. http://dx.doi.org/10.1117/12.886562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Laude, Vincent. "Photon and acoustic phonon coupling in phoxonic crystals." In SPIE Photonics Europe, edited by Hernán R. Míguez, Sergei G. Romanov, Lucio C. Andreani, and Christian Seassal. SPIE, 2012. http://dx.doi.org/10.1117/12.922083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Amoudache, Samira, Rayisa Moiseyenko, Yan Pennec, Bahram Djafari Rouhani, Antoine Khater, Ralf Lucklum, and Rachid Tigrine. "Sensing light and sound velocities with phoxonic crystals." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Wolfgang Ecke, Kara J. Peters, Norbert G. Meyendorf, and Theodoros E. Matikas. SPIE, 2014. http://dx.doi.org/10.1117/12.2044855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Tzy-Rong, Shu-Yu Chang, Cong-Yuan Shih, Jheng-Hong Shih, Tsung-Yi Lu, and Jin-Chen Hsu. "Acousto-optic coupling in phoxonic-plasmonic crystal nanobeam cavities." In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2016. http://dx.doi.org/10.1109/nano.2016.7751360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beugnot, Jean-Charles, and Vincent Laude. "Numerical investigation of electrostrictive forces in submicron phoxonic waveguide." In SPIE Photonics Europe, edited by Hernán R. Míguez, Sergei G. Romanov, Lucio C. Andreani, and Christian Seassal. SPIE, 2012. http://dx.doi.org/10.1117/12.922677.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Phoxonic":

1

Thomas, Edwin. Tunable PhoXonic Band Gap Materials from Self-Assembly of Block Copoliymers and Colloidal Nanocrystals (NBIT Phase II). Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada542359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas, Edwin L. Tunable PhoXonic Band Gap Materials from Self-Assembly of Block Copolymers and Colloidal Nanocrystals (NBIT Phase II). Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada591353.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography