Academic literature on the topic 'Photovoltaic thermal- Solar building'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photovoltaic thermal- Solar building.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photovoltaic thermal- Solar building"
Chang, Jing Yi, and Yean Der Kuan. "Application of CFD to Building Thermal Control Analysis." Applied Mechanics and Materials 271-272 (December 2012): 777–81. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.777.
Full textWang, Dian Hua, Xin Guan, and Song Yuan Zhang. "Experimental Study on PV Solar Wall." Advanced Materials Research 250-253 (May 2011): 3134–38. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.3134.
Full textZhao, Guomin, Min Li, Lv Jian, Zhicheng He, Jin Shuang, Sun Yuping, Qingsong Zhang, and Liu Zhongxian. "Analysis of Fire Risk Associated with Photovoltaic Power Generation System." Advances in Civil Engineering 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/2623741.
Full textPokorny, Nikola, and Tomas Matuska. "Performance analysis of glazed PVT collectors for multifamily building." E3S Web of Conferences 172 (2020): 12003. http://dx.doi.org/10.1051/e3sconf/202017212003.
Full textBandaru, Sree Harsha, Victor Becerra, Sourav Khanna, Jovana Radulovic, David Hutchinson, and Rinat Khusainov. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities." Energies 14, no. 13 (June 26, 2021): 3853. http://dx.doi.org/10.3390/en14133853.
Full textCinar, Seda, Michal Krajčík, and Muslum Arici. "Performance Evaluation of a Building Integrated Photovoltaic/Thermal System Combined with Air-to-Water Heat Pump." Applied Mechanics and Materials 887 (January 2019): 181–88. http://dx.doi.org/10.4028/www.scientific.net/amm.887.181.
Full textConti, Schito, and Testi. "Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building." Energies 12, no. 8 (April 25, 2019): 1582. http://dx.doi.org/10.3390/en12081582.
Full textChow, T. T., G. N. Tiwari, and C. Menezo. "Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration." International Journal of Photoenergy 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/307287.
Full textPokorny, Nikola, and Tomáš Matuška. "Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building." Sustainability 12, no. 15 (July 28, 2020): 6071. http://dx.doi.org/10.3390/su12156071.
Full textNovelli, N. E., J. Shultz, M. Aly Etman, K. Phillips, M. M. Derby, P. R. H. S. Stark, M. Jensen, and A. H. Dyson. "System-Scale Modeling of a Building-Integrated, Transparent Concentrating Photovoltaic and Thermal Collector." Journal of Physics: Conference Series 2069, no. 1 (November 1, 2021): 012117. http://dx.doi.org/10.1088/1742-6596/2069/1/012117.
Full textDissertations / Theses on the topic "Photovoltaic thermal- Solar building"
Riverola, Lacasta Alberto. "Dielectric solar concentrators for building integration of hybrid photovoltaic-thermal systems." Doctoral thesis, Universitat de Lleida, 2018. http://hdl.handle.net/10803/663116.
Full textEl objetivo de la presente tesis es desarrollar, optimizar, fabricar y caracterizar experimentalmente un sistema solar de baja concentración, fotovoltaico y térmico, para integración arquitectónica en fachadas donde las células están sumergidas en un líquido dieléctrico. Este objetivo está perfectamente alineado con el cumplimiento de la directiva sobre eficiencia energética en edificios establecida por la Comisión Europea. Los sistemas solares fotovoltaicos y térmicos para integración en edificios atesoran la cogeneración de electricidad y calor en el mismo edificio con unas eficiencias globales alrededor del 70% y utilizando una menor superficie que si incorporamos un colector térmico y un módulo fotovoltaico separados. Por otra parte, los sistemas de baja concentración permiten reducir costes utilizando células solares estándar, con un área reducida y seguimiento en un solo eje. Además, la inmersión de las células en líquidos dieléctricos conlleva unos beneficios agregados como son la reducción de las pérdidas de Fresnel y un mejor control de la temperatura. Del estado del arte realizado y las cualidades previamente descritas, se desprende la necesidad de estudiar y desarrollar estos sistemas para su integración en edificios. El diseño propuesto está compuesto de un chasis cilíndrico y una cavidad interna por donde circula el líquido dieléctrico (agua desionizada o alcohol isopropílico) en el cual están las células sumergidas. Cada módulo sigue la altura solar rotando y está diseñado para ser colocado en filas formando una matriz. De este modo, la apariencia del conjunto es similar a la de las lamas que se encuentran comúnmente en ventanas. Además, un movimiento secundario que regula la distancia vertical entre los módulos para evitar sombreo entre ellos mismos y controlar la iluminación interior, ha sido implementado. Para llevar a cabo un desarrollo óptimo, se ha modelado la distribución espectral de la luz solar incidente a la cual se ven expuestas las células solares en condiciones reales. Se ha realizado un análisis exhaustivo de los líquidos dieléctricos susceptibles de cumplir con los requerimientos para la presente aplicación. Se ha modelado la absortividad/emisividad de las células de silicio comerciales en un rango espectral que va desde el ultravioleta hasta el infrarrojo medio y se ha validado experimentalmente. A partir de aquí, se ha desarrollado un algoritmo de trazado de rayos para optimizar el diseño óptico del concentrador con el fin de posteriormente fabricarlo y analizarlo mediante una simulación CFD. Hecho que nos permite caracterizarlo ópticamente y térmicamente. Finalmente, se ha realizado una simulación energética con el sistema instalado sobre las ventanas de una casa estándar para evaluar que parte de las demandas energéticas del edificio es capaz de satisfacer. Esta simulación se ha realizado en tres localizaciones distintas. El rendimiento del sistema ha sido estudiado en lugares caracterizados por inviernos suaves y alturas solares no muy elevadas, cubriéndose una gran parte de las demandas de agua caliente sanitaria, eléctricas y de climatización.
The goal of this thesis is to develop, optimize, fabricate and experimentally test a low-concentrating photovoltaic thermal system (CPVT) for building façade integration where the cells are directly immersed in a dielectric liquid. The objective sought is perfectly aligned with the Energy Performance Building Directive established by the European Commission in terms of energy efficiency. Building-integrated PVT systems present an on-site cogeneration of electricity and heat with global efficiencies around 70% and lower space utilization compared to a separate thermal collector and PV module. On the other hand, low-concentrating systems improve the cost effectiveness by using standard cells, single axis-tracking and reduced cell areas. In addition, direct-immersion of solar cells in dielectric liquids brings associated benefits such as a reduction of Fresnel losses and a better temperature control. From the state-of-the-art performed and the previous facts, the need for further developing and studying these systems for building integration purposes was found. The proposed design is composed by a cylindrical chassis and an inner cavity filled with the circulating dielectric liquid (deionized water or isopropyl alcohol) in which the cells are immersed. The module tracks the solar height by rotation and it is designed to be placed in rows as an array so that the appearance is akin to ordinary window blinds. A secondary movement has been implemented to control the vertical distance between modules and to avoid shading between them while provide lighting control. For an appropriate development, the spectral distribution of the incident solar irradiance to which solar cells are exposed under real working conditions has been modelled. An in-depth analysis of suitable dielectric liquid candidates based on the required properties for this application has been performed. The absorptivity/emissivity of standard silicon solar cells has been modeled from the ultraviolet to the mid-infrared and validated by an experimental measurement. Then, a full ray-tracing algorithm was developed to optimize the concentrator optical design and the optimum collector was fabricated and analyzed by a CFD simulation to thermally characterize the system. Finally, an energetic simulation with the concentrators superimposed in front of the windows in a standard house aiming to partially cover the building demands has been performed for three locations. The system performance has been studied for locations with mild winters and latitudes not achieving very high solar heights with satisfactory solar fractions regarding domestic hot water, electrical and space heating and cooling demands.
Aldubyan, Mohammad Hasan. "Thermo-Economic Study of Hybrid Photovoltaic-Thermal (PVT) Solar Collectors Combined with Borehole Thermal Energy Storage Systems." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493243575479443.
Full textSaadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.
Full textThe demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
Lai, Chi-Ming. "Development and thermal performance assessment of the opaque PV façades for subtropical climate region." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204562.
Full textRamadan, Khaled Mohamed. "Modelling and Experimental Characterization of Photovoltaic/Thermal Systems for Cooling and Heating of Buildings in different climate conditions." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/670914.
Full textThe integration of photovoltaic/thermal (PV/T) and efficient air conditioning systems into buildings allows the provision of heating, cooling and electricity with a reduction in greenhouse emissions. The integration configurations of: a) photovoltaic (PV) systems with air-cooled electric chillers and air-to-water heat pump (HP) systems; b) air-based PV/T systems with air-to-water HP systems; c) Low concentrated photovoltaic/thermal systems (LCPV/T) with compression and absorption chillers; and d) LCPV/T coupled with water-to-water HP have a great potential in boosting the share of onsite PV-electricity. The flexibility of incorporating LCPV/T energy for the bidirectional low temperature network in urban districts reduces thermal losses and provides producer and consumer (prosumer) buildings. In comparison to the typical configuration of PV integrated compression chiller, the proposed configuration of LCPV/T coupled with the compression and absorption chillers reduces the payback period by 10-40% in the case building in Cairo. Substituting the connection to the campus water network with the use of reversible
Brogren, Maria. "Optical Efficiency of Low-Concentrating Solar Energy Systems with Parabolic Reflectors." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3988.
Full textSILENZI, FEDERICO. "DYNAMIC THERMAL ANALYSIS OF NEARLY ZERO EMISSION BUILDINGS WITH GEOTHERMAL AND SOLAR PLANTS." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1002027.
Full textBöhme, Florén Simon. "Solel och solvärme ur LCC-perspektiv för ett passiv-flerbostadshus." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162430.
Full textHrazdira, David. "Energetický audit." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372193.
Full textAbu, Qadourah Jenan [Verfasser], Christoph [Akademischer Betreuer] Nytsch-Geusen, Christoph [Gutachter] Nytsch-Geusen, and Christoph [Gutachter] Gengnagel. "Architectural integration of photovoltaic and solar thermal technologies in multi-family residential buildings in the Mediterranean area / Jenan Abu Qadourah ; Gutachter: Christoph Nytsch-Geusen, Christoph Gengnagel ; Betreuer: Christoph Nytsch-Geusen." Berlin : Universität der Künste Berlin, 2020. http://d-nb.info/1215340222/34.
Full textBooks on the topic "Photovoltaic thermal- Solar building"
Henry, Tom. The solar photovoltaic workbook. [U.S.?]: Henry Publications, 2009.
Find full textBalfour, John. Introduction to photovoltaic installations. Burlington, MA: Jones & Bartlett Learning, 2013.
Find full textCo, Business Communications, ed. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1991.
Find full textRobert, Moran. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1996.
Find full textMooney, J. Michael. Just add sunshine: Solar electricity will set you free. Cane Hill, AR: ARC Press of Cane Hill, 1997.
Find full textS, Mehos Mark, and National Renewable Energy Laboratory (U.S.), eds. Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Golden, CO: National Renewable Energy Laboratory, 2011.
Find full textArchitects, Kiss Cathcart Anders, and National Renewable Energy Laboratory (U.S.), eds. Building-integrated photovoltaics: Final report. Golden, Colo: National Renewable Energy Laboratory, 1993.
Find full textThe new solar electric home: The photovoltaics how-to handbook. Ann Arbor, Mich: Aatec, 1987.
Find full textDo it yourself 12 volt solar power. 2nd ed. East Meon: Permanent Publications, 2011.
Find full textDaniek, Michel. Do it yourself 12 volt solar power. East Meon, Hampshire: Permanent Publications, 2007.
Find full textBook chapters on the topic "Photovoltaic thermal- Solar building"
Zhao, Xudong, and Xingxing Zhang. "Solar Photovoltaic/Thermal Technologies and Their Application in Building Retrofitting." In Nearly Zero Energy Building Refurbishment, 615–58. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5523-2_22.
Full textChieli, Giulia, and Lucia Ceccherini Nelli. "Photovoltaic and Thermal Solar Concentrator Integrated into a Dynamic Shading Device." In Sustainable Building for a Cleaner Environment, 335–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94595-8_28.
Full textOthman, Mohd Yusof Hj, and Faridah Hussain. "Designs of Various Hybrid Photovoltaic-Thermal (PV/T) Solar Collectors." In Photovoltaics for Sustainable Electricity and Buildings, 95–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39280-6_5.
Full textSopian, K., P. Ooshaksaraei, S. H. Zaidi, and M. Y. Othman. "Recent Advances in Air-Based Bifacial Photovoltaic Thermal Solar Collectors." In Photovoltaics for Sustainable Electricity and Buildings, 161–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39280-6_8.
Full textSafaei, Samaneh, Farshid Keynia, Sam Haghdady, Azim Heydari, and Mario Lamagna. "Design of CCHP System with the Help of Combined Chiller System, Solar Energy, and Gas Microturbine." In The Urban Book Series, 79–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_9.
Full textChen, YuXiang, A. K. Athienitis, K. E. Galal, and Y. Poissant. "Design and Simulation for a Solar House with Building Integrated Photovoltaic-Thermal System and Thermal Storage." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 327–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_55.
Full textCeccherini Nelli, Lucia, and Alberto Reatti. "Smart Active Envelope Solutions, Integration of Photovoltaic/Thermal Solar Concentrator in the Building Façade." In Innovative Renewable Energy, 459–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30841-4_32.
Full textGu, Yaxiu, and Xingxing Zhang. "A Solar Photovoltaic/Thermal (PV/T) Concentrator for Building Application in Sweden Using Monte Carlo Method." In Data-driven Analytics for Sustainable Buildings and Cities, 141–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2778-1_7.
Full textHj. Othman, Mohd Yusof, Kamaruzzaman Sopian, Mohd Hafidz Ruslan, Sohif Mat, and Suhaila Abdul Hamid. "Evolution of Photovoltaic-Thermal Hybrid Solar Technology for the Tropics: A Case Study of Malaysia." In Renewable Energy and Sustainable Buildings, 401–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18488-9_31.
Full textJarimi, Hasila, Mohd Nazari Abu Bakar, Mahmod Othman, and Mahadzir Din. "Bi-fluid Photovoltaic/Thermal PV/T Solar Collector with Three Modes of Operation: Experimental Validation of a Theoretical Model." In Mediterranean Green Buildings & Renewable Energy, 445–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30746-6_33.
Full textConference papers on the topic "Photovoltaic thermal- Solar building"
Fanney, A. Hunter, Brian P. Dougherty, and Mark W. Davis. "Measured Performance of Building Integrated Photovoltaic Panels." In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-138.
Full textYewdall, Zeke, Peter S. Curtiss, and Jan F. Kreider. "Photovoltaic and Solar Thermal Market Penetration Analysis." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1052.
Full textHwang, David J., Seungkuk Kuk, Zhen Wang, Won Mok Kim, and Jeung-hyun Jeong. "LASER-ASSISTED MANUFACTURING OF BUILDING-INTEGRATED PHOTOVOLTAIC SOLAR CELLS." In 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.sol.032212.
Full textDavis, Mark W., A. Hunter Fanney, and Brian P. Dougherty. "Measured Versus Predicted Performance of Building Integrated Photovoltaics." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1050.
Full textRounis, Efstratios (Stratos) Dimitrios, Olesia Kruglov, Zisis Ioannidis, Andreas Athienitis, and Konstantions Kapsis. "Experimental Investigation of Thermal Enhancements for a Building Integrated Photovoltaic/Thermal Curtain Wall." In ISES Solar World Conference 2017 and the IEA SHC Solar Heating and Cooling Conference for Buildings and Industry 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/swc.2017.12.10.
Full textMcCabe, Joseph. "Optimization of Photovoltaic/Thermal Collectors." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65180.
Full textYang, Siliang, Francesco Fiorito, Alistair Sproul, and Deo Prasad. "Studies on Optimal Application of Building-Integrated Photovoltaic/Thermal Facade for Commercial Buildings in Australia." In ISES Solar World Conference 2017 and the IEA SHC Solar Heating and Cooling Conference for Buildings and Industry 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/swc.2017.12.13.
Full textKruglov, Olesia, Efstratios Rounis, Andreas Athienitis, Bruno Lee, Ashutosh Bagchi, Hua Ge, and Theodore Stathopoulos. "Modular Rooftop Building-Integrated Photovoltaic/Thermal Systems for Low-Rise Buildings in India." In ISES EuroSun 2018 Conference – 12th International Conference on Solar Energy for Buildings and Industry. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/eurosun2018.06.12.
Full textFumo, N., V. Bortone, and J. C. Zambrano. "Comparative Analysis of Solar Thermal Cooling and Solar Photovoltaic Cooling Systems." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54162.
Full textDougherty, Brian P., A. Hunter Fanney, and Mark W. Davis. "Measured Performance of Building Integrated Photovoltaic Panels: Round 2." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65154.
Full textReports on the topic "Photovoltaic thermal- Solar building"
Baker, Nicholas, Rafaella Belmonte Monteiro, Alessia Boccalatte, Karine Bouty, Johannes Brozovsky, Cyril Caliot, Rafael Campamà Pizarro, et al. Identification of existing tools and workflows for solar neighborhood planning. Edited by Jouri, Kanters. IEA SHC Task 63, June 2022. http://dx.doi.org/10.18777/ieashc-task63-2022-0001.
Full textBaechler, Michael C., Kathleen A. Ruiz, Heidi E. Steward, and Pat M. Love. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/968958.
Full textFarkas, Klaudia, and Miljana Horvat. Building Integration of Solar Thermal and Photovoltaics – Barriers, Needs and Strategies. IEA Solar Heating and Cooling Programme, May 2012. http://dx.doi.org/10.18777/ieashc-task41-2012-0001.
Full textWortman, D., Echo-Hawk, L. [authors] and Wiechman, J., S. Hayter, and D. Gwinner. Photovoltaic and solar-thermal technologies in residential building codes, tackling building code requirements to overcome the impediments to applying new technologies. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/750931.
Full textBaechler, M., T. Gilbride, K. Ruiz, H. Steward, and P. Love. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909990.
Full textDavidson, Carolyn, Pieter Gagnon, Paul Denholm, and Robert Margolis. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1225926.
Full textKuruganti, Teja, Mohammed Olama, Jin Dong, Yaosuo Xue, Christopher Winstead, James Nutaro, Seddik Djouadi, Linquan Bai, Godfried Augenbroe, and Justin Hill. Dynamic Building Load Control to Facilitate High Penetration of Solar Photovoltaic Generation: Final Technical Report. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819555.
Full textLong, R. C. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/656880.
Full textTywoniak, Jan, Kateřina Sojková, and Zdenko Malík. Building Physics in Living Lab. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541565072.
Full textBrozovsky, Johannes, Odne Oksavik, and Petra Rüther. Temperature measurements in the air gap of highly insulated wood-frame walls in a Zero Emission Building. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595903_2.
Full text