Dissertations / Theses on the topic 'Photovoltaic (PV) panels(PV)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Photovoltaic (PV) panels(PV).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bekker, Bernard. "Methods to extract maximum electrical energy from PV panels on the earth's surface." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50021.
Full textENGLISH ABSTRACT: This thesis investigates methods to extract the maximum amount of electrical energy from a py panel. The thesis is divided into four parts, focussing on different aspects relating to this topic. The first part will investigate the role that py energy is likely to play in South Africa's future energy scenario, by looking at topics like the greenhouse effect and the economics of energy production. Secondly the thesis will look at how to position py panels optimally for maximum energy generation through the year. A software model of a py panel is developed which can calculate available py energy and energy generation costs for a given location, based on parameters like the positioning of the py panel and historic weather data. Thirdly the optimal design of a maximum power point tracker is investigated. The optimal design, based on a k-sweep voltage ratio maximum power point tracking algorithm, is implemented using a DSP controlled boost converter circuit. Finally, the best methods to store energy generated using py panels are explored. Energy storage technologies are compared for rural, off-grid applications in South Africa, and the design and implementation of a pulse-charging lead-acid battery charging strategy is explained.
AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek maniere waarop die maksimum hoeveelheid elektriese energie vanuit 'n py paneelonttrek kan word. Die tesis word in vier dele verdeel, wat elkeen fokus op 'n ander aspek van die onderwerp. Die eerste kyk na die rol wat PV energie potensieël kan speel in die toekomstige energie produksie binne Suid Afrika, deur te kyk na onderwerpe soos die kweekhuis effek, en die ekonomiese sy van energie produksie. Tweedens kyk die tesis na metodes om 'n py paneeloptimaal te posisioneer vir maksimum energie deur die jaar. 'n Sagteware model van 'n PV paneel word ontwikkel wat die hoeveelheid beskikbare energie, en die kostes daarvan, kan bereken vir 'n spesifieke plek, gebaseer op PV paneel data en vorige jare se atmosferiese data. Derdens word agtergrond oor maksimum drywingspunt volgers gegee, en die ontwerp en bou van 'n k-variërende, spannings verhouding maksimum kragpunt volger verduidelik, geimplimenteer deur van 'n DSP en 'n opkapper baan gebruik te maak. Laastens word die beste maniere om PV energie te stoor, vir landelike toepassings weg vanaf die Eskom netwerk, ondersoek. Alle beskikbare tegnologieë word eers vergelyk met mekaar, waarna die ontwerp en bou van 'n puls-laai loodsuur batterylaaier verduidelik word.
Kroutil, Roman. "Komplexní provozní diagnostika FVE-T14 - opatření pro optimalizaci provozu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242083.
Full textWang, Xin. "Online health monitoring of photovoltaic panels by converter-based impedance spectroscopy." Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0039_WANG.pdf.
Full textTo meet the world's growing energy needs and with a view to sustainable development, the use of solar energy is leading a significant increase in the installation of photovoltaic (PV) panels, enabling the production of clean and renewable electricity. However, the PV panels are susceptible to faults during operating. These faults can result in power losses, low efficiency, system instability, even pose a risk of security. Health monitoring can mitigate these issues and improve the overall operating reliability and efficiency of PV panels. Among existing health monitoring tools for PV panels, impedance spectroscopy (IS) provides a powerful, non-destructive way to acquire PV panels' internal impedance over a wide frequency range. Compared with specific workstation-based IS, converter-based IS can help reduce overall system costs and facilitate online applications, as no additional equipment is required. However, the control strategy of the power converter needs to be specifically designed. Firstly, the bandwidth of the converter will limit the maximum frequency of the perturbation signal. Obtaining a complete IS spectrum with sufficient accuracy can thus be challenging. Secondly, to ensure a quasi-maximum output power of PV panels even during IS implementation, a cooperative control scheme between maximum power point tracking (MPPT) and IS modes should be considered. The major objectives of this research are twofold: (1) to propose a systematic design guideline for control strategies of converter-based IS implementation; (2) to establish an appropriate AC equivalent circuit model (AC-ECM) for PV panels and extract valuable health indicators for online health monitoring of PV panels. In one aspect, a bi-level control strategy of the power converter including an upper-level and a lower-level control is proposed. The upper-level control achieves the cooperative control of different operating modes, including MPPT, injection point tracking (IPT) and IS modes. The lower-level control includes the separate control of each mode. Particularly, for the IS mode, both open-loop control and closed-loop control have been systematically studied and compared. Under open-loop control, an analysis of the intrinsic resonance of the converter and the frequency limitation of the perturbation signal is performed. Furthermore, an adaptive configuration method for the amplitude of the AC duty cycle is proposed to eliminate the influence of the resonance and enhance the accuracy of IS measurement. Under closed-loop control, based on three commonly used compensation controllers, two control methods, named unified control and separated control, are designed and compared. In the unified control, a single proportional-integral (PI) controller controls the DC and AC components together to meet the control objectives. Meanwhile, in the separated control, a segmented lower pass filter (LPF) with a variable cut-off frequency is designed to effectively separate the DC component of the PV panel current from the AC perturbation signal. A proportional (P) and a quasi-proportional resonant (QPR) are further applied separately to control the AC component. In the other aspect, based on the acquired IS measurements, a simplified AC-ECM of the PV panel is proposed. This AC-ECM offers a fitting approach for the incomplete spectrum obtained through converter-based IS. Additionally, four health features are extracted and defined for monitoring the health states of the PV panel under various operating conditions. Finally, an experimental platform has been developed for online IS implementation. An experimental study has been conducted to verify that under the proposed control strategies, reliable and accurate IS measurements can be achieved. Under various operating conditions, the effectiveness of the online IS monitoring method based on the extracted features of the PV panel is verified as well
Badri, Seyed Ali Mohammad. "Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System." Thesis, Högskolan Dalarna, Energi och miljöteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:du-12666.
Full textSaadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.
Full textThe demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
Boman, Kristin, Ida Adolfsson, and Sofia Ekbring. "Bifacial photovoltaic systems established in a Nordic climate : A study investigating a frameless bifacial panel compared to a monofacial panel." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384180.
Full textPalumbo, Adam M. "Design and Analysis of Cooling Methods for Solar Panels." Youngstown State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1389719304.
Full textDvořák, Vít. "Návrh fotovoltaické elektrárny pro rodinný dům v okrese Jihlava." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442514.
Full textGarcía-Gutiérrez, Luis Antonio. "Développement d'un contrôle actif tolérant aux défaillances appliqué aux systèmes PV." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30071.
Full textThis work contributes by developing an active fault tolerant control (AFTC) for Photovoltaic (PV) systems. The fault detection and diagnosis (FDD) methodology is based on the analysis of a model that compares real-time measurement. We use a high granularity PV array model in the FDD tool to allow faults to be detected in complex conditions. Firstly, the research focuses on fault detection in complex shadow conditions. A real-time approach is presented to emulate the electrical characteristics of PV modules under complex shadow conditions. Using a precise emulators approach is a real challenge to study the high non-linearity and the complexity of PV systems in partial shading. The real-time emulation was validated with simple experimental results under failure conditions to design specific fault-detection algorithms in a first sample. The second part of the research addresses the FDD method for DC/DC and DC/AC power converters that are connected to the grid. Primary results allowed us to validate the system's recovery for normal operating points after a fault with this complete AFTC approach. Emulations based on the simulation of distributed power converters, fault detection methodologies based on a model, and a hybrid diagnostician were then presented
Salim, Hengky K. "Rooftop photovoltaic product stewardship transition in Australia using a novel systems approach and serious game." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/410160.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Maxamhud, Mahamed, and Arkam Shanshal. "SELF-SUFFICIENT OFF-GRID ENERGY SYSTEM FOR A ROWHOUSE USING PHOTOVOLTAIC PANELS COMBINED WITH HYDROGEN SYSTEM : Master thesis in energy system." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49379.
Full textVedin, Felix, and Camilla Sandström. "A comparison study of PV and battery technologies for EWB off-grid electrification projects in Sub-Saharan Africa." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235497.
Full textEndast 10% av lantbygdens befolkning i Subsahariska Afrika har tillgång till elektricitet. Samtidigt ligger de Subsahariska länderna nära ekvatorn och får många soltimmar per dygn, vilket leder till en stor potential för solenergi. Den här rapporten syftar till att jämföra olika solcellssystems komponenter för användning i östra Afrika för att främja Ingenjörer Utan Gränsers arbete inom elektrifierings projekt i området. Jämförelsen kommer utföras med följande faktorer, ekonomi, anpassningsförmåga, skalning, miljöpåverkan och effektivitet, viktat i den ordningen. En simulation gjordes för en by i området av Nairobi där 20 hushåll skulle få tillgång till solenergi. Både Poly kristallina celler och tunnfilm CIGS simulerades där Poly kristallina celler var både kostnadseffektivast samt det plats effektivaste valet. Polykristallina celler var även konkluderades vara det fördelaktiga valet av de kristallina cellerna utefter de valda faktorerna. Bly-syra batterier var bäst lämpade för själv stående solcellssystem på landsbygden. Olika typer av bly-syra batterier kan användas beroende på områdets typologi. Fristående solcellssystem kan vara en lösning till ett ökat socioekonomisk välmående för samhällen på landsbygden.
Sahli, Mehdi. "Simulation and modelling of thermal and mechanical behaviour of silicon photovoltaic panels under nominal and real-time conditions." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD036.
Full textThe work presented in this thesis deals with the development of a numerical multi-physics model, designed to study the optical, electrical and thermal behaviour of a photovoltaic module. The optical behaviour was evaluated using stochastic modelling based on Markov chains, whereas the electrical behaviour was drawn specifically for Silicon based photovoltaic panels using numerical optimization methods. The thermal behaviour was developed in 1D over the thickness of the module, and the multi-physics module was weakly coupled in MATLAB. The behaviour of commercial panels under nominal operation conditions was validated using data declared by the manufacturers. This model was used to perform a parametric study on the effect of solar irradiances in steady state. It was also validated for real use conditions by comparing it to experimental temperature and electrical power output. A thermomechanical study in 2D in ABAQUS/CAE based in the multi-physics model was carried out in nominal operating conditions, as well as in fatigue thermal cycling according to the IEC 61215 Standard to predict the stresses that are imposed on the panel
Bigot, Dimitri. "Contribution à l’étude du couplage énergétique enveloppe / système dans le cas de parois complexes photovoltaïques (PC - PV)." Thesis, La Réunion, 2011. http://www.theses.fr/2011LARE0024/document.
Full textThis thesis presents a thermal and electrical modelling of PV walls integrated to buildings. The particularity of this model is that the heat transfer that occurs through the panel to the building is described so that both building and PV thermal modelling are fully coupled. This has the advantage of allowing the prediction of the impact of PV installation on the building temperature field and also the comfort inside it. The aim of this study is to show the impact of the PV panels in terms of level of insulation or solar protection for the building. Moreover, the study has been conducted in La Reunion Island, where the climate is tropical and humid, with a strong solar radiation. In such conditions, it is important to minimise the thermal load through the roof of the building. The thermal model is integrated in a building simulation code and is able to predict the thermal impact of PV panels installed on buildings in several configurations and also their production of electricity. Finally, the experimental study is used to give elements of validation for the numerical model and a sensitivity analysis has been run to put in evidence the governing parameters. It has been shown that the radiative properties of the PV panel have a great impact on the temperature field of the tested building and the determination of these parameters has to be taken with care. Results of sensitivity analysis are used to optimize the PV thermal model using the GenOpt optimization program
Zoltan, Čorba. "Novi metod analize rada fotonaponskog sistema u uslovima varijacije sunčevog zračenja." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2016. http://www.cris.uns.ac.rs/record.jsf?recordId=100072&source=NDLTD&language=en.
Full textThe paper presents the problem of reducing electricityproduction of PV power plant under variation of solarradiation conditions. The author proposed a new method ofanalysis PV power plant works under partial shadingcondition trough micro- and macroconfiguration of PV array.
Kladiva, Roman. "Dlouhodobé sledování parametrů fotovoltaických panelů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220119.
Full textLu, Di. "Conception et contrôle d’un générateur PV actif à stockage intégré : application à l’agrégation de producteurs-consommateurs dans le cadre d’un micro réseau intelligent urbain." Thesis, Ecole centrale de Lille, 2010. http://www.theses.fr/2010ECLI0021/document.
Full textThe integration of PV power generation in a power system reduces fuel consumption and brings environmental benefits. However, the PV power intermittency and fluctuations deteriorate the power supply quality. A solution is proposed by adding energy storages, which are coordinated by a local controller that controls the power flow among all sources and implements an inner energy management. This PV based active generator can generate power references and can provide ancillary services in an electric network. Then micro grid concepts are derived to design a central energy management system of a residential network, which is powered by PV based active generators and a gas micro turbine. A communication network is used to exchange data and power references. An energy management system is developed with different time-scale functions to maximize the use of PV power. An operational daily planning is designed by a determinist algorithm, which uses 24 hour-ahead PV power prediction and load forecasting. Then power references are refreshed each half of an hour by considering the PV power availability and the states of energy storage units. Prediction errors and uncertainties are compensated by primary frequency controllers. Simulation and testing results validate the design of the PV active generator local controller and the central energy management system of the studied residential network
Ebrahim, Mila. "Performance Evaluation of a Photovoltaic/Thermal (PVT) Collector with Numerical Modelling." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302122.
Full textEn panel med kombinerad teknik av både solceller och termisk solfångare (PVT) kan producera både elektricitet och värme samtidigt. Forskning har visat att det kan finnas flera fördelar med att integrera PVT-paneler med ett bergvärmesystem, eftersom det mjliggör lagring av termisk energi över året. Dessutom leder ett sådant system till lägre drifttemperaturer som kan öka PVT-panelens effektivitet och livslängd. Syftet med studien är att presentera den elektriska och termiska prestandan av en PVT-panel utvecklat av Solhybrid i Småland AB för olika driftförhållanden som kan uppstå på grund av olika väderförhållanden och inlopps-temperaturer när panelerna är kopplade till ett bergvärmesystem. Vidare utvärderas prestandan för denna panel med ASHRAEmetoden (standard 93-2003), för att möjliggöra jämförelse med andra PVT-paneler. Modelleringsverktyget som använts i studien är mjukvaran COMSOL Multiphysics, som använder finita elementmetoden för att lösa partiella differentialekvationer i värmeöverförings-och flödesproblem. Baserat på prestandakurvorna som presenteras i resultatet, är den termiska och elektriska verkningsgraden approximativt 48.0-53.4% respektive 19.0-19.2% för en reducerad temperatur med värdet noll, en solstrålning mellan 800-1000 W/m2, för en massflödeshastighet på 0.026 kg/sm2 som beslutades som den mest lämpliga för att öka den termiska prestandan. Resultaten resulterade i en värmeavledningsfaktor (FR) och total värmeförlustkoefficient (UL) på 0.56-0.62 respektive 53.4-53.5 W/m2 K. Resultaten på PVT-panelens prestanda under olika väderförhållanden visar att vattnets inloppstemperatur kan påverka drifttiden och mängden termisk energi som kan extraheras under året avsevärt, speciellt i nordiskt klimat. För att bedöma korrektheten i resultaten och den skapade modellen rekommenderas experimentell testning av den studerade PVT-panelen.
Franklin, Ed. "Solar Photovoltaic (PV) Site Assessment." College of Agriculture, University of Arizona (Tucson, AZ), 2017. http://hdl.handle.net/10150/625447.
Full textAn important consideration when installing a solar photovoltaic (PV) array for residential, commercial, or agricultural operations is determining the suitability of the site. A roof-top location for a residential application may have fewer options due to limited space (roof size), type of roofing material (such as a sloped shingle, or a flat roof), the orientation (south, east, or west), and roof-mounted structures such as vent pipe, chimney, heating & cooling units. A location with open space may utilize a ground-mount system or pole-mount system.
Noor, Hisham Nur Ain. "Self-cleaning Photovoltaic (PV) Modules." Thesis, Noor Hisham, Nur Ain (2017) Self-cleaning Photovoltaic (PV) Modules. Honours thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/41910/.
Full textFranklin, Edward A. "Mounting Your Solar Photovoltaic (PV) System." College of Agriculture, University of Arizona (Tucson, AZ), 2017. http://hdl.handle.net/10150/625443.
Full textLangels, Hanna, and Fredrik Gannedahl. "BiFacial PV Systems : A technological and financial comparison between BiFacial and standard PV panels." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353708.
Full textCarr, Anna J. "A detailed performance comparison of PV modules of different technologies and the implications for PV system design methods /." Access via Murdoch University Digital Theses Project, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20050830.94641.
Full textCelik, Ilke. "Eco-design of Emerging Photovoltaic (PV) Cells." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1533123980079904.
Full textAnderson, David James. "Energy rating of photovoltaic modules." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248767.
Full textBedrich, Karl G. "Quantitative electroluminescence measurements of PV devices." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27303.
Full textKayal, Sara. "Application of PV Panels in Large Multi-Story Buildings." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/134.
Full textFranklin, Edward. "Hand Tools Used for Solar Photovoltaic (PV) Systems." College of Agriculture, University of Arizona (Tucson, AZ), 2017. http://hdl.handle.net/10150/625442.
Full textA description of the multiple hand tools commonly used to measure energy output of solar photovoltaic (PV) silicon-type modules. These tools include a digital multi-meter to measure voltage, a clamp-on ammeter to measure current, a pyranometer to measure solar irradience, an angle finder to measure module tilt angle, a non-contact thermometer to measure solar cell temperature, and a Solar Pathfinder to evaluate a potential site for shading issues.
Coventry, Joseph Sydney, and Joe Coventry@anu edu au. "A solar concentrating photovoltaic/thermal collector." The Australian National University. Faculty of Engineering and Information Technology, 2004. http://thesis.anu.edu.au./public/adt-ANU20041019.152046.
Full textTegeder, Troy Dixon. "Development of an Efficient Solar Powered Unmanned Aerial Vehicle with an Onboard Solar Tracker." BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/856.
Full textBarbosa, José Nilton Tavares. "PV inverters for module level applications." Master's thesis, FCT-UNL, 2011. http://hdl.handle.net/10362/7083.
Full textNowadays, the photovoltaic (PV) energy is presented as one of the most promising source of clean energy, and so a good way for greenhouse gas emissions mitigation and reduce the fossil fuel dependence. Within it, the photovoltaic energy has caused a huge interest in the electronic converters, and the need to improve their efficiency and reducing their cost. With this work I present a solution for a module scale grid-connected single-phase inverter. The solution consists in a two-stage inverter insolated with a grid line transformer. The two-stage inverter is composed by a DC-DC converter and a DC-AC converter connected through a DC-link capacitor. The DC-DC converter in case is a boost converter used to elevate the voltage from the PV module to a higher level. For the DC-AC converter it is used a full-bridge inverter, and both the DC-DC and the DC-AC converters use the IGBTs form an integrated module with its respective drivers. To the boost control it is implemented a Maximum Power Point Tracking algorithm that can optimize the power extraction from the PV source and for the inverter it is used a sliding mode hysteretic control. Once this inverter is conceived to work connected to the grid, a single-phase PLL system is used to synchronize the injected current to grid voltage. All the control part is made digitally using an Arduino Uno board, which uses an Atmel microcontroller.
Gaptia, Maï Moussa Lawan. "Gestion optimale d'énergie électrique à partir des sources d'énergies renouvelables dédiées aux sites isolés Power control for decentralized energy production system based on the renewable energies — using battery to compensate the wind/load/PV power fluctuations Three level Neutral-Point-Clamped Inverter Control Strategy using SVPWM for Multi-Source System Applications Wind turbine and Batteries with Variable Speed Diesel Generator for Micro-grid Applications." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMLH28.
Full textThe thesis works are part of the research work of the thematic team: Mastery of Renewable Energies and Storage Systems (MERS) of the GREAH-EA3220 laboratory. They include the dimensioning of the constituent elements of the system and the optimal management of electrical energy for a hybrid system (Variable speed Diesel, Wind, PV and Batteries) dedicated to isolated sites. Power sources supply loads through multi-level converters of power electronics. The generator set with a variable speed diesel engine is considered to be the main source of energy used to control the DC voltage at the coupling point. This type of generator is chosen to optimize fuel consumption. It is used to deliver an electrical power compatible with the engine speed which does not tolerate frequent and rapid variations. Renewable energy sources whose share of energy is sought to meet demand are managed so as to instantly extract the maximum power available from resources (sunshine, wind). These thus impose their dynamics and their intermittences at the coupling point. The battery pack is used to compensate for rapid fluctuations in energy from renewable energy sources compared to a slower evolution supported by the generator. Interactions within the resulting hybrid electrical system are managed by means of multi-level static converters (AC / DC, DC / DC and DC / AC). An electrical energy management approach based on the frequency distribution of disturbances induced at the coupling point by renewable sources. An experimental platform on a reduced scale (1/22) has been developed to experimentally validate theoretical approaches and simulations. The results of simulations obtained in the Matlab / Simulink / SimPowerSystems software environment and those from the experimental device produced and piloted by dSPACE-1104 prove the adequacy of the proposed control methods
Bouzoukas, Asterios. "New approaches for cooling photovoltaic/thermal (PV/T) systems." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/11148/.
Full textKoubli, Eleni. "Impact of data quality on photovoltaic (PV) performance assessment." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27508.
Full textAsgharzadeh, Shishavan Amir. "Bifacial photovoltaic (PV) system performance modeling utilizing ray tracing." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/6911.
Full textVrzal, Martin. "Optimalizace návrhu velikosti PV systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254209.
Full textOller, Westerberg Amelia. "Revising installed photovoltaic capacities on emerging markets by analysing customs data." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438780.
Full textPande, Sohum, and Raj Bhaladhare. "Different Photovoltaic Penetration Rates for the Planned Area of Jakobsgardarna in Borlange, Sweden." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-28185.
Full textTrapani, Kim. "FLEXIBLE FLOATING THIN FILM PHOTOVOLTAIC (PV) ARRAY CONCEPT FOR MARINE AND LACUSTRINE ENVIRONMENTS." Thesis, Laurentian University of Sudbury, 2014. https://zone.biblio.laurentian.ca/dspace/handle/10219/2199.
Full textStrobel, Matthias Benjamin. "Performance of high-efficiency PV systems in a maritime climate." Thesis, University of Reading, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497118.
Full textLopez, Ramirez Izar. "Operating correction factor of PV system : Effects of temperature, angle of incidence and invertor in PV system performance." Thesis, Högskolan i Gävle, Energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-23671.
Full textUmana, Aniemi. "Module-level autonomous settingless protection and monitoring for standalone and grid-connected photovoltaic array systems using quadratic integration modeling." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54441.
Full textMakki, Adham. "Innovative heat pipe-based photovoltaic/thermoelectric (PV/TEG) generation system." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/43330/.
Full textSommerfeld, Jeffrey. "Residential customers and adoption of solar PV." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/98508/4/Jeffrey_Sommerfeld_Thesis.pdf.
Full textForeman, Mark McKinney. "Control and operation of SMES and SMES/PV systems." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-10062009-020156/.
Full textRakotomananandro, Falinirina F. "Study of Photovoltaic System." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306285848.
Full textManhal, Ali, and Ali Tammam M. "Solar Tent : A Photovoltaic Generator Model for a Flexible Fabric with Inbuilt Cells." Thesis, Högskolan Dalarna, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:du-30552.
Full textAlmingol, Oscar. "Construction of a C-PV prototype." Thesis, Högskolan i Gävle, Elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-25083.
Full textWu, Yuechen, Shelby Vorndran, Pelaez Silvana Ayala, and Raymond K. Kostuk. "Three junction holographic micro-scale PV system." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622714.
Full textChen, Baifeng. "High-efficiency Transformerless PV Inverter Circuits." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/56686.
Full textPh. D.