Academic literature on the topic 'Photovoltaic Devices - Semiconductor Nanocrystals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photovoltaic Devices - Semiconductor Nanocrystals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photovoltaic Devices - Semiconductor Nanocrystals"
Qiao, Fen. "Semiconductor Nanocrystals for Photovoltaic Devices." Materials Science Forum 852 (April 2016): 935–38. http://dx.doi.org/10.4028/www.scientific.net/msf.852.935.
Full textLin, Weyde M. M., Maksym Yarema, Mengxia Liu, Edward Sargent, and Vanessa Wood. "Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces." CHIMIA International Journal for Chemistry 75, no. 5 (May 28, 2021): 398–413. http://dx.doi.org/10.2533/chimia.2021.398.
Full textDalui, Amit, Ali Hossain Khan, Bapi Pradhan, Jayita Pradhan, Biswarup Satpati, and Somobrata Acharya. "Facile synthesis of composition and morphology modulated quaternary CuZnFeS colloidal nanocrystals for photovoltaic application." RSC Advances 5, no. 118 (2015): 97485–94. http://dx.doi.org/10.1039/c5ra18157g.
Full textAbulikemu, Mutalifu, Silvano Del Gobbo, Dalaver H. Anjum, Mohammad Azad Malik, and Osman M. Bakr. "Colloidal Sb2S3nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells." Journal of Materials Chemistry A 4, no. 18 (2016): 6809–14. http://dx.doi.org/10.1039/c5ta09546h.
Full textHou, Mingyue, Zhaohua Zhou, Ao Xu, Kening Xiao, Jiakun Li, Donghuan Qin, Wei Xu, and Lintao Hou. "Synthesis of Group II-VI Semiconductor Nanocrystals via Phosphine Free Method and Their Application in Solution Processed Photovoltaic Devices." Nanomaterials 11, no. 8 (August 15, 2021): 2071. http://dx.doi.org/10.3390/nano11082071.
Full textPrezioso, S., S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti. "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices." Applied Physics Letters 94, no. 6 (February 9, 2009): 062108. http://dx.doi.org/10.1063/1.3081410.
Full textMeng, Lingju, and Xihua Wang. "Doping Colloidal Quantum Dot Materials and Devices for Photovoltaics." Energies 15, no. 7 (March 27, 2022): 2458. http://dx.doi.org/10.3390/en15072458.
Full textSatta, Jessica, Andrea Pinna, Giorgio Pia, Luca Pilia, Carlo Maria Carbonaro, Daniele Chiriu, Luigi Stagi, Qader Abdulqader Abdullah, and Pier Carlo Ricci. "Stable CsPbBr3 Nanocrystals—Decorated Nanoporous Gold for Optoelectronic Applications." Crystals 12, no. 6 (June 18, 2022): 863. http://dx.doi.org/10.3390/cryst12060863.
Full textNozaki, Tomohiro, Yi Ding, and Ryan Gresback. "Plasma Synthesis of Silicon Nanocrystals: Application to Organic/Inorganic Photovoltaics through Solution Processing." Materials Science Forum 783-786 (May 2014): 2002–4. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2002.
Full textKovalenko, Maksym V., Loredana Protesescu, and Maryna I. Bodnarchuk. "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals." Science 358, no. 6364 (November 9, 2017): 745–50. http://dx.doi.org/10.1126/science.aam7093.
Full textDissertations / Theses on the topic "Photovoltaic Devices - Semiconductor Nanocrystals"
Kinder, Erich W. "Fabrication of All-Inorganic Optoelectronic Devices Using Matrix Encapsulation of Nanocrystal Arrays." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339719904.
Full textLópez, Vidrier Julià. "Silicon Nanocrystal Superlattices for Light-Emitting and Photovoltaic Devices." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/334396.
Full textEls nanocristalls de silici han esdevingut objecte d'estudi durant l'últim quart de segle, degut a què presenten, a causa de l'efecte de confinament quàntic, unes propietats físiques dependents de la seva mida. A més, la compatibilitat del silici massiu amb la ben establerta tecnologia microelectrònica juga en favor de la seva utilització i el seu desenvolupament per a futures aplicacions en el camp de la fotònica i l'optoelectrónica. El control del creixement de nanocristalls de silici es pot dur a terme mitjançant el dipòsit de superxarxes d'entre 2 i 4 nm de gruix, on capes de material estequiomètric basat en silici s'alternen amb altres de material ric en silici. Un posterior procés de recuit a alta temperatura permet la precipitació de l'excés de silici i la seva cristal.lització, tot originant una xarxa ordenada de nanocristalls de silici de mida controlada. En aquesta Tesi, s'han estudiat les propietats estructurals, òptiques, elèctriques i electro-òptiques de superxarxes de nanocristalls de silici embeguts en dues matrius diferents: òxid de silici i carbur de silici. Amb tal objectiu, s'han emprat tot un seguit de tècniques experimentals, que comprenen la caracterització estructural (microscòpia electrònica de transmissió i d'escombrat, difracció de raigs X), òptica (espectroscòpies d'absorció òptica, de fotoluminescència i dispersió Raman) i elèctrica / electro-òptica (caracterització intensitat-voltatge en foscor o sota il.luminació, electroluminescència, resposta electro-òptica), entre d'altres. Des del punt de vista del material, s'han estudiat les propietats estructurals òptimes per tal d'obtenir un perfecte ordenament en la xarxa de nanocristalls, una major qualitat cristal.lina i unes propietats d'emissió òptimes. L'optimització del material s'ha dut a terme en vistes a la seva utilització com a capa activa dins de dispositius emissors de llum i fotovoltaics, l'eficiència dels quals ha estat monitoritzada segons els diferents paràmetres estructurals (gruix de les capes nanomètriques involucrades, estequiometria, temperatura de recuit). Finalment, els nanocristalls de silici embeguts en òxid de silici han demostrat un major rendiment com a emissors de llum, mentre que una matriu de carbur de silici beneficia les propietats d'absorció i extracció (fotovoltaiques) del sistema.
Cattley, Christopher Andrew. "Quaternary nanocrystal solar cells." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:977e0f75-e597-4c7a-8f72-6a26031f8f0b.
Full textNemitz, Ian R. "Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications." Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.
Full textChang, Jin. "Controlled synthesis of inorganic semiconductor nanocrystals and their applications." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/63960/1/Jin_Chang_Thesis.pdf.
Full textJANA, SOURAV KANTI. "Light harvesting methods in photovoltaic devices with superficial treatments." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28621.
Full textMartínez, Montblanch Luis. "N-type bismuth sulfide coloidal nanocrystals and their application to solution-processed photovoltaic devices." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284207.
Full textPhotovoltaics has become a technology of increasing importance during the last decades as a platform to satisfy the energy needs of today without compromising future generations. Traditional silicon-based solar cells suffer from high material and fabrication costs. Alternative technologies such as organic photovoltaics offer promising low-cost material and processing advantages, however at the cost of chemical instability. Inorganic colloidal nanocrystals have attracted significant attention, due to the unique combination of chemical robustness, panchromatic solar harnessing and low-cost solution processability. However, the state-of-the-art nanocrystalline semiconductors raise some concerns regarding their suitability for industrial applications due to the presence of highly toxic heavy metals (such as lead or cadmium). Moreover, most of these materials are p-type, and are usually employed together with large bandgap n-type semiconductors that do not contribute to photocurrent generation. The field on non-toxic, electron-acceptor nanocrystalline semiconductors with appropriate energy levels, high optical absorption and bandgap suited to optimal solar harnessing still remains unexplored. The aim of this thesis is to investigate the potential of bismuth sulfide nanocrystals to be employed as environmental-friendly n-type nanomaterials for efficient solar harnessing. Chapter 2 presents an in-depth physicochemical and optoelectronic characterization of bismuth sulfide colloidal nanocrystals. Bismuth sulfide nanocrystals are n-type semiconductors and have the appropriate bandgap and energy levels for efficient solar harnessing. Therefore, bismuth sulfide nanocrystals have the potential to be employed as the electron accepting material in heterojunction-based solar cells with most high-performing materials investigated for third-generation photovoltaics. Bismuth sulfide nanocrystals are employed in Chapter 3 as electron accepting materials in hybrid organic-inorganic solar cells. Typical electron accepting materials and semiconducting polymers used in organic photovoltaics do not harness infrared radiation, thus limiting their solar harnessing potential. Bismuth sulfide nanocrystals can be used as electron accepting materials in hybrid organic-inorganic solar cells and extend the sensitivity range of P3HT-based solar cells into near-infrared wavelengths. Chapter 4 investigates the nanomorphology and photovoltaic performance of hybrid solar cells based on bismuth sulfide nanocrystals and thiol-functionalized semiconducting polymers. This novel class of functionalized polymers binds to the surface of bismuth sulfide nanocrystals, thus preventing nanocrystal agglomeration, shows deeper ionization potential levels and exhibits improved electronic interaction within the organic-inorganic nanocomposite. In Chapter 5, bismuth sulfide nanocrystals are employed together with lead sulfide quantum dots in p-n junction-based all-inorganic solution-processed photovoltaic devices. This system opens the possibility of fabricating all-inorganic solution-processed bulk heterojunctions, a device architecture where requirements on carrier lifetime are eased. This way, a broader range of inorganic nanocrystalline materials can be explored in the quest for novel non-toxic third-generation photovoltaics
Holder, Jenna Ka Ling. "Quantum structures in photovoltaic devices." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d23c2660-bdba-4a4f-9d43-9860b9aabdb8.
Full textCheng, Cheng. "Semiconductor colloidal quantum dots for photovoltaic applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:07baccd0-2098-4306-8a9a-49160ec6a15a.
Full textMachui, Florian [Verfasser], and Christoph [Akademischer Betreuer] Brabec. "Formulation of Semiconductor Solutions for Organic Photovoltaic Devices / Florian Machui. Gutachter: Christoph Brabec." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1065005687/34.
Full textBooks on the topic "Photovoltaic Devices - Semiconductor Nanocrystals"
Optical properties of semiconductor nanocrystals. Cambridge, UK: Cambridge Unviersity Press, 1998.
Find full textManasreh, Mahmoud Omar. Introduction to nanomaterials and devices. Hoboken, N.J: Wiley-Interscience, 2012.
Find full textUnited States. National Aeronautics and Space Administration., ed. Radiative performance of rare earth garnet thin film selective emitters. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textMeeting, Materials Research Society, and Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2009 : San Francisco, Calif.)., eds. Amorphous and polycrystalline thin-film silicon science and technology--2009: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. / editors, A. Flewitt ... [et al.]. Warrendale, Pa: Materials Research Society, 2009.
Find full textMeeting, Materials Research Society, and Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2010 : San Francisco, Calif.)., eds. Amorphous and polycrystalline thin-film silicon science and technology--2010: Symposium held April 5-9, 2009, San Francisco, California / editors, Qi Wang ... [et al.]. Warrendale, Pa: Materials Research Society, 2010.
Find full textWolf, E. L. Atoms, Molecules, Crystals and Semiconductor Devices. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0005.
Full textNathan, Arokia, Qi Wang, Andrew Flewitt, Jack Hou, and Shuichi Uchikoga. Amorphous and Polycrystalline Thin Film Silicon Science and Technology - 2009. University of Cambridge ESOL Examinations, 2014.
Find full textTrzynadlowski, Andrzej M. Power Electronic Converters and Systems: Frontiers and Applications. Institution of Engineering & Technology, 2015.
Find full textPower Electronic Converters and Systems: Frontiers and Applications. Institution of Engineering & Technology, 2016.
Find full textBook chapters on the topic "Photovoltaic Devices - Semiconductor Nanocrystals"
Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma, and Qian Feng. "High-Efficiency Semiconductor Photovoltaic Devices." In Semiconductor Photovoltaic Cells, 433–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_10.
Full textJasieniak, Jacek J., Brandon I. MacDonald, and Paul Mulvaney. "Nanocrystals, Layer-by-Layer Assembly, and Photovoltaic Devices." In Nanomaterials, Polymers, and Devices, 357–94. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118867204.ch14.
Full textRay, S. K., N. Gogurla, and T. Rakshit. "Size- and Shape-Controlled ZnO Nanostructures for Multifunctional Devices." In Semiconductor Nanocrystals and Metal Nanoparticles, 39–94. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-3.
Full textKhanna, Vandana, B. K. Das, Dinesh Bisht, Vandana, and P. K. Singh. "Estimation of Photovoltaic Cells Model Parameters using Particle Swarm Optimization." In Physics of Semiconductor Devices, 391–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_98.
Full textTay, Y. Y., S. Li, and M. L. Liang. "Defect Mediated Photonic Behavior of ZnO Nanocrystals." In Semiconductor Photonics: Nano-Structured Materials and Devices, 83–85. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.83.
Full textWei, Y., A. Gin, and M. Razeghi. "Quantum Photovoltaic Devices Based on Antimony Compound Semiconductors." In Mid-infrared Semiconductor Optoelectronics, 515–45. London: Springer London, 2006. http://dx.doi.org/10.1007/1-84628-209-8_16.
Full textPatil, Padmashri. "Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals." In Physics of Semiconductor Devices, 343–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_86.
Full textSingha, R. K., K. Das, S. Das, A. Dhar, and S. K. Ray. "Characteristics of Ge Nanocrystals Grown by RF Magnetron Sputtering." In Semiconductor Photonics: Nano-Structured Materials and Devices, 89–91. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.89.
Full textHuy, P. T., and P. H. Duong. "Intense Photoluminescence and Photoluminescence Enhancement of Silicon Nanocrystals by Ultraviolet Irradiation." In Semiconductor Photonics: Nano-Structured Materials and Devices, 74–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.74.
Full textShalygina, Olga A., Denis M. Zhigunov, Dmitrii A. Palenov, Victor Yu Timoshenko, Pavel K. Kashkarov, M. Zacharias, and Paul M. Koenraad. "Population Dynamics of Excitons in Silicon Nanocrystals Structures under Strong Optical Excitation." In Semiconductor Photonics: Nano-Structured Materials and Devices, 196–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.196.
Full textConference papers on the topic "Photovoltaic Devices - Semiconductor Nanocrystals"
Kim, Sung Jin, Won Jin Kim, Jangwon Seo, Alexander Cartwright, and Paras N. Prasad. "Functionalized semiconductor nanocrystal quantum dots for patterned, multilayered photovoltaic devices." In 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1121-n04-04.
Full textYao, Y., B. Zhang, M. A. Green, G. Conibeer, and S. K. Shrestha. "Photovoltaic effect in Ge nanocrystals/c-silicon heterojunctions devices." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5616255.
Full textKang, Ki Moon, Hyo-Won Kim, Il-Wun Shim, and Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Full textSethi, R., L. Kumar, P. K. Sharma, P. Mishra, and A. C. Pandey. "Synthesis and characterization of Cd1-xZnxS ternary nanocrystals." In 2007 International Workshop on Physics of Semiconductor Devices. IEEE, 2007. http://dx.doi.org/10.1109/iwpsd.2007.4472553.
Full textBramati, Alberto, Maxime Joos, Chengjie Ding, Stefano Pierini, and Quentin Glorieux. "Integrated single photon sources with colloidal semiconductor nanocrystals (Conference Presentation)." In Quantum Nanophotonic Materials, Devices, and Systems 2019, edited by Mario Agio, Cesare Soci, and Matthew T. Sheldon. SPIE, 2019. http://dx.doi.org/10.1117/12.2533008.
Full textGuzelturk, Burak, Evren Mutlugun, Xiadong Wang, Kin Leong Pey, and Hilmi Volkan Demir. "Light-harvesting semiconductor quantum dot nanocrystals integrated on photovoltaic radial junction nanopillars." In 2010 23rd Annual Meeting of the IEEE Photonics Society (Formerly LEOS Annual Meeting). IEEE, 2010. http://dx.doi.org/10.1109/photonics.2010.5698907.
Full textDutta, P. S. "High efficiency solar photovoltaic and thermo-photovoltaic device technologies." In 2007 International Workshop on Physics of Semiconductor Devices. IEEE, 2007. http://dx.doi.org/10.1109/iwpsd.2007.4472646.
Full textLipovskii, Andrey A., Elene V. Kolobkova, and Vladimir D. Petrikov. "Optical properties of novel phosphate glasses with embedded semiconductor nanocrystals." In International Conference on Advanced Optical Materials and Devices, edited by Andris Krumins, Donats K. Millers, Andris R. Sternberg, and Janis Spigulis. SPIE, 1997. http://dx.doi.org/10.1117/12.266551.
Full textLhuillier, Emmanuel, Bertille martinez, Clement Livache, Charlie Greboval, Audrey Chu, and nicolas goubet. "Designing Photovoltaic Devices Using HgTe Nanocrystals for SWIR and MWIR Detection." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.032.
Full textLhuillier, Emmanuel, Bertille martinez, Clement Livache, Charlie Greboval, Audrey Chu, and nicolas goubet. "Designing Photovoltaic Devices Using HgTe Nanocrystals for SWIR and MWIR Detection." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.032.
Full textReports on the topic "Photovoltaic Devices - Semiconductor Nanocrystals"
Author, Not Given. Improved Fabrication Methods and Materials for Advanced Photovoltaic and Semiconductor Devices. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1019282.
Full text