Academic literature on the topic 'Photovoltaic Architecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photovoltaic Architecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photovoltaic Architecture"
Devetaković, Mirjana, Djordje Djordjević, Milan Radojević, Aleksandra Krstić-Furundžić, Bogdan-Gabriel Burduhos, Georgios Martinopoulos, Mircea Neagoe, and Gabriele Lobaccaro. "Photovoltaics on Landmark Buildings with Distinctive Geometries." Applied Sciences 10, no. 19 (September 25, 2020): 6696. http://dx.doi.org/10.3390/app10196696.
Full textKimura, Ken-ichi. "Photovoltaic systems and architecture." Solar Energy Materials and Solar Cells 35 (September 11, 1994): 409–19. http://dx.doi.org/10.1016/0927-0248(94)90168-6.
Full textMarchwiński, Janusz. "Architectural analysis of photovoltaic (PV) module applications on non-flat roofs." Acta Scientiarum Polonorum. Architectura 22 (July 24, 2023): 1–10. http://dx.doi.org/10.22630/aspa.2023.22.1.
Full textAnanda, Kevin, and Agus Hariyadi. "Adaptive Photovoltaic Performance Study with a Biomimetic Approach for Energy Saving." Journal of Artificial Intelligence in Architecture 2, no. 1 (February 26, 2023): 1–15. http://dx.doi.org/10.24002/jarina.v2i1.6331.
Full textYoo, Seung-Ho, and Hee-Jeong Choi. "Solar Architecture Integrated Bi-Facial Photovoltaic System as a Shade." Processes 9, no. 9 (September 9, 2021): 1625. http://dx.doi.org/10.3390/pr9091625.
Full textWang, Zheng, Yanli Xiao, Ye Wan, Ke Liu, and Xiyuan Wang. "Research on energy management strategy of photovoltaic–battery energy storage system." International Journal of Low-Carbon Technologies 17 (2022): 488–93. http://dx.doi.org/10.1093/ijlct/ctac024.
Full textNasir, Mashood, Saqib Iqbal, Hassan A. Khan, Juan C. Vasquez, and Josep M. Guerrero. "Sustainable Rural Electrification Through Solar PV DC Microgrids—An Architecture-Based Assessment." Processes 8, no. 11 (November 6, 2020): 1417. http://dx.doi.org/10.3390/pr8111417.
Full textChehab, Oussama. "The intelligent façade photovoltaic and architecture." Renewable Energy 5, no. 1-4 (August 1994): 188–204. http://dx.doi.org/10.1016/0960-1481(94)90371-9.
Full textHaghighi, Zoheir, Mahboubeh Angali Dehnavi, Thaleia Konstantinou, Andy van den Dobbelsteen, and Tillmann Klein. "Architectural Photovoltaic Applications: Lessons Learnt and Perceptions from Architects." Buildings 11, no. 2 (February 11, 2021): 62. http://dx.doi.org/10.3390/buildings11020062.
Full textCHAHMI, Abdelghani. "Study of photovoltaic systems with differences connecting configuration topologies for applications in renewable energy systems." International Journal of Energetica 4, no. 1 (June 30, 2019): 28. http://dx.doi.org/10.47238/ijeca.v4i1.83.
Full textDissertations / Theses on the topic "Photovoltaic Architecture"
Yan, Jinghui. "Full Bridge LLC Converter Secondary Architecture Study for Photovoltaic Application." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/82490.
Full textMaster of Science
Makki, Adham. "Innovative heat pipe-based photovoltaic/thermoelectric (PV/TEG) generation system." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/43330/.
Full textBilton, Amy M. (Amy Marlou). "A modular design architecture for application to community-scale photovoltaic-powered reverse osmosis systems." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79337.
Full textThis electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from department-submitted PDF version of thesis.
Includes bibliographical references (p. 151-158).
Access to safe, clean drinking water is a major challenge for many communities. These communities are often near seawater and/or brackish groundwater sources, making desalination a possible solution. Unfortunately, desalination is energy intensive and a reliable, inexpensive power supply is also challenging for remote locations. Photovoltaic reverse osmosis systems (PVRO) can be used to provide water for underserved communities. A feasibility study which demonstrates the economic viability of such systems is discussed here. PVRO systems are assembled from mass-produced modular components. This approach reduces manufacturing costs. However, designing a system optimized for a specific location is difficult. For even a small inventory of components, the number of design choices is enormous. A designer with significant expertise is required to tailor a PVRO system for a given location, putting this technology out of reach of many communities. This thesis develops a modular design architecture which can be implemented in a computer program to enable non-experts to configure systems from inventories of modular components. This architecture is not limited to PVRO systems, but can also be used to design other systems composed of modular components such as cars, electronics, and computers. The method uses a hierarchy of filters to limit the design space based on design principles and calculations. The system is then configured from the reduced design space using optimization methods and detailed system models. In this thesis, the modular design architecture is implemented for PVRO systems. A set of detailed physics-based system models are developed to enable this process. A novel method of representing a PVRO system using a graph is developed to enable rapid evaluation of different system configurations. This modeling technique is validated using the MIT Experimental PVRO system constructed as part of this research. A series of case studies are conducted to validate the modular design approach for PVRO systems. The first set of case studies considers a deterministic solar input and water demand. The design goal is to determine the lowest cost system that meets the water demand requirements. It is shown that the method is able to tailor systems for a wide range of locations and water demands from a large system inventory. The validity of these solutions is demonstrated by simulating a custom designed system in the wrong location. Another case study shows that the approach can be used to determine market potential of new components. The second set of case studies considers variations in the solar radiation and water demand. The design goal is to determine the lowest cost PVRO system that meets the water demand profile with a specified probability. Two methods that use historical solar insolation and water demand to account for variations are presented. The first method characterizes the historical data and develops models to synthetically generate solar insolation and water demand profiles, and then simulates the system performance over 100 years to calculate the loss-of-water probability. In the second method, distributions of solar radiation and water demand are calculated from historical data and used to directly calculate the probability of running out of water in the worst month of the year. Both methods are implemented and shown to produce feasible system configurations. The direct calculation method is shown to reduce the required computation time and is suitable for different systems with variable inputs.
by Amy M. Bilton.
Ph.D.
Berasategi, Arostegi Aloña. "New optimized electrical architectures of photovoltaic generators with high conversion efficiency." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2079/.
Full textThis thesis focuses in the optimization of the efficiency of photovoltaic power conversion chain. In this way, different improvements have been proposed in the electrical architecture and its control algorithms in order to obtain high efficiency in a large rage of input power and long life-time of PV power conversion system. Using loss analysis, the benefits and drawbacks of parallel connection of power structures has been shown. This analysis has allowed the conception of a new optimized architecture constituted by parallelized power converters, called Multi-Phase Adaptive Converter (MPAC). The singularity of these power structures consists on the adaptation of the phases of the converter depending on the power production in real-time and looking for the most efficient configuration all time. In this way, the MPAC guarantees high conversion efficiency for all power ranges. Another control law is also implemented which guarantees a rotation of the phases to keep their working time uniform. Thus, the stress of the components of all the phases is kept homogenous, assuring a homogeneous aging of the phases. Since the global stress of the component is lower, the MPAC presents a longer life-time. The improvements in the power conversion stage are shown by experimental prototypes. Experimental tests have been done for global validation. Comparison with a classical power conversion stage shows the improvement in the global conversion efficiency
Munoz-Coreas, Edgard. "Stargrazer One: A New Architecture for Distributed Maximum Power Point Tracking of Solar Photovoltaic Sources." UKnowledge, 2015. http://uknowledge.uky.edu/ece_etds/76.
Full textRasin, Ahmed Tasnim. "High efficiency quantum dot-sensitised solar cells by material science and device architecture." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/78822/1/Ahmed%20Tasnim_Rasin_Thesis.pdf.
Full textJones, David Charles. "Control Techniques for the Maximization of Power Converter Robustness and Efficiency in a Parallel Photovoltaic Architecture." Thesis, University of Colorado at Boulder, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3561982.
Full textA parallel connected photovoltaic (PV) architecture connects individual PV panels in parallel to a high voltage inverter input bus through intervening dedicated dc-dc converters. These per-panel parallel PV converters provide the large voltage boost normally obtained through the series connection of panels to the inverter input. The goal of this thesis is the development of control algorithms which maximize the robustness and power harvesting of a parallel PV converter, subject to maximum power and current constraints. Meeting this goal requires the invention of several new algorithms and analytical results.
A new state plane technique including generalized diode reverse recovery is developed to produce an accurate model of the parallel converter dc transformer circuit, greatly improving on prior modeling techniques. Existing perturb and observe (PO) maximum power point tracking algorithms are shown to suffer from small local maxima, called traps, in the measured PV power curve. A generalized PO (GPO) algorithm is invented to greatly improve tracking robustness in the presence of traps. A new nonlinear controller is developed which integrates GPO and current limit functions, providing for rapid and stable transition between the two associated modes.
A dead zone avoidance and mitigation (DZAM) processor is invented to address an operational dead zone which exists near the buck-boost mode boundary in a noninverting buck-boost converter. DZAM improves on prior dead zone mitigation techniques for this converter through autonomous operation and the avoidance of any decrease in converter efficiency or operational bandwidth. A significant improvement in the buck-boost efficiency curve is achieved by generalizing the DZAM processor nonlinearity in a way which enables optimal adaptation of an effective converter switching frequency.
Yu, Xu. "Investigation of a novel multifunctional roof panel for hybrid photovoltaic/thermal/daylight application in atrium and large green house." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30595/.
Full textSoria, Bruno. "Etude des performances électriques annuelles de modules photovoltaïques bifaces. Cas particulier modules bifaces intégrés en façade verticale." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT066/document.
Full textDespite the apparent benefits of bifacial modules, their application still suffers from a lack of visibility on the performance gain that they can actually provide. In this thesis we consider the specific application of vertically oriented bifacial modules, notably for facade integration. We also consider several innovative module architectures to work around some of the electrical and optical constraints of bifacial modules. We have developed a methodology to evaluate the annual electrical performance of bifacial modules based on three tools. Firstly, a double illumination characterization setup is used in a solar simulator for comparing module architectures. Then, a reduced scale outdoor test bench allows us to evaluate bifacial module performance in a variety of configurations. Finally, a ray-tracing model validated with short-term outdoor data leads to the annual electrical performance. This methodology allowed us to find optimal performance according to the most important parameters of application and module. Specifically, a module architecture using half-cut cells, a parallel cell interconnection and textured glasses have been analysed with respect to their influence on the resistive losses which occur in double illumination as well as to their influence on the effect of non-uniform and diffuse irradiance on the backside of the module. This work enabled us to propose real size module architectures and to launch studies at the bifacial system level
Ego, Christophe. "Oligo and polyfluorenes of controlled architecture for applications in opto-electronics." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210958.
Full textThe first subject of this work deal with the design, the synthesis and the characterisation of polyfluorenes end-capped with perylene dicarboximide derivatives. These perylene moieties are able to interact by energy transfer under specific conditions of illumination, proximity and orientation. Their observation by single molecule spectroscopy permitted therefore to gain valuable information concerning the three-dimensional folding of single polyfluorene chains. To complete this study, the synthesis and characterisation of a perylene end-capped trimer of fluorene was performed. This structure being monodisperse, a finer analysis of the energy-transfer occurring between both perylene dyes could be accomplished, which confirmed the structural hypothesis made for the polymer. During these studies, it has been observed that, in addition to the energy transfer occurring between both perylene derivatives, another energy transfer occurs between the polyfluorene backbone and the perylene derivatives upon excitation of the first. This led to the idea of the synthesis of a polyfluorene bearing perylenes dicarboximide as side chains. This perylene-rich polyfluorene has been used to build a photovoltaic cell efficient in the wavelengths of both polyfluorene absorption and perylene carboximide absorption.
Another subject of this work was the design, synthesis and characterisation of polyfluorenes bearing bulky phenoxy groups as side-chains. These polymers, due to their lower tendency toward aggregation, exhibited a better stability of their emission colour upon annealing. Similarly, a series of homo- and copolymers of fluorene bearing bulky and hole accepting triphenylamine substituants was synthesised and characterised. In addition to their improved colour stability in comparison with dialkylpolyfluorenes, the LEDs build with these materials exhibited a very low turn on voltage.
Doctorat en sciences, Spécialisation chimie
info:eu-repo/semantics/nonPublished
Books on the topic "Photovoltaic Architecture"
Photovoltaics: Technology, architecture, installation. Basel: Birkhäuser, 2010.
Find full textPeter, Toggweiler, ed. Photovoltaik und architektur: Die Integration von Solarzellen in Gebäudehüllen = Photovoltaics in architecture : the integration of photovoltaic cells in building envelopes. Basel: Birkhäuser, 1993.
Find full textRandall, Thomas, ed. Photovoltaics and architecture. London: Spon Press, 2001.
Find full textThomas, Randall. Photovoltaics and Architecture. London: Taylor & Francis Inc, 2003.
Find full textThomas, Randall. Photovoltaics and Architecture. London: Taylor & Francis Group Plc, 2004.
Find full textChristine, Rüb, ed. Solar design: Photovoltaics for old buildings, urban space, landscapes = photovoltaik für Altbau, Stadtraum, Landschaft. Berlin: Jovis, 2005.
Find full textRandall, Thomas, ed. Photovoltaics and architecture: An introduction for architects and engineers. New York: Spon Press, 2000.
Find full textMark, Hickman J., and United States. National Aeronautics and Space Administration., eds. TROPIX power system architecture. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Find full textFotovoltaico in architettura. Firenze: Alinea, 2006.
Find full textRüther, Ricardo. Edifícios solares fotovoltaicos: O potencial da geração solar fotovoltaica integrada a edificações urbanas e interligada à rede elétrica pública no Brasil. Florianópolis: Editora UFSC, 2004.
Find full textBook chapters on the topic "Photovoltaic Architecture"
Tiwari, Gopal Nath, and Neha Gupta. "Photovoltaic Application in Architecture." In Photovoltaic Thermal Passive House System, 351–83. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429445903-11.
Full textReijenga, Tjerk H., and Henk F. Kaan. "PV in Architecture." In Handbook of Photovoltaic Science and Engineering, 1043–77. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470974704.ch23.
Full textReijenga, Tjerk H. "PV in Architecture." In Handbook of Photovoltaic Science and Engineering, 1005–42. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470014008.ch22.
Full textCallegari, Guido, Eleonora Merolla, and Paolo Simeone. "Photovoltaic Breakthrough in Architecture: Integration and Innovation Best Practice." In The Urban Book Series, 321–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_29.
Full textPalochi, C., M. Matheou, and M. C. Phocas. "Adaptive hybrid structure for photovoltaic shading modules integration." In Structures and Architecture A Viable Urban Perspective?, 397–403. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003023555-48.
Full textKiriy, Anton, and Frederik C. Krebs. "Synthesis of Conjugated Polymers with Complex Architecture for Photovoltaic Applications." In Elementary Processes in Organic Photovoltaics, 351–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28338-8_15.
Full textValderrama, Alvaro, Carlos Valle, Marcelo Ibarra, and Hector Allende. "A Heterogeneous 1D Convolutional Architecture for Urban Photovoltaic Estimation." In Intelligent Computing Theories and Application, 435–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84522-3_36.
Full textCumbajin, Myriam, Ruxandra Stoean, José Aguado, and Gonzalo Joya. "Hybrid Deep Learning Architecture Approach for Photovoltaic Power Plant Output Prediction." In Lecture Notes in Networks and Systems, 26–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94262-5_3.
Full textShapsough, Salsabeel, Mohannad Takrouri, Rached Dhaouadi, and Imran Zualkernan. "An MQTT-Based Scalable Architecture for Remote Monitoring and Control of Large-Scale Solar Photovoltaic Systems." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 57–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05928-6_6.
Full textKherani, Nazir P. "Nano Architectures in Silicon Photovoltaics." In Excitonic and Photonic Processes in Materials, 37–62. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-131-2_2.
Full textConference papers on the topic "Photovoltaic Architecture"
Edgar, Ross, Zbigniew Stachurski, and Steve Cochard. "Novel Photovoltaic Module Tracking Architecture." In Optics for Solar Energy. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/ose.2014.rth3b.2.
Full textSusan, Susan, and Dyah Kusuma Wardhani. "Predicting Energy Efficiency Performance for Building Integrated Photovoltaic." In International Webinar on Digital Architecture 2021 (IWEDA 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220703.010.
Full textHaney, Michael W., Tian Gu, and Gautam Agrawal. "Hybrid micro-scale CPV/PV architecture." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925343.
Full textRadovanović, Ilija, and Ivan Popović. "Integration of distributed photovoltaic systems in the smart environment through FOG Computing architecture." In 8th International Conference on Renewable Electrical Power Sources. SMEITS, 2020. http://dx.doi.org/10.24094/mkoiee.020.8.1.247.
Full textVergnet, Dominique, Victor Khorenko, Gunther Bissels, Elias Vlieg, Oumaima Mhibik, Jan-Peter Kurvers, Sebastien Noel, et al. "Advanced Lightweight Flexible Array with Mechanical Architecture." In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980547.
Full textde Souza Silva, Joao Lucas, Hugo Soeiro Moreira, Daniel Bastos de Mesquita, Michelle Melo Cavalcante, and Marcelo Gradella Villalva. "Modular Architecture with Power Optimizers for Photovoltaic Systems." In 2019 International Conference on Smart Energy Systems and Technologies (SEST). IEEE, 2019. http://dx.doi.org/10.1109/sest.2019.8849056.
Full textDavis, Kevin O., Abraham K. Ishihara, Chaitanya Poolla, and Seiichi Arai. "Novel cascaded battery charging architecture for photovoltaic systems." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744431.
Full textAzis, Syed Farid Syed, Shahrani Shahbudin, Murizah Kassim, Roslina Mohamad, and Farah Yasmin Abdul Rahman. "Photovoltaic Module Defects Classification Analysis using DenseNet Architecture." In 2022 IEEE Symposium on Industrial Electronics & Applications (ISIEA). IEEE, 2022. http://dx.doi.org/10.1109/isiea54517.2022.9873681.
Full textTorrey, Ethan R., Jennifer Krohn, P. Paul Ruden, and P. I. Cohen. "Efficiency of a laterally engineered architecture for photovoltaics." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5614191.
Full textde Santoli, L., A. Sferra, and G. Piras. "Life cycle assessment of electricity generated by photovoltaic systems manufactured in Europe and installed in buildings in the city of Rome." In ECO-ARCHITECTURE 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/arc100271.
Full textReports on the topic "Photovoltaic Architecture"
Farkas, Klaudia, Laura Maturi, Alessandra Scognamiglio, Francesco Frontini, Maria Cristina, Munari Probst, Christian Roecker, and Marja Lundgren. Designing Photovoltaic Systems for Architectural Integration. Edited by Klaudia Farkas. IEA Solar Heating and Cooling Programme, November 2013. http://dx.doi.org/10.18777/ieashc-task41-2013-0002.
Full textGabor, A., and F. van Mierlo. Self Aligned Cell: Scaling Up Manufacture of a Cost Effective Cell Architecture for Multicrystalline Silicon Photovoltaics. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1001446.
Full textKuciauskas, Darius. Photovoltaics Research and Development: Device Architecture for Next-Generation CdTe PV: Cooperative Research and Development Final Report, CRADA Number CRD-17-00662. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1815392.
Full text