Academic literature on the topic 'Photoperception'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photoperception.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photoperception"

1

Devlin, Paul F., and Steve A. Kay. "Circadian Photoperception." Annual Review of Physiology 63, no. 1 (March 2001): 677–94. http://dx.doi.org/10.1146/annurev.physiol.63.1.677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

THOMPSON, L. "Sites of photoperception in white clover." Grass and Forage Science 50, no. 3 (September 1995): 259–62. http://dx.doi.org/10.1111/j.1365-2494.1995.tb02321.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kehoe, David M., and Arthur R. Grossman. "Complementary chromatic adaptation: photoperception to gene regulation." Seminars in Cell Biology 5, no. 5 (October 1994): 303–13. http://dx.doi.org/10.1006/scel.1994.1037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Ze-Yu, Brenda G. Rushing, Yong Bai, Howard Gest, and Carl E. Bauer. "Isolation of Rhodospirillum centenumMutants Defective in Phototactic Colony Motility by Transposon Mutagenesis." Journal of Bacteriology 180, no. 5 (March 1, 1998): 1248–55. http://dx.doi.org/10.1128/jb.180.5.1248-1255.1998.

Full text
Abstract:
ABSTRACT The purple photosynthetic bacterium Rhodospirillum centenum is capable of forming swarm colonies that rapidly migrate toward or away from light, depending on the wavelength of excitation. To identify components specific for photoperception, we conducted mini-Tn5-mediated mutagenesis and screened approximately 23,000 transposition events for mutants that failed to respond to either continuous illumination or to a step down in light intensity. A majority of the ca. 250 mutants identified lost the ability to form motile swarm cells on an agar surface. These cells appeared to contain defects in the synthesis or assembly of surface-induced lateral flagella. Another large fraction of mutants that were unresponsive to light were shown to be defective in the formation of a functional photosynthetic apparatus. Several photosensory mutants also were obtained with defects in the perception and transmission of light signals. Twelve mutants in this class were shown to contain disruptions in a chemotaxis operon, and five mutants contained disruptions of components unique to photoperception. It was shown that screening for photosensory defective R. centenumswarm colonies is an effective method for genetic dissection of the mechanism of light sensing in eubacteria.
APA, Harvard, Vancouver, ISO, and other styles
5

Furuya, Masaki, and Eberhard Schäfer. "Photoperception and signalling of induction reactions by different phytochromes." Trends in Plant Science 1, no. 9 (September 1996): 301–7. http://dx.doi.org/10.1016/s1360-1385(96)88176-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Battle, Martin W., Franco Vegliani, and Matthew A. Jones. "Shades of green: untying the knots of green photoperception." Journal of Experimental Botany 71, no. 19 (July 3, 2020): 5764–70. http://dx.doi.org/10.1093/jxb/eraa312.

Full text
Abstract:
Abstract The development of economical LED technology has enabled the application of different light qualities and quantities to control plant growth. Although we have a comprehensive understanding of plants’ perception of red and blue light, the lack of a dedicated green light sensor has frustrated our utilization of intermediate wavelengths, with many contradictory reports in the literature. We discuss the contribution of red and blue photoreceptors to green light perception and highlight how green light can be used to improve crop quality. Importantly, our meta-analysis demonstrates that green light perception should instead be considered as a combination of distinct ‘green’ and ‘yellow’ light-induced responses. This distinction will enable clearer interpretation of plants’ behaviour in response to green light as we seek to optimize plant growth and nutritional quality in horticultural contexts.
APA, Harvard, Vancouver, ISO, and other styles
7

Schäfer, Eberhard, and Chris Bowler. "Phytochrome‐mediated photoperception and signal transduction in higher plants." EMBO reports 3, no. 11 (November 2002): 1042–48. http://dx.doi.org/10.1093/embo-reports/kvf222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quecini, Vera. "Identification of photoperception and light signal transduction pathways in citrus." Genetics and Molecular Biology 30, no. 3 suppl (2007): 780–93. http://dx.doi.org/10.1590/s1415-47572007000500007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

HUGHES, J. E., D. C. MORGAN, and C. R. BLACK. "Transmission properties of an oak canopy in relation to photoperception." Plant, Cell & Environment 8, no. 7 (September 1985): 509–16. http://dx.doi.org/10.1111/j.1365-3040.1985.tb01686.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blatt, Michael R. "TOWARD THE LINK BETWEEN MEMBRANES TRANSPORT AND PHOTOPERCEPTION IN PLANT." Photochemistry and Photobiology 45, s1 (May 1987): 933–38. http://dx.doi.org/10.1111/j.1751-1097.1987.tb07904.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Photoperception"

1

Duchêne, Carole. "Light sensing in the Ocean : studying diatom phytochrome photoreceptors." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS164.pdf.

Full text
Abstract:
Les algues marines telles que les diatomées possèdent un large éventail de photorécepteurs de lumière bleue et verte, mais aussi des phytochromes (DPH), capable de réguler l'expression des gènes en réponse à la lumière RL chez la diatomée modèle Phaeodactylum tricornutum (Pt). Cependant, la fonction biologique de ce photorécepteur est encore inconnue. Grâce à un système rapporteur permettant de suivre l'activité de PtDPH in vivo, j’ai pu caractériser ses propriétés photochimiques, modéliser son activité dans différents champs lumineux marins, et montrer que les DPH en détectent les variations liées à la profondeur et la concentration de phytoplancton. J'ai également recherché les DPH dans les génomes et transcriptomes de diverses diatomées et analysé leur distribution dans l'environnement en utilisant les données méta-omiques générées au cours de l'expédition Tara Oceans. Cela a révélé que les diatomées planctoniques du groupe des centriques possédant des DPH sont présentes dans les zones polaires et tempérées, tandis que les diatomées pennées, vivant dans les sédiments peuvent présenter une duplication du gène DPH. Nous avons montré que ces gènes dupliqués ont des propriétés spectrales différentes, et que certaines diatomées benthiques montrent une adaptation spécifique à la lumière R qui pourrait être régulée par DPH. Ce travail apporte de nouvelles connaissances sur les mécanismes de perception de la lumière chez les diatomées, et leurs importances pour coloniser différentes niches environnementales
Light is an essential source of energy and information for photosynthetic organisms. In the marine environment, red and far-red lights are quickly attenuated in the water column compared to blue and green light. Accordingly, predominant marine algae such as diatoms possess a wide array of blue and green light photoreceptors, but also red (R)/far-red (FR) light sensing phytochrome photoreceptors (DPH), capable of regulating gene expression in response to FR light in the model diatom Phaeodactylum tricornutum (Pt). However, the biological function of this photoreceptor is still unknown. By setting up a reporter system to monitor PtDPH activity in vivo, I was able to characterize its photochemical properties, model its activity in different marine light fields, and show that DPHs can detect variations related to depth and phytoplankton concentration. Using bioinformatics approaches, I looked for DPH in the available genomes and transcriptomes of diverse diatoms and analyzed their distribution in the environment using the meta-omics data from the Tara Oceans expedition. This revealed that planktonic diatoms of the centric group possessing DPH are present in temperate and polar regions. In these species DPH may work as sensor of depth and phytoplankton concentration. Pennate diatoms living in sediments can present duplications of the DPH gene. We showed that these duplicated genes can have different spectral properties, and that some benthic diatoms show a specific adaptation to R light that could be regulated by DPH. This work brings new insights into DPH-mediated light perception mechanisms in diatoms, and their significance for colonizing various environmental niches
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Photoperception"

1

Royal Society. Photoperception By Pla. Cambridge University Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nogier, R. Introduction pratique à l'auriculomédecine. La photoperception cutanée. Haug, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photoperception"

1

Sharrock, Robert A. "Plant Photoperception: the Phytochrome System." In Development, 194–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77043-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Asard, Han, and Roland J. Caubergs. "Circadian Rhythms and Photoperception in Plants: The Role of Red Light and Blue Light." In Membranes and Circadian Rythms, 139–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-79903-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Cutaneous Photoperception." In Auriculotherapy, edited by Raphael Nogier. Stuttgart: Georg Thieme Verlag, 2009. http://dx.doi.org/10.1055/b-0034-65796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Srivastava, Lalit M. "Photoperception and Signaling." In Plant Growth and Development, 665–716. Elsevier, 2002. http://dx.doi.org/10.1016/b978-012660570-9/50170-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Cutaneous Photoperception and Ear Points." In Auriculotherapy, edited by Raphael Nogier. Stuttgart: Georg Thieme Verlag, 2009. http://dx.doi.org/10.1055/b-0034-65797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

VINCE-PRUE, D., and P. J. LUMSDEN. "INDUCTIVE EVENTS IN THE LEAVES: TIME MEASUREMENT AND PHOTOPERCEPTION IN THE SHORT-DAY PLANT, PHARBITIS NIL." In Manipulation of Flowering, 255–68. Elsevier, 1987. http://dx.doi.org/10.1016/b978-0-407-00570-9.50023-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography