Journal articles on the topic 'Photonic Integrated Circuits (PICs)'

To see the other types of publications on this topic, follow the link: Photonic Integrated Circuits (PICs).

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photonic Integrated Circuits (PICs).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Baier, Moritz, Axel Schoenau, Francisco M. Soares, and Martin Schell. "Polarimetry for Photonic Integrated Circuits." Applied Sciences 9, no. 15 (July 25, 2019): 2987. http://dx.doi.org/10.3390/app9152987.

Full text
Abstract:
Photonic integrated circuits (PICs) play a key role in a wide range of applications. Very often, the performance of PICs depends strongly on the state of polarization of light. Classically, this is regarded as undesirable, but more and more applications emerge that make explicit use of polarization dependence. In either case, the characterization of the polarization properties of a PIC can be a nontrivial task. We present a way of characterizing PICs in terms of their full Müller matrix, yielding a complete picture of their polarization properties. The approach is demonstrated by carrying out measurements of fabricated PICs.
APA, Harvard, Vancouver, ISO, and other styles
2

Piramidowicz, R., S. Stopiński, K. Ławniczuk, K. Welikow, P. Szczepański, X. J. M. Leijtens, and M. K. Smit. "Photonic integrated circuits – a new approach to laser technology." Bulletin of the Polish Academy of Sciences: Technical Sciences 60, no. 4 (December 1, 2012): 683–89. http://dx.doi.org/10.2478/v10175-012-0079-5.

Full text
Abstract:
Abstract In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is focused on InP-based photonic integrated circuits, with a short description of the potential of the silicon technology. A completely new way of fabrication of PICs, called generic integration technology, is presented and discussed. The basic assumption of this approach is the very same as in the case of electronic circuits and states that a limited set of standard components, both active and passive, enables designing of a complex, multifunctional PIC of every type. As a result, functionally advanced, compact, energy efficient and cost-optimized photonic devices can be fabricated. The work presents also selected examples of active PICs like multiwavelength laser sources, discretely tunable lasers, WDM transmitters, ring lasers etc.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Chuang, Chang-Ling Zou, Yan Zhao, Chun-Hua Dong, Cong Wei, Hanlin Wang, Yunqi Liu, Guang-Can Guo, Jiannian Yao, and Yong Sheng Zhao. "Organic printed photonics: From microring lasers to integrated circuits." Science Advances 1, no. 8 (September 2015): e1500257. http://dx.doi.org/10.1126/sciadv.1500257.

Full text
Abstract:
A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 105, which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Soref, Richard. "Reconfigurable Integrated Optoelectronics." Advances in OptoElectronics 2011 (May 4, 2011): 1–15. http://dx.doi.org/10.1155/2011/627802.

Full text
Abstract:
Integrated optics today is based upon chips of Si and InP. The future of this chip industry is probably contained in the thrust towards optoelectronic integrated circuits (OEICs) and photonic integrated circuits (PICs) manufactured in a high-volume foundry. We believe that reconfigurable OEICs and PICs, known as ROEICs and RPICs, constitute the ultimate embodiment of integrated photonics. This paper shows that any ROEIC-on-a-chip can be decomposed into photonic modules, some of them fixed and some of them changeable in function. Reconfiguration is provided by electrical control signals to the electro-optical building blocks. We illustrate these modules in detail and discuss 3D ROEIC chips for the highest-performance signal processing. We present examples of our module theory for RPIC optical lattice filters already constructed, and we propose new ROEICs for directed optical logic, large-scale matrix switching, and 2D beamsteering of a phased-array microwave antenna. In general, large-scale-integrated ROEICs will enable significant applications in computing, quantum computing, communications, learning, imaging, telepresence, sensing, RF/microwave photonics, information storage, cryptography, and data mining.
APA, Harvard, Vancouver, ISO, and other styles
5

Mukherjee, Amlan Kusum, Mingjun Xiang, and Sascha Preu. "Broadband Terahertz Photonic Integrated Circuit with Integrated Active Photonic Devices." Photonics 8, no. 11 (November 3, 2021): 492. http://dx.doi.org/10.3390/photonics8110492.

Full text
Abstract:
Present-day photonic terahertz (100 GHz–10 THz) systems offer dynamic ranges beyond 100 dB and frequency coverage beyond 4 THz. They yet predominantly employ free-space Terahertz propagation, lacking integration depth and miniaturisation capabilities without sacrificing their extreme frequency coverage. In this work, we present a high resistivity silicon-on-insulator-based multimodal waveguide topology including active components (e.g., THz receivers) as well as passive components (couplers/splitters, bends, resonators) investigated over a frequency range of 0.5–1.6 THz. The waveguides have a single mode bandwidth between 0.5–0.75 THz; however, above 1 THz, these waveguides can be operated in the overmoded regime offering lower loss than commonly implemented hollow metal waveguides, operated in the fundamental mode. Supported by quartz and polyethylene substrates, the platform for Terahertz photonic integrated circuits (Tera-PICs) is mechanically stable and easily integrable. Additionally, we demonstrate several key components for Tera-PICs: low loss bends with radii ∼2 mm, a Vivaldi antenna-based efficient near-field coupling to active devices, a 3-dB splitter and a filter based on a whispering gallery mode resonator.
APA, Harvard, Vancouver, ISO, and other styles
6

Yi, Ailun, Chengli Wang, Liping Zhou, Yifan Zhu, Shibin Zhang, Tiangui You, Jiaxiang Zhang, and Xin Ou. "Silicon carbide for integrated photonics." Applied Physics Reviews 9, no. 3 (September 2022): 031302. http://dx.doi.org/10.1063/5.0079649.

Full text
Abstract:
Photonic integrated circuits (PICs) based on lithographically patterned waveguides provide a scalable approach for manipulating photonic bits, enabling seminal demonstrations of a wide range of photonic technologies with desired complexity and stability. While the next generation of applications such as ultra-high speed optical transceivers, neuromorphic computing and terabit-scale communications demand further lower power consumption and higher operating frequency. Complementing the leading silicon-based material platforms, the third-generation semiconductor, silicon carbide (SiC), offers a significant opportunity toward the advanced development of PICs in terms of its broadest range of functionalities, including wide bandgap, high optical nonlinearities, high refractive index, controllable artificial spin defects and complementary metal oxide semiconductor-compatible fabrication process. The superior properties of SiC have enabled a plethora of nano-photonic explorations, such as waveguides, micro-cavities, nonlinear frequency converters and optically-active spin defects. This remarkable progress has prompted the rapid development of advanced SiC PICs for both classical and quantum applications. Here, we provide an overview of SiC-based integrated photonics, presenting the latest progress on investigating its basic optoelectronic properties, as well as the recent developments in the fabrication of several typical approaches for light confinement structures that form the basic building blocks for low-loss, multi-functional and industry-compatible integrated photonic platform. Moreover, recent works employing SiC as optically-readable spin hosts for quantum information applications are also summarized and highlighted. As a still-developing integrated photonic platform, prospects and challenges of utilizing SiC material platforms in the field of integrated photonics are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Meyer, Jerry R., Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley, and Igor Vurgaftman. "Interband Cascade Photonic Integrated Circuits on Native III-V Chip." Sensors 21, no. 2 (January 16, 2021): 599. http://dx.doi.org/10.3390/s21020599.

Full text
Abstract:
We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.
APA, Harvard, Vancouver, ISO, and other styles
8

Letko, Edvins, Arturs Bundulis, and Gatis Mozolevskis. "Theoretical Development of Polymer-Based Integrated Lossy-Mode Resonance Sensor for Photonic Integrated Circuits." Photonics 9, no. 10 (October 12, 2022): 764. http://dx.doi.org/10.3390/photonics9100764.

Full text
Abstract:
A promising phenomenon such as lossy-mode resonance (LMR) is of great interest in sensor applications. Until now, this phenomenon has been shown only in fibers or planar waveguides; however, given the rapid development of such an important technological area as photonic integrated circuits (PICs), it is important to transfer LMR technology specifically to PICs. In this article, we propose the theoretical development of an integrated polymer-based LMR sensor that will also contribute to the development of hybrid organic–inorganic PICs. This work theoretically shows that LMR can be achieved using polymer SU-8 waveguides on a glass substrate, on top of which TiO2 is deposited. In addition, the paper shows that multiple resonances can be achieved in the developed integrated sensor. The highest sensor sensitivity (about 1400 nm/RIU) was achieved with 40 nm of TiO2. The effect of the waveguide and coating geometries, as well as the polarizations of propagating modes, is studied in this paper.
APA, Harvard, Vancouver, ISO, and other styles
9

Borovytsky, V. M., I. I. Avdieionok, S. E. Tuzhanskyi, and H. L. Lysenko. "Photonic integrated circuits for optical matrix-vector multiplication." Optoelectronic Information-Power Technologies 43, no. 1 (December 28, 2022): 11–18. http://dx.doi.org/10.31649/1681-7893-2022-43-1-11-18.

Full text
Abstract:
The article proposes a classification of photonic integrated circuits (PICs) for optical multiplication of vectors on matrices. According to this classification, such PIC can be divided into two groups. The first group combines multilayer photonic integrated circuits, in which active elements that perform multiplication are located in one layer, and optical waveguides for input and output signals are located in other layers. The second group covers planar PIC, in which active elements are placed in one layer together with optical waveguides. The article describes the construction, principles of operation of FIS of both groups and contains an analysis of their advantages and disadvantages.
APA, Harvard, Vancouver, ISO, and other styles
10

Takenaka, Mitsuru, Ziqiang Zhao, Chong Pei Ho, Takumi Fujigaki, Tipat Piyapatarakul, Yuto Miyatake, Rui Tang, Kasidit Toprasertpong, and Shinichi Takagi. "Ge-on-insulator Platform for Mid-infrared Photonic Integrated Circuits." ECS Transactions 109, no. 4 (September 30, 2022): 47–58. http://dx.doi.org/10.1149/10904.0047ecst.

Full text
Abstract:
Since mid-infrared (MIR) wavelengths have a great potential for optical communication, sensing, and quantum information, Si-based MIR photonic integrated circuits (PICs) have been developed by leveraging Si photonics technology for near-infrared wavelengths. However, the transparency wavelength window of Si is from 1.2 μm to 8 μm, limiting the available wavelengths in the MIR spectrum. Ge is emerging as a waveguide material to overcome this difficulty because Ge is transparent in the entire MIR spectrum. We have developed a Ge-on-insulator (GeOI) platform for MIR integrated photonics. The strong optical confinement in a GeOI waveguide enables an ultracompact MIR PIC. Using wafer bonding and Smart-cut, a GeOI wafer was successfully fabricated. As a result, we have demonstrated various Ge passive devices, thermo-optic phase shifters, modulators, and photodetectors on a GeOI platform.
APA, Harvard, Vancouver, ISO, and other styles
11

Peng, Zheng, Junbo Feng, Huan Yuan, Wei Cheng, Yan Wang, Xiaodong Ren, Hao Cheng, et al. "A Non-Volatile Tunable Ultra-Compact Silicon Photonic Logic Gate." Nanomaterials 12, no. 7 (March 28, 2022): 1121. http://dx.doi.org/10.3390/nano12071121.

Full text
Abstract:
Logic gates, as one of the most important basic units in electronic integrated circuits (EICs), are also equally important in photonic integrated circuits (PICs). In this study, we proposed a non-volatile, ultra-compact all-photonics logic gate. The footprint is only 2 μm × 2 μm. We regulate the phase change of optical phase change materials(O-PCMs) Sb2Se3 to switch the function of the logic gate. The Sb2Se3 possess a unique non-volatile optical phase change function; therefore, when Sb2Se3 is in the crystalline or amorphous state, our device can work as XOR gate or AND gate, and our designed logic ‘1’ and logic ‘0’ contrasts reach 11.8 dB and 5.7 dB at 1550 nm, respectively. Compared with other traditional optical logic gates, our device simultaneously has non-volatile characteristics, tunability, and additionally an ultra-small size. These results could fully meet the needs of fusion between PICs and EICs, and developing truly chip-scale optoelectronic logic solution.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhou, Taojie, Kar Wei Ng, Xiankai Sun, and Zhaoyu Zhang. "Ultra-thin curved visible microdisk lasers with three-dimensional whispering gallery modes." Nanophotonics 9, no. 9 (July 4, 2020): 2997–3002. http://dx.doi.org/10.1515/nanoph-2020-0242.

Full text
Abstract:
AbstractMicrodisk lasers are important components in photonic integrated circuits (PICs), of which the whispering gallery modes (WGMs) are usually confined within a two-dimensional (2D) planar slab. Here, owing to the strain relaxation of quantum wells by wet-etching method, we present ultra-thin curved visible microdisk lasers with single-mode lasing emission and a high quality factor of ∼17,000, which enable a 3D spatial intensity distribution of WGMs and provide an extra degree of freedom for the confined photons compared with the conventional 2D in-plane WGMs. The curved microdisk lasers with a 3D spatial profile of WGMs may provide attractive applications in flexible and multilevel photon sources for the PICs.
APA, Harvard, Vancouver, ISO, and other styles
13

Hänsel, Andreas, and Martijn Heck. "Feasibility of Telecom-Wavelength Photonic Integrated Circuits for Gas Sensors." Sensors 18, no. 9 (August 31, 2018): 2870. http://dx.doi.org/10.3390/s18092870.

Full text
Abstract:
To be of commercial interest, gas sensors must optimise, among others, sensitivity, selectivity, longevity, cost and measurement speed. Using the example of ammonia, we establish that integrated optical sensors provide means to maintain the benefits of optical detection set-ups at, in principle, a lower cost and smaller footprint than currently available commercial products. Photonic integrated circuits (PICs) can be used in environmental and agricultural monitoring. The small footprint and great cost scaling of PICs allow for sensor networks with multiple devices. We show, that Indium Phosphide based commercial foundries reached the technological maturity to enable ammonia detection levels at less than 100 ppb. The current unavailability of portable, low cost ammonia sensors with such detection levels prevents emission monitoring, for example, in pig farms. The feasibility of these sensors is investigated by applying the common noise figures of the multiproject wafer platforms operating around 1550 nm to a model for an absorption measurement. The analysis is extended to other relevant gas species with absorption features near telecom-wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
14

Heck, Martijn J. R. "Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering." Nanophotonics 6, no. 1 (January 6, 2017): 93–107. http://dx.doi.org/10.1515/nanoph-2015-0152.

Full text
Abstract:
AbstractTechnologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.
APA, Harvard, Vancouver, ISO, and other styles
15

Son, Gyeongho, Seungjun Han, Jongwoo Park, Kyungmok Kwon, and Kyoungsik Yu. "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits." Nanophotonics 7, no. 12 (October 20, 2018): 1845–64. http://dx.doi.org/10.1515/nanoph-2018-0075.

Full text
Abstract:
AbstractEfficient light energy transfer between optical waveguides has been a critical issue in various areas of photonics and optoelectronics. Especially, the light coupling between optical fibers and integrated waveguide structures provides essential input-output interfaces for photonic integrated circuits (PICs) and plays a crucial role in reliable optical signal transport for a number of applications, such as optical interconnects, optical switching, and integrated quantum optics. Significant efforts have been made to improve light coupling properties, including coupling efficiency, bandwidth, polarization dependence, alignment tolerance, as well as packing density. In this review article, we survey three major light coupling methods between optical fibers and integrated waveguides: end-fire coupling, diffraction grating-based coupling, and adiabatic coupling. Although these waveguide coupling methods are different in terms of their operating principles and physical implementations, they have gradually adopted various nanophotonic structures and techniques to improve the light coupling properties as our understanding to the behavior of light and nano-fabrication technology advances. We compare the pros and cons of each light coupling method and provide an overview of the recent developments in waveguide coupling between optical fibers and integrated photonic circuits.
APA, Harvard, Vancouver, ISO, and other styles
16

Porcel, Marco A. G., Iñigo Artundo, J. David Domenech, Douwe Geuzebroek, Rino Sunarto, and Romano Hoofman. "Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications." Advanced Optical Technologies 7, no. 1-2 (April 25, 2018): 57–65. http://dx.doi.org/10.1515/aot-2017-0065.

Full text
Abstract:
AbstractThis tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.
APA, Harvard, Vancouver, ISO, and other styles
17

Penna, Stefano, Leonardo Mattiello, Silvia Di Bartolo, Angelo Pizzoleo, Vincenzo Attanasio, Giorgio Maria Tosi Beleffi, and Akira Otomo. "Opportunities for Low Cost Processing of Erbium 8-Quinolinolates for Active Integrated Photonic Applications." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 3360–63. http://dx.doi.org/10.1166/jnn.2016.12302.

Full text
Abstract:
Erbium-doped organic emitters are promising active materials for Photonic Integrated Circuits (PICs) due to their emission shown at 1550 nm combined to the potential low cost processing. In particular, Erbium Quinoline (ErQ) gained a strong interest in the last decade for the good emission efficiency. This contribution reports the results derived from the application of ErQ as active core material within a buried optical waveguide, following the development of a purposed optical process to control the refractive index of ErQ and then to define a patterned structure from a single thin film deposition step. The reported results show the potential of Er-doped organic materials for low cost processing and application to planar PICs.
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Zizheng, Jianping Wang, Hongyao Chen, Huimin Lu, Yifan Zhu, and Bing Bai. "Dual-working mode device based on dual-element photonic crystal-stepped concave waveguide." Journal of Optics 24, no. 2 (January 10, 2022): 025001. http://dx.doi.org/10.1088/2040-8986/ac3f8e.

Full text
Abstract:
Abstract In this study, a Si3N4 on insulator device used for photonic integrated circuits (PICs) is proposed. The dual-working mode device is constructed using a racetrack microring resonator, which is established using a dual-element photonic crystal-stepped concave waveguide. A novel scheme of dual-working modes is realized, and sensing and filtering are performed simultaneously without interference. The results show that a sensitivity of 29 pm K−1 and a line width of 0.28 nm are obtained for the sensor mode. An extinction of 41.8 dB and bandwidth of up to 305.5 nm are achieved in the filter mode. The footprint of the entire device is within 20 μm × 11 μm, which is ultra-compact and suitable for PICs.
APA, Harvard, Vancouver, ISO, and other styles
19

Dhavamani, Vigneshwar, Srijani Chakraborty, S. Ramya, and Somesh Nandi. "Design and Simulation of Waveguide Bragg Grating based Temperature Sensor in COMSOL." Journal of Physics: Conference Series 2161, no. 1 (January 1, 2022): 012047. http://dx.doi.org/10.1088/1742-6596/2161/1/012047.

Full text
Abstract:
Abstract With the advancements in the domain of photonics and optical sensors, Fibre Bragg Grating (FBG) sensors, owing to their increased advantages, have been researched widely and have proved to be useful in sensing applications. Moreover, the advent of Photonic Integrated Circuits (PICs) demands the incorporation of optical sensing in waveguides, which can be integrated on silicon photonic chips. In this paper, the design of a sub-micron range Waveguide Bragg Grating (WBG) based temperature sensor with high peak reflectivity and thermal sensitivity is proposed. The flexibility of COMSOL Multiphysics software is explored to simulate the sensor and the results are verified with the analytical values calculated using MATLAB. The simulation is carried out for the proposed design having 16000 gratings and a corresponding peak reflectivity of 0.953 is obtained. A thermal sensitivity of 80 pm/K is achieved, which is approximately eight times better than that of FBG based sensor.
APA, Harvard, Vancouver, ISO, and other styles
20

Muralikrishna, Kondaveeti, ShafiShahsavar Mirza, and Satbir Singh Dhula. "A New MIM Directional Coupler With Twin Bands for Photonic ICs." International Journal of Electronics, Communications, and Measurement Engineering 9, no. 2 (July 2020): 30–40. http://dx.doi.org/10.4018/ijecme.2020070103.

Full text
Abstract:
For processing of desired information, the present-day electronic equipment is rapidly approaching their ultimate speed and bandwidth constraints, which is an ever more serious problem that prevents their persistent use in applications. It is believed that a promising solution is to fabricate electronic and photonic elements on a single chip. This mechanism provides a larger bandwidth that is used to construct new hybrid electronic photonic devices. In this paper the numerical analysis and design of metal-insulator-metal plasmonic directional coupler are presented. In dual optical bands, this directional coupler design needed the concept of the step impedance resonators (SIRs). Without reducing the subsystems, the enhanced architectures that pertain to filtering as well as multiplexing devices are necessary for conclusion of these kinds of specifications. Photonic-integrated circuits (PICs) have effectively improved their work by present design directional coupler, and it can be mixed with the conventional silicon PICs.
APA, Harvard, Vancouver, ISO, and other styles
21

Nguyen, Vinh Huu, In Ki Kim, and Tae Joon Seok. "Low-Loss and Broadband Silicon Photonic 3-dB Power Splitter with Enhanced Coupling of Shallow-Etched Rib Waveguides." Applied Sciences 10, no. 13 (June 29, 2020): 4507. http://dx.doi.org/10.3390/app10134507.

Full text
Abstract:
A silicon photonic 3-dB power splitter is one of the essential components to demonstrate large-scale silicon photonic integrated circuits (PICs), and can be utilized to implement modulators, 1 × 2 switches, and 1 × N power splitters for various PIC applications. In this paper, we reported the design and experimental demonstration of low-loss and broadband silicon photonic 3-dB power splitters. The power splitter was realized by adiabatically tapered rib waveguides with 60-nm shallow etches. The shallow-etched rib waveguides offered strong coupling and relaxed critical dimensions (a taper tip width of 200 nm and gap spacing of 300 nm). The fabricated device exhibited an excess loss as low as 0.06 dB at a 1550-nm wavelength and a broad operating wavelength range from 1470 nm to 1570 nm. The relaxed critical dimensions (≥200 nm) make the power splitter compatible with standard fabrication processes of existing silicon photonics foundries.
APA, Harvard, Vancouver, ISO, and other styles
22

Ha, Yingli, Yinghui Guo, Mingbo Pu, Mingfeng Xu, Xiong Li, Xiaoliang Ma, Fang Zou, and Xiangang Luo. "Meta-Optics-Empowered Switchable Integrated Mode Converter Based on the Adjoint Method." Nanomaterials 12, no. 19 (September 28, 2022): 3395. http://dx.doi.org/10.3390/nano12193395.

Full text
Abstract:
Monolithic integrated mode converters with high integration are essential to photonic integrated circuits (PICs), and they are widely used in next-generation optical communications and complex quantum systems. It is expected that PICs will become more miniaturized, multifunctional, and intelligent with the development of micro/nano-technology. The increase in design space makes it difficult to realize high-performance device design based on traditional parameter sweeping or heuristic design, especially in the optimal design of reconfigurable PIC devices. Combining the mode coupling theory and adjoint calculation method, we proposed a design method for a switchable mode converter. The device could realize the transmission of TE0 mode and the conversion from TE0 to TE1 mode with a footprint of 0.9 × 7.5 μm2 based on the phase change materials (PCMs). We also found that the mode purity could reach 78.2% in both states at the working wavelength of 1.55 μm. The designed method will provide a new impetus for programmable photonic integrated devices and find broad application prospects in communication, optical neural networks, and sensing.
APA, Harvard, Vancouver, ISO, and other styles
23

Dou, Linyuan, Lingyun Xie, Zeyong Wei, Zhanshan Wang, and Xinbin Cheng. "On-Chip Optical Beam Manipulation with an Electrically Tunable Lithium-Niobate-on-Insulator Metasurface." Micromachines 13, no. 3 (March 19, 2022): 472. http://dx.doi.org/10.3390/mi13030472.

Full text
Abstract:
Photonic integrated circuits (PICs) have garnered increasing attention because of their high efficiency in information processing. Recently, lithium niobate on insulator (LNOI) has become a new platform for PICs with excellent properties. Several tunable devices such as on-chip tunable devices that utilize the electric-optic effect of LN have been reported. However, an on-chip electrically tunable beam modulator that can focus or deflect the wave has not yet been developed. In this study, we designed an electrically tunable LNOI metasurface for on-chip optical beam manipulation. With a carefully designed local phase profile, we realized the tunable focusing and reflection functions on the chip. As the bias voltage varies, the focusing length can be shifted up to 19.9 μm (~13λ), whereas the focusing efficiency remains greater than 72%. A continuously tunable deflection can also be achieved efficiently within a range of 0–45°. The beam modulator enhances the ability to manipulate light on LNOI chips, which is expected to promote the development of integrated on-chip photonics.
APA, Harvard, Vancouver, ISO, and other styles
24

Hu, Ying, Gui Qiang Liu, Xiang Nan Zhang, and Zheng Jie Cai. "A New Two-Dimensional Photonic Crystal Channel Drop Filter Based on Two-Resonant Cavities." Advanced Materials Research 760-762 (September 2013): 397–400. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.397.

Full text
Abstract:
In this paper, a channel drop filter (CDF) is composed of two cubic lattice circular ring resonator cavities and point micro-cavities in a two-dimensional photonic crystal. The photonic band gap is calculated using the plane wave expansion (PWE) method and the optical characteristics of proposed structure are studying by the finite difference time domain (FDTD) method with perfectly matched layers (PMLs) acting as the boundary conditions . Two different wavelengths centered at 1773 nm and 1742 nm have been successful separation in this CDF. These demonstrate that our proposed structure is suitable for photonic integrated circuits (PICs) and coarse wavelength division multiplexing (WDM) optical communication systems.
APA, Harvard, Vancouver, ISO, and other styles
25

Takenaka, Mitsuru, Ziqiang Zhao, Chong Pei Ho, Takumi Fujigaki, Tipat Piyapatarakul, Yuto Miyatake, Rui Tang, Kasidit Toprasertpong, and Shinichi Takagi. "(Digital Presentation) Ge-on-insulator Platform for Mid-infrared Photonic Integrated Circuits." ECS Meeting Abstracts MA2022-02, no. 32 (October 9, 2022): 1175. http://dx.doi.org/10.1149/ma2022-02321175mtgabs.

Full text
Abstract:
Since mid-infrared (MIR) wavelengths have a great potential for optical communication, sensing, and quantum information, Si-based MIR photonic integrated circuits (PICs) have been developed by leveraging Si photonics technology for near-infrared wavelengths. However, the transparency wavelength window of Si is from 1.2 µm to 8 µm, limiting the available wavelengths in the MIR spectrum. Ge is emerging as a waveguide material to overcome this difficulty because Ge is transparent in the entire MIR spectrum. A Ge-on-Si waveguide is one of the promising platform for a MIR PICs. We have also proposed a Ge-on-insulator (GeOI) platform for MIR integrated photonics [1]. The strong optical confinement in a GeOI waveguide enables an ultracompact MIR PIC. Using wafer bonding and smart-cut, a GeOI wafer was successfully fabricated [2]. As a result, we have demonstrated various Ge passive devices, thermo-optic phase shifters, and modulators on a GeOI platform [3][4]. The propagation loss of a GeOI waveguide is one of the issues. The crystal defects induced by hydrogen implantation for smart-cut generates holes in a Ge film. As a result, evening using an n-type Ge donor wafer for smart-cut, a final Ge layer tends to be p-type. Since free-hole absorption in Ge is significant, the propagation loss of a p-type GeOI becomes large. To suppress hole generation, the optimization of the hydrogen implantation conditions was conducted. We found that the higher the implantation energy was, the deeper the center of the defect position was from a Ge surface [5]. When the implantation energy increases from 80 keV to 160 keV, the defects can be removed from a 300-nm-thick Ge device layer, enabling an n-type GeOI wafer. As a result, a low-loss GeOI waveguide with a propagation loss of 2.3 dB/cm was demonstrated. The monolithic integration of Ge passive waveguides and photodetectors (PDs) is also essential for a MIR PIC. We examined the defect-assist photodetection mechanism in a GeOI waveguide with a lateral PIN junction. When a reverse voltage was applied to the PIN junction, the substantial photocurrent was observed at a wavelength of 2 µm for which Ge is transparent. The defect-assist photodetection is expected to be enhanced due to the large intrinsic carrier density in Ge. As a result, the responsivity of 0.25 A/W was obtained at -5 V. In conclusion, we have developed a GeOI photonics platform for MIR wavelengths. We have achieved a low-loss Ge waveguide, PDs, and optical modulators, the indispensable building blocks for large-scale MIR PICs. The functionality of a GeOI platform can be extended with emerging materials including graphene and phase change materials. This work was partly based on the results from the project JPNP13004, commissioned by the New Energy and Industrial Technology Development Organization (NEDO) and supported by JST-Mirai Program Grant Number JPMJMI20A1, JSPS KAKENHI Grant Number JP20H02198, and the Canon Foundation. Reference [1] Z. Zhao, C.-M. Lim, C. Ho, K. Sumita, Y. Miyatake, K. Toprasertpong, S. Takagi, and M. Takenaka, “Low-loss Ge waveguide at the 2-µm band on an n-type Ge-on-insulator wafer,” Opt. Mater. Express, vol. 11, no. 12, pp. 4097–4106, 2021. [2] J. Kang, X. Yu, M. Takenaka and S. Takagi, “Impact of thermal annealing on Ge-on-Insulator substrate fabricated by wafer bonding,” Materials Science in Semiconductor Processing, vol. 42, Part 2, pp. 259-263, 2016. [3] M. Takenaka et al., “Heterogeneous CMOS Photonics Based on SiGe/Ge and III–V Semiconductors Integrated on Si Platform,” IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 3, pp. 64–76, May 2017. [4] T. Fujigaki, S. Takagi, and M. Takenaka, “High-efficiency Ge thermo-optic phase shifter on Ge-on-insulator platform,” Opt. Express, vol. 27, no. 5, p. 6451, Mar. 2019. [5] Z. Zhao et al., “Low-loss Ge waveguide at the 2-µm band on an n-type Ge-on-insulator wafer,” Opt. Mater. Express, OME, vol. 11, no. 12, pp. 4097–4106, Dec. 2021. [6] Z. Zhao, C.-P. Ho, K. Toprasertpong, S. Takagi, and M. Takenaka, “Monolithic Germanium PIN Waveguide Photodetector Operating at 2 μm Wavelengths,” Optical Fiber Communication Conference (OFC2020), W4G.3, San Diego, 8–12 March 2020.
APA, Harvard, Vancouver, ISO, and other styles
26

Tan, James Zi Jing, Daniel Burt, Youngmin Kim, Hyo-Jun Joo, Melvina Chen, Xuncheng Shi, Lin Zhang, et al. "Gesn Bonding Technology for Integrated Laser-on-Chip Photonics." ECS Meeting Abstracts MA2022-02, no. 32 (October 9, 2022): 1177. http://dx.doi.org/10.1149/ma2022-02321177mtgabs.

Full text
Abstract:
With the numerous recent demonstrations of germanium-tin (GeSn) semiconductor lasers, this material has become the strongest candidate for the realization of photonic-integrated circuits (PICs). However, the high defect density of this material often results in high lasing thresholds, making them undesirable for real-world applications. Furthermore, the low-thermal budget of high Sn content (>9 at.%) GeSn makes it exceptionally hard to grow onto other materials without introducing point defects. Herein, we present a novel method of directly combining GeSn with other materials through low-temperature wafer bonding. Through this technique, we can reduce the harmful high defect density and improve the lasing performance. To cater to the low thermal budget, we optimized the bonding processes which is critical in preventing Sn segregation to the surface. Through this method, we provide compelling evidence for the enhancement in photoluminescence in GeSn. Additionally, this technique can be extended to fabricate new material stacks, presenting unforeseen opportunities in other fields such as non-linear photonics.
APA, Harvard, Vancouver, ISO, and other styles
27

Niu, Shen, Yue Song, Ligong Zhang, Yongyi Chen, Lei Liang, Ye Wang, Li Qin, et al. "Research Progress of Monolithic Integrated DFB Laser Arrays for Optical Communication." Crystals 12, no. 7 (July 21, 2022): 1006. http://dx.doi.org/10.3390/cryst12071006.

Full text
Abstract:
Photonic integrated circuits (PICs) play a leading role in modern information and communications technology. Among the core devices in PICs is the distributed feedback (DFB) multi-wavelength semiconductor laser array. Multi-wavelength semiconductor laser arrays can be integrated on a single chip and have the advantages of high stability, good single-mode performance, and narrow line width. The wavelength tuning range has been expanded through the design of the DFB laser array, which is an ideal light source for wavelength-division multiplexing systems. The preparation of DFB laser arrays with a large number of channels, ease of mass production, and accurate emission wavelengths has become an important field of research. The connection methods of lasers in DFB laser arrays are introduced systematically and the current methods of manufacturing multi-wavelength DFB laser arrays covering the perspective of technical principles, technical advantages and disadvantages, main research progress, and research status are summarized.
APA, Harvard, Vancouver, ISO, and other styles
28

Soref, Richard. "Applications of Silicon-Based Optoelectronics." MRS Bulletin 23, no. 4 (April 1998): 20–24. http://dx.doi.org/10.1557/s0883769400030220.

Full text
Abstract:
Silicon-based optoelectronics is a diversified technology that has grown steadily but not exponentially over the past decade. Some applications—such as smart-pixel signal processing and chip-to-chip optical interconnects—have enjoyed impressive growth, whereas other applications have remained quiescent. A few important applications such as optical diagnosis of leaky metal-oxide-semiconductor-field-effect-transistor circuits, have appeared suddenly. Over the years, research and development has unveiled some unique and significant aspects of Si-based optoelectronics. The main limitation of this technology is the lack of practical silicon light sources—Si lasers and efficient Si light-emitting devices (LEDs)—though investigators are “getting close” to the LED.Silicon-based optoelectronics refers to the integration of photonic and electronic components on a Si chip or wafer. The photonics adds value to the electronics, and the electronics offers low-cost mass-production benefits. The electronics includes complementary-metal-oxide semiconductors (CMOS), very large-scale integration (VLSI), bipolar CMOS, SiGe/Si heterojunction bipolar transistors, and heterostructure field-effect transistors. In this discussion, we will use a loose definition of optoelectronics that includes photonic and optoelectronic integrated circuits (PICs and OEICs), Si optical benches, and micro-optoelectromechanical (MOEM) platforms. Optoelectronic chips and platforms are subsystems of computer systems, communication networks, etc. Silicon substrates feature a superior native oxide, in addition to excellent thermal, mechanical, and economic properties. Silicon wafers “shine” as substrates for PICs and OEICs.
APA, Harvard, Vancouver, ISO, and other styles
29

Qiao, Qifeng, Haoyang Sun, Xinmiao Liu, Bowei Dong, Ji Xia, Chengkuo Lee, and Guangya Zhou. "Suspended Silicon Waveguide with Sub-Wavelength Grating Cladding for Optical MEMS in Mid-Infrared." Micromachines 12, no. 11 (October 26, 2021): 1311. http://dx.doi.org/10.3390/mi12111311.

Full text
Abstract:
Mid-infrared (MIR) photonics are generating considerable interest because of the potential applications in spectroscopic sensing, thermal imaging, and remote sensing. Silicon photonics is believed to be a promising solution to realize MIR photonic integrated circuits (PICs). The past decade has seen a huge growth in MIR PIC building blocks. However, there is still a need for the development of MIR reconfigurable photonics to enable powerful on-chip optical systems and new functionalities. In this paper, we present an MIR (3.7~4.1 μm wavelength range) MEMS reconfiguration approach using the suspended silicon waveguide platform on the silicon-on-insulator. With the sub-wavelength grating claddings, the photonic waveguide can be well integrated with the MEMS actuator, thus offering low-loss, energy-efficient, and effective reconfiguration. We present a simulation study on the waveguide design and depict the MEMS-integration approach. Moreover, we experimentally report the suspended waveguide with propagation loss (−2.9 dB/cm) and bending loss (−0.076 dB each). The suspended waveguide coupler is experimentally investigated. In addition, we validate the proposed optical MEMS approach using a reconfigurable ring resonator design. In conclusion, we experimentally demonstrate the proposed waveguide platform’s capability for MIR MEMS-reconfigurable photonics, which empowers the MIR on-chip optical systems for various applications.
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Zhekang, Yuchen Shi, Bo Shao, Taotao Zhou, Fan Luo, and Yin Xu. "Design of Compact, Broadband, and Low-Loss Silicon Waveguide Bends with Radius under 500 nm." Photonics 9, no. 9 (August 30, 2022): 616. http://dx.doi.org/10.3390/photonics9090616.

Full text
Abstract:
Waveguide bend is an indispensable component in the on-chip compact photonic integrated circuits (PICs) and the minimum bend size greatly limits the increase of integration density of PICs. Here, we propose broadband and low-loss silicon waveguide bend schemes using air trenches on both sides and embedded germanium arc in the inner side of waveguide bend. Using these ways, the silicon waveguide bending radius can be greatly reduced to less than 500 nm and the obtained insertion loss (IL) can be as low as 0.12 dB compared with IL = 1.73 dB obtained by direct silicon waveguide bend under the same bending radius. Meanwhile, the working bandwidth can be extended over 500 nm covering the whole optical communication band by keeping IL < 0.5 dB. Therefore, the proposed device schemes could push the development of on-chip PICs toward higher integration density.
APA, Harvard, Vancouver, ISO, and other styles
31

Oliveira, Jorge Everaldo de, Fabio Barros de Sousa, Jackson Moreira de Oliveira, Lelis Araujo de Oliveira, Hudson Afonso Batista da Silva, Elizabeth Rego Sabino, Fabio Souza de Araújo, Alan dos Reis Silva, Fabrício Pinho da Luz, and Marcos Benedito Caldas Costa. "Analysis of the behavior of an all-optical not logic gate in a photonic crystal directional coupler / Análise do comportamento de uma porta lógica not totalmente óptica em um acoplador direcional de cristal fotônico." Brazilian Journal of Development 8, no. 4 (April 25, 2022): 30365–78. http://dx.doi.org/10.34117/bjdv8n4-491.

Full text
Abstract:
In the present work, an optical directional coupler (ODC) based on two-dimensional (2-D) photonic crystal (PhC) was analyzed and proposed, through the methods of plane wave expansion (PWE) and finite-difference time-domain (FDTD), which were used with the purpose of analyzing the behavior of a new all-optical NOT logic gate and the electric field distribution in the coupler for linear (bar), non-linear (cross) states and the control signal. The simulation results in OptiFDTD software show that the proposed crystal structure is a strong candidate for use in ultrafast photonic integrated circuits (PICs), being highly advantageous with excellent transmission performance and simple design.
APA, Harvard, Vancouver, ISO, and other styles
32

Allen, M., C. Liou, S. Melle, and V. Vusirikala. "Digital optical networks using photonic integrated circuits (PICs) address the challenges of reconfigurable optical networks." IEEE Communications Magazine 46, no. 1 (January 2008): 35–43. http://dx.doi.org/10.1109/mcom.2008.4427228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Bin, Yugang Zeng, Yue Song, Ye Wang, Lei Liang, Li Qin, Jianwei Zhang, et al. "Principles of Selective Area Epitaxy and Applications in III–V Semiconductor Lasers Using MOCVD: A Review." Crystals 12, no. 7 (July 21, 2022): 1011. http://dx.doi.org/10.3390/cryst12071011.

Full text
Abstract:
Selective area epitaxy (SAE) using metal–organic chemical vapor deposition (MOCVD) is a crucial fabrication technique for lasers and photonic integrated circuits (PICs). A low-cost, reproducible, and simple process for the mass production of semiconductor lasers with specific structures was realized by means of SAE. This paper presents a review of the applications of SAE in semiconductor lasers. Growth rate enhancement and composition variation, which are two unique characteristics of SAE, are attributed to a mask. The design of the mask geometry enables the engineering of a bandgap to achieve lasing wavelength tuning. SAE allows for the reproducible and economical fabrication of buried heterojunction lasers, quantum dot lasers, and heteroepitaxial III–V compound lasers on Si. Moreover, it enables the fabrication of compact photonic integrated devices, including electro-absorption modulated lasers and multi-wavelength array lasers. Results show that SAE is an economical and reproducible method to fabricate lasers with desired structures. The goals for SAE applications in the future are to improve the performance of lasers and PICs, including reducing the defects of the grown material introduced by the SAE mask and achieving precise control of the thickness and composition.
APA, Harvard, Vancouver, ISO, and other styles
34

Suraya Mubeen, Dr. "Design and analysis of plasmonic nanostub filter using metal-insulator- met-al (MIM) waveguide." International Journal of Engineering & Technology 7, no. 3 (August 23, 2018): 1915. http://dx.doi.org/10.14419/ijet.v7i3.14215.

Full text
Abstract:
Metal-insulator-metal (MIM) silicon based nanostub structures have been designed and analyzed using the finite difference time-domain (FDTD) technique. An analytic model is discussed which is based on the resonance theory. Numerical results show double and single narrow band transmissions for small and long lengths of nanostub, respectively. The transmission band of the structure is controlled by varying the width and the length of the nanostub. These MIM nanostub structure can have potential applications in nanoscale high density photonic integrated circuits (PICs).
APA, Harvard, Vancouver, ISO, and other styles
35

Yu, Zejie, Yang Ma, and Xiankai Sun. "Photonic welding points for arbitrary on-chip optical interconnects." Nanophotonics 7, no. 10 (September 28, 2018): 1679–86. http://dx.doi.org/10.1515/nanoph-2018-0078.

Full text
Abstract:
AbstractPhotonic integrated circuits (PICs) are an ideal platform for chip-scale computation and communication. To date, the integration density remains an outstanding problem that limits the further development of PIC-based photonic networks. Achieving low-loss waveguide routing with arbitrary configuration is crucial for both classical and quantum photonic applications. To manipulate light flows on a chip, the conventional wisdom relies on waveguide bends of large bending radii and adiabatic mode converters to avoid insertion losses from radiation leakage and modal mismatch, respectively. However, those structures usually occupy large footprints and thus reduce the integration density. To overcome this difficulty, this work presents a fundamentally new approach to turn light flows arbitrarily within an ultracompact footprint. A type of “photonic welding points” joining two waveguides of an arbitrary intersecting angle has been proposed and experimentally demonstrated. These devices with a footprint of less than 4 μm2can operate in the telecommunication band over a bandwidth of at least 140 nm with an insertion loss of less than 0.5 dB. Their fabrication is compatible with photonic foundry processes and does not introduce additional steps beyond those needed for the waveguides. Therefore, they are suitable for the mass production of PICs and will enhance the integration density to the next level.
APA, Harvard, Vancouver, ISO, and other styles
36

Fujii, Takuro, Tatsurou Hiraki, Takuma Aihara, Hidetaka Nishi, Koji Takeda, Tomonari Sato, Takaaki Kakitsuka, Tai Tsuchizawa, and Shinji Matsuo. "Development of an Epitaxial Growth Technique Using III-V on a Si Platform for Heterogeneous Integration of Membrane Photonic Devices on Si." Applied Sciences 11, no. 4 (February 18, 2021): 1801. http://dx.doi.org/10.3390/app11041801.

Full text
Abstract:
The rapid increase in total transmission capacity within and between data centers requires the construction of low-cost, high-capacity optical transmitters. Since a tremendous number of transmitters are required, photonic integrated circuits (PICs) using Si photonics technology enabling the integration of various functional devices on a single chip is a promising solution. A limitation of a Si-based PIC is the lack of an efficient light source due to the indirect bandgap of Si; therefore, hybrid integration technology of III-V semiconductor lasers on Si is desirable. The major challenges are that heterogeneous integration of III-V materials on Si induces the formation of dislocation at high process temperature; thus, the epitaxial regrowth process is difficult to apply. This paper reviews the evaluations conducted on our epitaxial growth technique using a directly bonded III-V membrane layer on a Si substrate. This technique enables epitaxial growth without the fundamental difficulties associated with lattice mismatch or anti-phase boundaries. In addition, crystal degradation correlating with the difference in thermal expansion is eliminated by keeping the total III-V layer thickness thinner than ~350 nm. As a result, various III-V photonic-device-fabrication technologies, such as buried regrowth, butt-joint regrowth, and selective area growth, can be applicable on the Si-photonics platform. We demonstrated the growth of indium-gallium-aluminum arsenide (InGaAlAs) multi-quantum wells (MQWs) and fabrication of lasers that exhibit >25 Gbit/s direct modulation with low energy cost. In addition, selective-area growth that enables the full O-band bandgap control of the MQW layer over the 150-nm range was demonstrated. We also fabricated indium-gallium-arsenide phosphide (InGaAsP) based phase modulators integrated with a distributed feedback laser. Therefore, the directly bonded III-V-on-Si substrate platform paves the way to manufacturing hybrid PICs for future data-center networks.
APA, Harvard, Vancouver, ISO, and other styles
37

Soares, Francisco M., Moritz Baier, Tom Gaertner, Norbert Grote, Martin Moehrle, Tobias Beckerwerth, Patrick Runge, and Martin Schell. "InP-Based Foundry PICs for Optical Interconnects." Applied Sciences 9, no. 8 (April 17, 2019): 1588. http://dx.doi.org/10.3390/app9081588.

Full text
Abstract:
This paper describes a fabrication process for realizing Indium-Phosphide-based photonic-integrated circuits (PICs) with a high level of integration to target a wide variety of optical applications. To show the diversity in PICs achievable with our open-access foundry process, we illustrate two examples: a fully-integrated 20 Gb/s dual-polarization electro-absorption-modulated laser, and a balanced detector composed of avalanche photodiodes for detection of 28 Gb/s optical signals. On another note, datacenters are increasingly relying on hybrid integration of PICs from different technology platforms to increase transmission capacity, while simultaneously lowering cost, size, and power consumption. Several technology platforms require surface coupling rather than the traditional edge coupling to couple the light from one PIC to another. To accommodate the surface-coupling approach in our integration platform, we have developed a strategy to transfer the following optical Input/Output devices into our fabrication process: grating couplers, and vertical mirrors. In addition, we introduced etched facets into the process to improve the usability of our edge-coupling elements. We believe that the additional flexibility in Input/Output interfacing combined with the integration of multiple devices onto one PIC to reduce the number of PIC-to-PIC alignments can contribute significantly to the development of compact, low-cost, and high-performance datacenter modules.
APA, Harvard, Vancouver, ISO, and other styles
38

Xu, Xinru, Yuexin Yin, Mengke Yao, Xiaojie Yin, Feifei Gao, Yuanda Wu, Changming Chen, Fei Wang, and Daming Zhang. "Three-Dimensional Polymer Variable Optical Attenuator Based on Vertical Multimode Interference with Graphene Heater." Micromachines 13, no. 12 (November 30, 2022): 2116. http://dx.doi.org/10.3390/mi13122116.

Full text
Abstract:
Low-power-consumption optical devices are crucial for large-scale photonic integrated circuits (PICs). In this paper, a three-dimensional (3D) polymer variable optical attenuator (VOA) is proposed. For monolithic integration of silica and polymer-based planar lightwave circuits (PLCs), the vertical VOA is inserted between silica-based waveguides. Optical and thermal analyses are performed through the beam propagation method (BPM) and finite-element method (FEM), respectively. A compact size of 3092 μm × 4 μm × 7 μm is achieved with a vertical multimode interference (MMI) structure. The proposed VOA shows an insertion loss (IL) of 0.58 dB and an extinction ratio (ER) of 21.18 dB. Replacing the graphene heater with an aluminum (Al) electrode, the power consumption is decreased from 29.90 mW to 21.25 mW. The rise and fall time are improved to 353.85 μs and 192.87 μs, respectively. The compact and high-performance VOA shows great potential for a variety of applications, including optical communications, integrated optics, and optical interconnections.
APA, Harvard, Vancouver, ISO, and other styles
39

Fatkhiev, Denis M., Muhammad A. Butt, Elizaveta P. Grakhova, Ruslan V. Kutluyarov, Ivan V. Stepanov, Nikolay L. Kazanskiy, Svetlana N. Khonina, Vladimir S. Lyubopytov, and Albert K. Sultanov. "Recent Advances in Generation and Detection of Orbital Angular Momentum Optical Beams—A Review." Sensors 21, no. 15 (July 22, 2021): 4988. http://dx.doi.org/10.3390/s21154988.

Full text
Abstract:
Herein, we have discussed three major methods which have been generally employed for the generation of optical beams with orbital angular momentum (OAM). These methods include the practice of diffractive optics elements (DOEs), metasurfaces (MSs), and photonic integrated circuits (PICs) for the production of in-plane and out-of-plane OAM. This topic has been significantly evolved as a result; these three methods have been further implemented efficiently by different novel approaches which are discussed as well. Furthermore, development in the OAM detection techniques has also been presented. We have tried our best to bring novel and up-to-date information to the readers on this interesting and widely investigated topic.
APA, Harvard, Vancouver, ISO, and other styles
40

Grillot, Frédéric, Justin C. Norman, Jianan Duan, Zeyu Zhang, Bozhang Dong, Heming Huang, Weng W. Chow, and John E. Bowers. "Physics and applications of quantum dot lasers for silicon photonics." Nanophotonics 9, no. 6 (June 6, 2020): 1271–86. http://dx.doi.org/10.1515/nanoph-2019-0570.

Full text
Abstract:
AbstractPhotonic integrated circuits (PICs) have enabled numerous high performance, energy efficient, and compact technologies for optical communications, sensing, and metrology. One of the biggest challenges in scaling PICs comes from the parasitic reflections that feed light back into the laser source. These reflections increase noise and may cause laser destabilization. To avoid parasitic reflections, expensive and bulky optical isolators have been placed between the laser and the rest of the PIC leading to large increases in device footprint for on-chip integration schemes and significant increases in packaging complexity and cost for lasers co-packaged with passive PICs. This review article reports new findings on epitaxial quantum dot lasers on silicon and studies both theoretically and experimentally the connection between the material properties and the ultra-low reflection sensitivity that is achieved. Our results show that such quantum dot lasers on silicon exhibit much lower linewidth enhancement factors than any quantum well lasers. Together with the large damping factor, we show that the quantum dot gain medium is fundamentally dependent on dot uniformity, but through careful optimization, even epitaxial lasers on silicon can operate without an optical isolator, which is of paramount importance for the future high-speed silicon photonic systems.
APA, Harvard, Vancouver, ISO, and other styles
41

Vishwanath*, M., Habibulla Khan, and Himani Goyal Sharma. "Design and Analysis of Step Impedance Resonator Based UWB Band Pass Filter using MIM Waveguide." International Journal of Recent Technology and Engineering (IJRTE) 8, no. 3 (September 30, 2019): 4319–21. http://dx.doi.org/10.35940/ijrte.c5181.098319.

Full text
Abstract:
In this paper we have designed and analyzed step impedance resonator based ultra wide-band (UWB) band pass filter using plasmonic MIM waveguide. The UWB band pass filter has been designed by introducing a shot-circuited stub to implement the shunt inductance between two quarter wavelength (λ/4) step impedance resonators. There is a strong coupling between the stubs. The plasmonic UWB band pass filter has been designed at E band (1360-nm to1460-nm) optical wavelength. The band width of plasmonic ultra wide-band band pass filter is very effective compared to narrow-band band pass filter. The reflection and transmission characteristics, variation of reflection and transmission coefficents by varying the dimensions of UWB, field distribution of plasmonic UWB has been realized using full wave simulation by using commercially available CST microwave studio software. The UWB band pass filter can further used for the development of photonic integrated circuits (PICs).
APA, Harvard, Vancouver, ISO, and other styles
42

Hänsel, Andreas, Abubakar Isa Adamu, Christos Markos, Anders Feilberg, Ole Bang, and Martijn J. R. Heck. "Integrated Ammonia Sensor Using a Telecom Photonic Integrated Circuit and a Hollow Core Fiber." Photonics 7, no. 4 (October 15, 2020): 93. http://dx.doi.org/10.3390/photonics7040093.

Full text
Abstract:
We present a fully integrated optical ammonia sensor, based on a photonic integrated circuit (PIC) with a tunable laser source and a hollow-core fiber (HCF) as gas interaction cell. The PIC also contains a photodetector that can be used to record the absorption signal with the same device. The sensor targets an ammonia absorption line at 1522.45 nm, which can be reached with indium phosphide-based telecom compatible PICs. A 1.65-m long HCF is connected on both ends to a single-mode fiber (SMF) with a mechanical splice that allows filling and purging of the fiber within a few minutes. We show the detection of a 5% ammonia gas concentration, as a proof of principle of our sensor and we show the potential to even detect much lower concentrations. This work paves the way towards a low-cost, integrated and portable gas sensor with potential applications in environmental gas sensing.
APA, Harvard, Vancouver, ISO, and other styles
43

Park, Jae-Seong, Mingchu Tang, Siming Chen, and Huiyun Liu. "Heteroepitaxial Growth of III-V Semiconductors on Silicon." Crystals 10, no. 12 (December 21, 2020): 1163. http://dx.doi.org/10.3390/cryst10121163.

Full text
Abstract:
Monolithic integration of III-V semiconductor devices on Silicon (Si) has long been of great interest in photonic integrated circuits (PICs), as well as traditional integrated circuits (ICs), since it provides enormous potential benefits, including versatile functionality, low-cost, large-area production, and dense integration. However, the material dissimilarity between III-V and Si, such as lattice constant, coefficient of thermal expansion, and polarity, introduces a high density of various defects during the growth of III-V on Si. In order to tackle these issues, a variety of growth techniques have been developed so far, leading to the demonstration of high-quality III-V materials and optoelectronic devices monolithically grown on various Si-based platform. In this paper, the recent advances in the heteroepitaxial growth of III-V on Si substrates, particularly GaAs and InP, are discussed. After introducing the fundamental and technical challenges for III-V-on-Si heteroepitaxy, we discuss recent approaches for resolving growth issues and future direction towards monolithic integration of III-V on Si platform.
APA, Harvard, Vancouver, ISO, and other styles
44

Manessis, Georgios, Maciej Frant, Grzegorz Wozniakowski, Lapo Nannucci, Martina Benedetti, Lilla Denes, Balka Gyula, et al. "Point-of-Care and Label-Free Detection of Porcine Reproductive and Respiratory Syndrome and Swine Influenza Viruses Using a Microfluidic Device with Photonic Integrated Circuits." Viruses 14, no. 5 (May 7, 2022): 988. http://dx.doi.org/10.3390/v14050988.

Full text
Abstract:
Swine viral diseases challenge the sector’s sustainability by affecting productivity and the health and welfare of the animals. The lack of antiviral drugs and/or effective vaccines renders early and reliable diagnosis the basis of viral disease management, underlining the importance of point-of-care (POC) diagnostics. A novel POC diagnostic device utilizing photonic integrated circuits (PICs), microfluidics, and information and communication technologies for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A (SIV) was validated using spiked and clinical oral fluid samples. Metrics including sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device. For PRRSV, the device achieved a sensitivity of 83.5%, specificity of 77.8%, and DOR values of 17.66, whereas the values for SIV were 81.8%, 82.2%, and 20.81, respectively. The POC device and PICs can be used for the detection of PRRSV and SIV in the field, paving the way for the introduction of novel technologies in the field of animal POC diagnostics to further optimize livestock biosecurity.
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Xiang Nan, Gui Qiang Liu, Ying Hu, Zheng Jie Cai, and Yuan Hao Chen. "A New Two-Sided Coupling Channel Drop Filter Based on a Two-Dimensional Photonic Crystal." Advanced Materials Research 760-762 (September 2013): 417–20. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.417.

Full text
Abstract:
We design a new two-sided coupling channel drop filter (CDF) based on a two-dimensional (2D) photonic crystal (PC). Three channels formed by line defects for light propagation, two L4 resonators positioned at both sides of the input waveguide for light coupling, and one point defect micro-cavity in the bus waveguide for wavelength-selective reflection are introduced into the PC structure. The optical characteristics of this proposed structure are calculated by finite-difference time-domain (FDTD) method combined with the perfectly matched layers (PMLs) as the boundary conditions. Three wavelengths centered at 1550, 1575 and 1610 nm within the limit of communication windows are successfully separated in three channels by adjusting the size of coupling rods and the positions of L4 resonators and micro-cavity. High transmission efficiency and more than 20 nm channel spacing are achieved. These demonstrate that our proposed structure is suitable for photonic integrated circuits (PICs) and coarse wavelength division multiplexing (WDM) optical communication systems.
APA, Harvard, Vancouver, ISO, and other styles
46

Shi, Yuchen, Bo Shao, Zhekang Zhang, Taotao Zhou, Fan Luo, and Yin Xu. "Ultra-Broadband and Low-Loss Silicon-Based Power Splitter Based on Subwavelength Grating-Assisted Multimode Interference Structure." Photonics 9, no. 7 (June 21, 2022): 435. http://dx.doi.org/10.3390/photonics9070435.

Full text
Abstract:
High-performance and compact power splitters are fundamental components in on-chip photonic integrated circuits (PICs). We propose a silicon-based power splitter based on a subwavelength grating (SWG)-assisted multimode interference (MMI) structure. To shorten the device size and enhance the device performance, an inverse-tapered SWG is embedded in the central region of the MMI and two rows of uniform SWG are embedded on both sides, together with two right-angled cutting structures on the input side. According to the results, the MMI length was obviously reduced to 3.2 μm (5.2 μm for conventional MMI structure under the same waveguide width), while the insertion loss (IL) and reflection loss were 0.08 dB and <−35 dB, respectively. Moreover, the allowable working bandwidth could be extended to 560 nm by keeping IL <0.6 dB, covering the whole optical communication band. On the basis of these features, we believe that such a power splitter is very promising for building on-chip large-scale PICs where power splitting is indispensable.
APA, Harvard, Vancouver, ISO, and other styles
47

Manessis, Georgios, Christos Mourouzis, Amadeu Griol, David Zurita-Herranz, Sergio Peransi, Carlos Sanchez, Alessandro Giusti, Athanasios I. Gelasakis, and Ioannis Bossis. "Integration of Microfluidics, Photonic Integrated Circuits and Data Acquisition and Analysis Methods in a Single Platform for the Detection of Swine Viral Diseases." Animals 11, no. 11 (November 9, 2021): 3193. http://dx.doi.org/10.3390/ani11113193.

Full text
Abstract:
Viral diseases challenge the health and welfare of pigs and undermine the sustainability of swine farms. Their efficient control requires early and reliable diagnosis, highlighting the importance of Point of Care (POC) diagnostics in veterinary practice. The objective of this study was to validate a novel POC system that utilizes Photonic Integrated Circuits (PICs) and microfluidics to detect swine viral pathogens using oral fluids and Porcine Parvovirus (PPV) and Porcine Circovirus 2 (PCV-2) as proofs of concept. The sensitivity and specificity of the device were calculated for both viruses, and Receiver Operating Characteristic (ROC) curves were drawn. PPV had an Area Under Curve (AUC) value of 0.820 (95% CI: 0.760 to 0.880, p < 0.0001), and its optimal efficiency threshold of detection shifts was equal to 4.5 pm (68.6% sensitivity, 77.1% specificity and Limit of Detection (LOD) value 106 viral copies/mL). PCV-2 had an AUC value of 0.742 (95% CI: 0.670 to 0.815, p < 0.0001) and an optimal efficiency threshold of shifts equal to 6.5 pm (69.5% sensitivity, 70.3% specificity and LOD 3.3 × 105 copies/mL). In this work, it was proven that PICs can be exploited for the detection of swine viral diseases. The novel device can be directly deployed on farms as a POC diagnostics tool.
APA, Harvard, Vancouver, ISO, and other styles
48

Besancon, Claire, Delphine Néel, Dalila Make, Joan Manel Ramírez, Giancarlo Cerulo, Nicolas Vaissiere, David Bitauld, et al. "AlGaInAs Multi-Quantum Well Lasers on Silicon-on-Insulator Photonic Integrated Circuits Based on InP-Seed-Bonding and Epitaxial Regrowth." Applied Sciences 12, no. 1 (December 28, 2021): 263. http://dx.doi.org/10.3390/app12010263.

Full text
Abstract:
The tremendous demand for low-cost, low-consumption and high-capacity optical transmitters in data centers challenges the current InP-photonics platform. The use of silicon (Si) photonics platform to fabricate photonic integrated circuits (PICs) is a promising approach for low-cost large-scale fabrication considering the CMOS-technology maturity and scalability. However, Si itself cannot provide an efficient emitting light source due to its indirect bandgap. Therefore, the integration of III-V semiconductors on Si wafers allows us to benefit from the III-V emitting properties combined with benefits offered by the Si photonics platform. Direct epitaxy of InP-based materials on 300 mm Si wafers is the most promising approach to reduce the costs. However, the differences between InP and Si in terms of lattice mismatch, thermal coefficients and polarity inducing defects are challenging issues to overcome. III-V/Si hetero-integration platform by wafer-bonding is the most mature integration scheme. However, no additional epitaxial regrowth steps are implemented after the bonding step. Considering the much larger epitaxial toolkit available in the conventional monolithic InP platform, where several epitaxial steps are often implemented, this represents a significant limitation. In this paper, we review an advanced integration scheme of AlGaInAs-based laser sources on Si wafers by bonding a thin InP seed on which further regrowth steps are implemented. A 3 µm-thick AlGaInAs-based MutiQuantum Wells (MQW) laser structure was grown onto on InP-SiO2/Si (InPoSi) wafer and compared to the same structure grown on InP wafer as a reference. The 400 ppm thermal strain on the structure grown on InPoSi, induced by the difference of coefficient of thermal expansion between InP and Si, was assessed at growth temperature. We also showed that this structure demonstrates laser performance similar to the ones obtained for the same structure grown on InP. Therefore, no material degradation was observed in spite of the thermal strain. Then, we developed the Selective Area Growth (SAG) technique to grow multi-wavelength laser sources from a single growth step on InPoSi. A 155 nm-wide spectral range from 1515 nm to 1670 nm was achieved. Furthermore, an AlGaInAs MQW-based laser source was successfully grown on InP-SOI wafers and efficiently coupled to Si-photonic DBR cavities. Altogether, the regrowth on InP-SOI wafers holds great promises to combine the best from the III-V monolithic platform combined with the possibilities offered by the Si photonics circuitry via efficient light-coupling.
APA, Harvard, Vancouver, ISO, and other styles
49

Liang, Di, Géza Kurczveil, Marco Fiorentino, Sudharsanan Srinivasan, David A. Fattal, Zhihong Huang, John E. Bowers, and Raymond G. Beausoleil. "Hybrid III-V-on-Silicon Microring Lasers." MRS Proceedings 1538 (2013): 363–69. http://dx.doi.org/10.1557/opl.2013.586.

Full text
Abstract:
ABSTRACTHybrid silicon laser is a promising solution to enable high-performance light source on large-scale, silicon-based photonic integrated circuits (PICs). As a compact laser cavity design, hybrid microring lasers are attractive for their intrinsic advantages of small footprint, low power consumption and flexibility in wavelength division multiplexing (WDM), etc. Here we review recent progress in unidirectional microring lasers and device thermal management. Unidirectional emission is achieved by integrating a passive reflector that feeds laser emission back into laser cavity to introduce extra unidirectional gain. Up to 4X of device heating reduction is simulated by adding a metal thermal shunt to the laser to “short” heat to the silicon substrate through buried oxide layer (BOX) in the silicon-on-insulator (SOI) substrate. Obvious device heating reduction is also observed in experiment.
APA, Harvard, Vancouver, ISO, and other styles
50

AOKI, MASAHIRO, MAKOTO SUZUKI, HIROHISA SANO, SHINYA SASAKI, TOSHIHIRO KAWANO, and HIROSHI KODERA. "MONOLITHIC INTEGRATION OF DFB LASERS AND ELECTROABSORPTION MODULATORS USING IN-PLANE QUANTUM ENERGY CONTROL OF MQW STRUCTURES." International Journal of High Speed Electronics and Systems 05, no. 01 (March 1994): 67–90. http://dx.doi.org/10.1142/s0129156494000048.

Full text
Abstract:
This paper describes the fabrication and characteristics of a new multiple-quantum-well (MQW) integrated distributed feedback (DFB) laser diode-electroabsorption (EA) optical modulator for use as the transmitter light source in multigigabit, long-distance optical fiber communications. The device employed a novel integration scheme for active/passive waveguide coupling achieved by controlling the quantum energy of selectively grown MQW structures. This new fabrication technique for photonic integrated circuits (PICs) facilitates smooth, high-quality waveguide coupling between the interconnected guided-wave elements. It is based on the growth rate enhancement or compositional changes in the material of the quantum-well layer grown by selective-area metalorganic vapor phase epitaxy (MOVPE). Good local quantum energy control within a very wide range is shown for simultaneously grown MQW crystals. Moreover, the crystal quality, well/barrier heterointerface, and flatness and uniformity of these selectively grown MQW crystals are found to be as good as those of normally grown crystals. This technique is applied to an MQW integrated DFB laser diode-EA modulator. Superior device performance, including a low threshold and highly efficient lasing properties, as well as high-speed, low-drive-voltage, and low-chirp modulator characteristics are attained due to improved optical coupling, easy fabrication, and sufficient crystal quality of selectively grown MQW structures. 10 Gbit/s data transmission is demonstrated over a 500 km dispersion-shifted single-mode fiber. This combined with long-term device reliability, makes this integration technique more attractive for practical fabrication of semiconductor PICs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography