Academic literature on the topic 'Photonic devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photonic devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photonic devices"
Wu, Xiaozhong, and Qinglei Guo. "Bioresorbable Photonics: Materials, Devices and Applications." Photonics 8, no. 7 (June 25, 2021): 235. http://dx.doi.org/10.3390/photonics8070235.
Full textFehler, Konstantin G., Anna P. Ovvyan, Lukas Antoniuk, Niklas Lettner, Nico Gruhler, Valery A. Davydov, Viatcheslav N. Agafonov, Wolfram H. P. Pernice, and Alexander Kubanek. "Purcell-enhanced emission from individual SiV− center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity." Nanophotonics 9, no. 11 (July 10, 2020): 3655–62. http://dx.doi.org/10.1515/nanoph-2020-0257.
Full textZhang, Chuang, Chang-Ling Zou, Yan Zhao, Chun-Hua Dong, Cong Wei, Hanlin Wang, Yunqi Liu, Guang-Can Guo, Jiannian Yao, and Yong Sheng Zhao. "Organic printed photonics: From microring lasers to integrated circuits." Science Advances 1, no. 8 (September 2015): e1500257. http://dx.doi.org/10.1126/sciadv.1500257.
Full textDong, Po, Young-Kai Chen, Guang-Hua Duan, and David T. Neilson. "Silicon photonic devices and integrated circuits." Nanophotonics 3, no. 4-5 (August 1, 2014): 215–28. http://dx.doi.org/10.1515/nanoph-2013-0023.
Full textWada, Kazumi. "A New Approach of Electronics and Photonics Convergence on Si CMOS Platform: How to Reduce Device Diversity of Photonics for Integration." Advances in Optical Technologies 2008 (July 7, 2008): 1–7. http://dx.doi.org/10.1155/2008/807457.
Full textLi, Jiang, Chaoyue Liu, Haitao Chen, Jingshu Guo, Ming Zhang, and Daoxin Dai. "Hybrid silicon photonic devices with two-dimensional materials." Nanophotonics 9, no. 8 (May 14, 2020): 2295–314. http://dx.doi.org/10.1515/nanoph-2020-0093.
Full textLi, Chenlei, Dajian Liu, and Daoxin Dai. "Multimode silicon photonics." Nanophotonics 8, no. 2 (November 23, 2018): 227–47. http://dx.doi.org/10.1515/nanoph-2018-0161.
Full textDu, Qingyang. "High energy radiation damage on silicon photonic devices: a review." Optical Materials Express 13, no. 2 (January 5, 2023): 403. http://dx.doi.org/10.1364/ome.476935.
Full textHe, Li, Huan Li, and Mo Li. "Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices." Science Advances 2, no. 9 (September 2016): e1600485. http://dx.doi.org/10.1126/sciadv.1600485.
Full textAsano, Takashi, and Susumu Noda. "Photonic Crystal Devices in Silicon Photonics." Proceedings of the IEEE 106, no. 12 (December 2018): 2183–95. http://dx.doi.org/10.1109/jproc.2018.2853197.
Full textDissertations / Theses on the topic "Photonic devices"
Sánchez, Diana Luis David. "High performance photonic devices for switching applications in silicon photonics." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/77150.
Full textSilicon is the most promising platform for photonic integration, ensuring CMOS fabrication compatibility and mass production of cost-effective devices. During the last decades, photonic technology based on the Silicon on Insulator (SOI) platform has shown a great evolution, developing different sorts of high performance optical devices. One way to continue improving the performance of photonic optical devices is the combination of the silicon platform with another technologies like plasmonics or CMOS compatible materials with unique properties. Hybrid technologies can overcome the current limits of the silicon technology and develop new devices exceeding the performance metrics of its counterparts electronic devices. The vanadium dioxide/silicon hybrid technology allows the development of new high-performance devices with broadband performance, faster operating speed and energy efficient optical response with wavelength-scale device dimensions. The main goal of this thesis has been the proposal and development of high performance photonic devices for switching applications. In this context, different structures, based on silicon, plasmonics and the tunable properties of vanadium dioxide, have been investigated to control the polarization of light and for enabling other electro-optical functionalities, like optical modulation.
El silici és la plataforma més prometedora per a la integració fotònica, assegurant la compatibilitat amb els processos de fabricació CMOS i la producció en massa de dispositius a baix cost. Durant les últimes dècades, la tecnologia fotònica basada en la plataforma de silici ha mostrat un gran creixement, desenvolupant diferents tipus de dispositius òptics d'alt rendiment. Una de les possibilitats per a continuar millorant el rendiment dels dispositius fotònics és per mitjà de la combinació amb altres tecnologies com la plasmònica o amb nous materials amb propietats excepcionals i compatibilitat CMOS. Les tecnologies híbrides poden superar les limitacions de la tecnologia de silici, donant lloc a nous dispositius capaços de superar el rendiment dels seus homòlegs electrònics. La tecnologia híbrida diòxid de vanadi/silici permet el desenvolupament de dispositius d'alt rendiment, amb gran ample de banda, major velocitat d'operació i major eficiència energètica en l'escala de la longitud d'ona. L'objectiu principal d'esta tesi ha sigut la proposta i desenvolupament de dispositius fotònics d'alt rendiment per a aplicacions de commutació. En este context, diferents estructures basades en silici, tecnologia plasmònica i les propietats sintonitzables del diòxid de vanadi han sigut investigades per a controlar la polarització de la llum i per a desenvolupar altres funcionalitats electró-òptiques com la modulació.
Sánchez Diana, LD. (2016). High performance photonic devices for switching applications in silicon photonics [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/77150
TESIS
Zhou, Ying. "CHOLESTERIC LIQUID CRYSTAL PHOTONIC CRYSTAL LASERS AND PHOTONIC DEVICES." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2706.
Full textPh.D.
Optics and Photonics
Optics and Photonics
Optics PhD
Zhou, Yaling. "Photonic Devices Fabricated with Photonic Area Lithographically Mapped Process." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1233528818.
Full textForsberg, Erik. "Electronic and Photonic Quantum Devices." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3476.
Full textIn this thesis various subjects at the crossroads of quantummechanics and device physics are treated, spanning from afundamental study on quantum measurements to fabricationtechniques of controlling gates for nanoelectroniccomponents.
Electron waveguide components, i.e. electronic componentswith a size such that the wave nature of the electron dominatesthe device characteristics, are treated both experimentally andtheoretically. On the experimental side, evidence of partialballistic transport at room-temperature has been found anddevices controlled by in-plane Pt/GaAs gates have beenfabricated exhibiting an order of magnitude improvedgate-efficiency as compared to an earlier gate-technology. Onthe theoretical side, a novel numerical method forself-consistent simulations of electron waveguide devices hasbeen developed. The method is unique as it incorporates anenergy resolved charge density calculation allowing for e.g.calculations of electron waveguide devices to which a finitebias is applied. The method has then been used in discussionson the influence of space-charge on gate-control of electronwaveguide Y-branch switches.
Electron waveguides were also used in a proposal for a novelscheme of carrierinjection in low-dimensional semiconductorlasers, a scheme which altogether by- passes the problem ofslow carrier relaxation in suchstructures. By studying aquantum mechanical two-level system serving as a model forelectroabsorption modulators, the ultimate limits of possiblemodulation rates of such modulators have been assessed andfound to largely be determined by the adiabatic response of thesystem. The possibility of using a microwave field to controlRabi oscillations in two-level systems such that a large numberof states can be engineered has also been explored.
A more fundamental study on quantum mechanical measurementshas been done, in which the transition from a classical to aquantum "interaction free" measurement was studied, making aconnection with quantum non-demolition measurements.
Alonzo, Massimo. "Photonic devices in solitonic waveguides." Phd thesis, Université de Metz, 2010. http://tel.archives-ouvertes.fr/tel-00557947.
Full textLiu, Tao. "Photonic Crystal Based Optical Devices." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1294%5F1%5Fm.pdf&type=application/pdf.
Full textFan, Yun-Hsing. "TUNABLE LIQUID CRYSTAL PHOTONIC DEVICES." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3926.
Full textPh.D.
Other
Optics and Photonics
Optics
Scardaci, Vittorio. "Carbon nanotubes for photonic devices." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612536.
Full textGallacher, Kevin. "Germanium on silicon photonic devices." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4994/.
Full textRaghunathan, Varun. "Raman-based silicon photonic devices." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1481677321&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textBooks on the topic "Photonic devices"
Guekos, George, ed. Photonic Devices for Telecommunications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59889-0.
Full textPhysics of photonic devices. 2nd ed. Hoboken, N.J: John Wiley & Sons, 2009.
Find full textPassaro, Vittorio M. N. Modeling of photonic devices. New York: Nova Science Publishers, 2009.
Find full textHirao, Kazuyuki, Tsuneo Mitsuyu, Jinhai Si, and Jianrong Qiu, eds. Active Glass for Photonic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04603-6.
Full textBhandarkar, Suhas, ed. Advances in Photonic Materials and Devices. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9781118407233.
Full textHua, Yan. Development of photonic-based measurement devices. Salford: University of Salford, 1996.
Find full textP, Andrews Mark, Najafi S. Iraj, and Society of Photo-optical Instrumentation Engineers., eds. Sol-gel and polymer photonic devices. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1997.
Find full textW, Waynant Ronald, Lowell John, IEEE Circuits and Systems Society., and Components, Packaging & Manufacturing Technology Society., eds. Electronic and photonic circuits and devices. New York: Institute of Electrical and Electronics Engineers, 1999.
Find full textZhu, Xiaoliang. Systems Engineering for Silicon Photonic Devices. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textSilicon Photonic Devices and Their Applications. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textBook chapters on the topic "Photonic devices"
Li, Sheng S. "Photonic Devices." In Semiconductor Physical Electronics, 327–90. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4613-0489-0_12.
Full textKawakami, Yoichi, Satoshi Kamiyama, Gen-Ichi Hatakoshi, Takashi Mukai, Yukio Narukawa, Ichirou Nomura, Katsumi Kishino, et al. "Photonic Devices." In Wide Bandgap Semiconductors, 97–230. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-47235-3_3.
Full textVengsarkar, Ashish M. "Optical Fiber Devices." In Photonic Networks, 133–40. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0979-2_12.
Full textBaba, T. "Photonic Crystal Devices." In Photonic Crystals, 237–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40032-5_11.
Full textSolgaard, Olav. "Fiber and Waveguide Devices." In Photonic Microsystems, 1–72. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68351-5_6.
Full textWakita, Koichi. "Photonic Switching Devices." In Semiconductor Optical Modulators, 145–63. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-6071-5_6.
Full textCheng, Keh Yung. "Heterostructure Photonic Devices." In III–V Compound Semiconductors and Devices, 419–514. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51903-2_10.
Full textFu, Hongbing. "Organic Photonic Devices." In Organic Optoelectronics, 351–74. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527653454.ch7.
Full textVitiello, Miriam S. "Terahertz Photonic Devices." In NATO Science for Peace and Security Series B: Physics and Biophysics, 91–111. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8828-1_5.
Full textValle, Giuseppe Della, and Roberto Osellame. "Active Photonic Devices." In Topics in Applied Physics, 265–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23366-1_10.
Full textConference papers on the topic "Photonic devices"
Wong, Chee Wei, Xiaodong Yang, James F. McMillan, and Chad A. Husko. "Photonic crystals and silicon photonics." In Integrated Optoelectronic Devices 2006, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2006. http://dx.doi.org/10.1117/12.652641.
Full text"Photonic devices." In 2016 74th Annual Device Research Conference (DRC). IEEE, 2016. http://dx.doi.org/10.1109/drc.2016.7548475.
Full text"Photonic devices." In 2017 75th Device Research Conference (DRC). IEEE, 2017. http://dx.doi.org/10.1109/drc.2017.7999497.
Full textYokoyama, Shiyoshi, Shinichiro Inoue, and Kensuke Sasaki. "Two-photon polymer laser writing in the photonic crystal." In Photonic Devices + Applications, edited by Rachel Jakubiak. SPIE, 2008. http://dx.doi.org/10.1117/12.794281.
Full textClays, Koen, Kasper Baert, Mark Van der Auweraer, and Renaud Vallée. "Photonic superlattices for photonic crystal lasers." In Photonic Devices + Applications, edited by Jean-Michel Nunzi. SPIE, 2007. http://dx.doi.org/10.1117/12.730699.
Full textDe La Rue, Richard M. "Photonic Crystal and Periodic Photonic Wire Microcavity Devices for VLSI Photonics." In MICRORESONATORS AS BUILDING BLOCKS FOR VLSI PHOTONICS: International School of Quantum Electronics, 39th Course. AIP, 2004. http://dx.doi.org/10.1063/1.1764025.
Full textChu, Tao. "Silicon Photonic Devices." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6p_a410_6.
Full textPetruzzella, Maurangelo, Simone Birindelli, Francesco M. Pagliano, Daniele Pellegrino, Zarko Zobenica, Michele Cotrufo, Frank W. M. van Otten, et al. "Single photons from electrically driven reconfigurable photonic crystal cavities (Conference Presentation)." In Quantum Photonic Devices, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2277707.
Full textO’Brien, John, Wan Kuang, Jiang-Rong Cao, Min-Hsiung Shih, Woo Jun Kim, Nan-Kyung Suh, Andrew Stapleton, Zhi-Jian Wei, Sang-Jun Choi, and P. D. Dapkus. "Photonic Crystal Devices." In Frontiers in Optics. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/fio.2004.fmk5.
Full text"Nonreciprocal photonic devices." In 2013 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2013. http://dx.doi.org/10.1109/phosst.2013.6614432.
Full textReports on the topic "Photonic devices"
Clem, Paul Gilbert, Weng Wah Dr Chow, .), Ganapathi Subramanian Subramania, James Grant Fleming, Joel Robert Wendt, and Ihab Fathy El-Kady. 3D Active photonic crystal devices for integrated photonics and silicon photonics. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/882052.
Full textHarris, James S. Quantum Well Devices for Photonic Networks. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada378985.
Full textForrest, Stephen. Very High Performance Organic Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada476377.
Full textSharkawy, Ahmed, Shouyuan Shi, Caihua Chen, and Dennis Prather. Photonic Band Gap Devices for Commercial Applications. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada459258.
Full textAdibi, Ali. Chip-Scale WDM Devices Using Photonic Crystals. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada461016.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada399578.
Full textGauthier, D. J. Complexity-Enabled Sensor Networks and Photonic Switching Devices. Fort Belvoir, VA: Defense Technical Information Center, December 2008. http://dx.doi.org/10.21236/ada499602.
Full textBlair, Steve. Engineered Photonic Materials for Nanoscale Optical Logic Devices. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada422569.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada390015.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada390174.
Full text