Journal articles on the topic 'Photonic crystal fibres'

To see the other types of publications on this topic, follow the link: Photonic crystal fibres.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photonic crystal fibres.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Woliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, Daniel Budaszewski, Marzena Sala-Tefelska, Miłosz Chychłowski, Kamil Orzechowski, Karolina Bednarska, and Piotr Lesiak. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology." Photonics Letters of Poland 11, no. 2 (July 1, 2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.

Full text
Abstract:
Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented. Full Text: PDF ReferencesT.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
2

Knight, Jonathan C. "Photonic crystal fibres." Nature 424, no. 6950 (August 2003): 847–51. http://dx.doi.org/10.1038/nature01940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Russell, P. St J., R. Beravat, and G. K. L. Wong. "Helically twisted photonic crystal fibres." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150440. http://dx.doi.org/10.1098/rsta.2015.0440.

Full text
Abstract:
Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’.
APA, Harvard, Vancouver, ISO, and other styles
4

Arriaga, J., J. C. Knight, and P. St J. Russell. "Modelling photonic crystal fibres." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 440–42. http://dx.doi.org/10.1016/s1386-9477(02)00829-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Budaszewski, Daniel, and Tomasz R. Woliński. "Light propagation in a photonic crystal fiber infiltrated with mesogenic azobenzene dyes." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 51. http://dx.doi.org/10.4302/plp.v9i2.730.

Full text
Abstract:
In this paper, light propagation in an isotropic photonic crystal fiber as well in a silica-glass microcapillary infiltrated with a mesogenic azobenzene dye has been investigated. It appeared that light spectrum guided inside the photonic crystal fiber infiltrated with the investigated azobenzene dye depends on the illuminating wavelength of the absorption band and on linear polarization. Also, alignment of the mesogenic azobenzene dye molecules inside silica glass microcapillaries and photonic crystal fibers has been investigated. Results obtained may lead to a new design of optically tunable photonic devices. Full Text: PDF ReferencesP. Russell. St. J. "Photonic-Crystal Fibers", J. Lightwave Technol. 24, 4729 (2006). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Exp. 11, 2589 (2003). CrossRef D. C. Zografopoulos, A. Asquini, E. E. Kriezis, A. d'Alessandro, R. Beccherelli, "Guided-wave liquid-crystal photonics", Lab Chip, 12, 3598 (2012). CrossRef F. Du, Y-Q. Lu, S-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett 85, 2181 (2004) CrossRef D. C. Zografopoulos, E. E. Kriezis, "Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers", J. Lightwave Technol. 27 (6), 773 (2009) CrossRef S. Ertman, M. Tefelska, M. Chychłowski, A. Rodriquez, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T. R. Woliński. "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol. 30, 1208 (2012). CrossRef D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", Opt. Expr. 15, 7901 (2007) CrossRef M. M. Tefelska, M. S. Chychlowski, T. R. Wolinski, R. Dabrowski, W. Rejmer, E. Nowinowski-Kruszelnicki, P. Mergo, "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 558(1), 184 (2012). CrossRef S. Mathews, Y. Semenova, G. Farrell, "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre", Electronics Letters, 45(12), 617 (2009). CrossRef V. Chigrinov, H-S Kwok, H. Takada, H. Takatsu, "Photo-aligning by azo-dyes: Physics and applications", Liquid Crystals Today, 14:4, 1-15, (2005) CrossRef A. Siarkowska, M. Jóźwik, S. Ertman, T.R. Woliński, V.G. Chigrinov, "Photo-alignment of liquid crystals in micro capillaries with point-by-point irradiation", Opto-Electon. Rev. 22, 178 (2014); CrossRef D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, H-S. Kwok, "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 16 (2014) CrossRef J-H Liou, T-H. Chang, T. Lin, Ch-P. Yu, "Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers", Opt. Expr. 19, (7), 6756, (2011) CrossRef T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S-T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers", Opt. Exp, 12 (24), 5857 (2004) CrossRef K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer", Langmuir, 4, 1214 (1988) CrossRef http://www.beamco.com/Azobenzene-liquid-crystals DirectLink K. A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Phot. Lett, Poland, 8(2), 51 (2016). CrossRef L. Deng, H.-K. Liu, "Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films", Opt. Eng. 42, 2936-2941 (2003). CrossRef J. Si, J. Qiu, J. Guo, M. Wang, K. Hirao, "Photoinduced birefringence of azodye-doped materials by a femtosecond laser", Appl. Opt., 42, 7170-7173 (2008). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
6

Russell, Philip St, Tim A. Birks, Jonathan C. Knight, Robert F. Cregan, Brian J. Mangan, and Jean-Philippe De Sandro. "Silica/Air Photonic Crystal Fibres." Japanese Journal of Applied Physics 37, S1 (January 1, 1998): 45. http://dx.doi.org/10.7567/jjaps.37s1.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuhlmey, Boris T., and Ross C. McPhedran. "Photonic crystal fibres with resonant coatings." Physica B: Condensed Matter 394, no. 2 (May 2007): 155–58. http://dx.doi.org/10.1016/j.physb.2006.12.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skibina, Yu S., Valerii V. Tuchin, V. I. Beloglazov, G. Shteinmaeer, I. L. Betge, R. Wedell, and N. Langhoff. "Photonic crystal fibres in biomedical investigations." Quantum Electronics 41, no. 4 (April 30, 2011): 284–301. http://dx.doi.org/10.1070/qe2011v041n04abeh014536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nielsen, Kristian, Danny Noordegraaf, Thorkild Sørensen, Anders Bjarklev, and Theis P. Hansen. "Selective filling of photonic crystal fibres." Journal of Optics A: Pure and Applied Optics 7, no. 8 (July 19, 2005): L13—L20. http://dx.doi.org/10.1088/1464-4258/7/8/l02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Portosi, Vincenza, Dario Laneve, Mario Christian Falconi, and Francesco Prudenzano. "Advances on Photonic Crystal Fiber Sensors and Applications." Sensors 19, no. 8 (April 21, 2019): 1892. http://dx.doi.org/10.3390/s19081892.

Full text
Abstract:
In this review paper some recent advances on optical sensors based on photonic crystal fibres are reported. The different strategies successfully applied in order to obtain feasible and reliable monitoring systems in several application fields, including medicine, biology, environment sustainability, communications systems are highlighted. Emphasis is given to the exploitation of integrated systems and/or single elements based on photonic crystal fibers employing Bragg gratings (FBGs), long period gratings (LPGs), interferometers, plasmon propagation, off-set spliced fibers, evanescent field and hollow core geometries. Examples of recent optical fiber sensors for the measurement of strain, temperature, displacement, air flow, pressure, liquid-level, magnetic field, and hydrocarbon detection are briefly described.
APA, Harvard, Vancouver, ISO, and other styles
11

Zheltikov, Aleksei. "Nanoscale nonlinear optics in photonic-crystal fibres." Journal of Optics A: Pure and Applied Optics 8, no. 4 (March 21, 2006): S47—S72. http://dx.doi.org/10.1088/1464-4258/8/4/s04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Ming-Yang, Rong-Jin Yu, and An-Ping Zhao. "Highly birefringent rectangular lattice photonic crystal fibres." Journal of Optics A: Pure and Applied Optics 6, no. 10 (September 21, 2004): 997–1000. http://dx.doi.org/10.1088/1464-4258/6/10/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Frosz, M. H., K. Hougaard, S. E. B. Libori, J. L gsgaard, and A. Bjarklev. "Radial deformation losses in photonic crystal fibres." Journal of Optics A: Pure and Applied Optics 5, no. 3 (April 14, 2003): 268–71. http://dx.doi.org/10.1088/1464-4258/5/3/320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

L gsgaard, Jesper, and Anders Bjarklev. "Photonic crystal fibres with large nonlinear coefficients." Journal of Optics A: Pure and Applied Optics 6, no. 1 (September 1, 2003): 1–5. http://dx.doi.org/10.1088/1464-4258/6/1/301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Roy, Philippe, Philippe Leproux, Sébastien Février, Dominique Pagnoux, Jean-Louis Auguste, Jean-Marc Blondy, Stéphane Hilaire, et al. "Photonic crystal fibres for lasers and amplifiers." Comptes Rendus Physique 7, no. 2 (March 2006): 224–32. http://dx.doi.org/10.1016/j.crhy.2006.01.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Norton, R. A., and R. Scheichl. "Planewave expansion methods for photonic crystal fibres." Applied Numerical Mathematics 63 (January 2013): 88–104. http://dx.doi.org/10.1016/j.apnum.2012.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Poudereux, David, Manuel Cano-García, Domenico Alj, Roberto Caputo, Cesare Umeton, Morten Andreas Geday, José Manuel Otón, and Xabier Quintana. "Recording Policryps structures in photonic crystal fibers." Photonics Letters of Poland 9, no. 1 (March 31, 2017): 5. http://dx.doi.org/10.4302/plp.v9i1.700.

Full text
Abstract:
Policryps structures of photo-curable adhesive NOA61 and nematic liquid crystal mixture E7 have been created inside selected microchannels of photonic crystal fibers (PCF). The PCF was selectively infiltrated with the photopolymer-liquid crystal mixture for the writing of a holographic tunable grating inside specific holes of the photonic fiber. A 2um pitch grating was successfully recorded in the PCF inner holes with and without collapsing the fiber cladding. The liquid crystal is properly aligned in both cases. Full Text: PDF ReferencesQ. Liu, et al., "Tunable Fiber Polarization Filter by Filling Different Index Liquids and Gold Wire Into Photonic Crystal Fiber", J. Lightwave Technol. 34(10), 2484 (2016). CrossRef L. Velázquez-Ibarra, A. Díez, E. Silvestre, M.V. Andrés, "Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers", Opt. Lett. 41(11), 2600 (2016). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express 11(20), 2589 (2003). CrossRef H.Y. Choi, M.J. Kim, B.H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber", Opt. Express 15(9), 5711 (2007). CrossRef D. Poudereux, P. Corredera, E. Otón, J.M. Otón, X.Q. Arregui, "Photonic liquid crystal fiber intermodal interferometer" Opt. Pura Apl. 46(4), 321 (2013). CrossRef T.R. Woliński, et al., "Tunable Optofluidic Polymer Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 619(1), 2 (2015). CrossRef D. Budaszewski, T.R. Woliński, M.A. Geday, J.M. Otón, "Photonic Crystal Fibers infiltrated with Ferroelectric Liquid Crystals", Phot. Lett. Poland, 2(3), 110 (2010). CrossRef D. Alj, S. Paladugu, G. Volpe, R. Caputo, C. Umeton, "Polar POLICRYPS diffractive structures generate cylindrical vector beams", Appl. Phys. Lett., 107(20), 201101 (2015). CrossRef A. Veltri, R. Caputo, C. Umeton, A.V. Sukhov, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials", Appl. Phys. Lett. 84(18), 3492 (2004). CrossRef T.J. Bunning, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland, "Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)", Annu. Rev. Mater. Sci. 30(1), 83 (2000). CrossRef R. Caputo, L. De Sio, A.V. Sukhov, A. Veltri, C. Umeton, "Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material", Opt. Lett., 29, 1261 (2004). CrossRef A. Marino, F. Vita, V. Tkachenko, R. Caputo, C. Umeton, A. Veltri, G. Abbate, "Dynamical behaviour of holographic gratings with a nematic film --Polymer slice sequence structure", Euro. Phys. J. E 15, 47 (2004). CrossRef G. Abbate, F. Vita, A. Marino, V. Tkachenko, S. Slussarenko, O. Sakhno, J. Stumpe, "New Generation of Holographic Gratings Based on Polymer-LC Composites: POLICRYPS and POLIPHEM", Mol. Cryst. Liq. Cryst. 453(1), 1 (2006). CrossRef G. Zito, S. Pissadakis, "Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber", Opt. Lett. 38(17), 3253 (2013). CrossRef B. Sun, et al., "Unique Temperature Dependence of Selectively Liquid-Crystal-Filled Photonic Crystal Fibers", IEEE Phot. Technol. Lett. 28(12), 1282 (2016). CrossRef R. Caputo, et al., "POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications", J. Opt. A: Pure Appl. Opt. 11(2), 024017 (2009). CrossRef J. Li, S.-T. Wu, S. Brugioni, R. Meucci, S. Faetti, "Infrared refractive indices of liquid crystals", J. Appl. Phys. 97(7), 073501 (2005). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
18

Corbett, J., A. Dabirian, T. Butterley, N. A. Mortensen, and J. R. Allington-Smith. "The coupling performance of photonic crystal fibres in fibre stellar interferometry." Monthly Notices of the Royal Astronomical Society 368, no. 1 (May 1, 2006): 203–10. http://dx.doi.org/10.1111/j.1365-2966.2006.10085.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Carvalho, J. P., H. Lehmann, H. Bartelt, F. Magalhães, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araújo, L. A. Ferreira, and J. C. Knight. "Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy." Journal of Sensors 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/398403.

Full text
Abstract:
In this work we described an optical fibre sensing system for detecting low levels of methane. The properties of hollow-core photonic crystal fibres are explored to have a sensing head with favourable characteristics for gas sensing, particularly in what concerns intrinsic readout sensitivity and gas diffusion time in the sensing structure. The sensor interrogation was performed applying the Wavelength Modulation Spectroscopy technique, and a portable measurement unit was developed with performance suitable for remote detection of low levels of methane. This portable system has the capacity to simultaneously interrogate four remote photonic crystal fibre sensing heads.
APA, Harvard, Vancouver, ISO, and other styles
20

Holdsworth, J., K. Cook, J. Canning, S. Bandyopadhyay, and M. Stevenson. "Rotationally Variant Grating Writing in Photonic Crystal Fibres!" Open Optics Journal 3, no. 1 (March 19, 2009): 19–23. http://dx.doi.org/10.2174/1874328500903010019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ademgil, Huseyin, Shyqyri Haxha, and Fathi AbdelMalek. "Highly Nonlinear Bending-Insensitive Birefringent Photonic Crystal Fibres." Engineering 02, no. 08 (2010): 608–16. http://dx.doi.org/10.4236/eng.2010.28078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nguyen, H. C., B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton. "Tapered photonic crystal fibres: properties, characterisation and applications." Applied Physics B 81, no. 2-3 (July 2005): 377–87. http://dx.doi.org/10.1007/s00340-005-1901-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Knudsen, Erik, and Anders Bjarklev. "Modelling photonic crystal fibres with Hermite–Gaussian functions." Optics Communications 222, no. 1-6 (July 2003): 155–60. http://dx.doi.org/10.1016/s0030-4018(03)01451-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cubillas, Ana M., Sarah Unterkofler, Tijmen G. Euser, Bastian J. M. Etzold, Anita C. Jones, Peter J. Sadler, Peter Wasserscheid, and Philip St J. Russell. "Photonic crystal fibres for chemical sensing and photochemistry." Chemical Society Reviews 42, no. 22 (2013): 8629. http://dx.doi.org/10.1039/c3cs60128e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lu-Yun, Yang, Chen Dan-Ping, Xia Jin-An, Wang Chen, Jiang Xiong-Wei, Zhu Cong-Shan, and Qiu Jian-Rong. "Nd 3+ Doped Silicate Glass Photonic Crystal Fibres." Chinese Physics Letters 22, no. 2 (January 27, 2005): 388–90. http://dx.doi.org/10.1088/0256-307x/22/2/033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Park, H., M. Cho, J. Kim, and H. Han. "Terahertz pulse transmission in plastic photonic crystal fibres." Physics in Medicine and Biology 47, no. 21 (October 16, 2002): 3765–69. http://dx.doi.org/10.1088/0031-9155/47/21/314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Konorov, Stanislav O., Vladimir P. Mitrokhin, Andrei B. Fedotov, Dmitrii A. Sidorov-Biryukov, Valentin I. Beloglazov, Nina B. Skibina, Ernst Wintner, Michael Scalora, and Aleksei M. Zheltikov. "Hollow-core photonic-crystal fibres for laser dentistry." Physics in Medicine and Biology 49, no. 7 (March 18, 2004): 1359–68. http://dx.doi.org/10.1088/0031-9155/49/7/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bennet, F. H., and J. Farnell. "Waveguide arrays in selectively infiltrated photonic crystal fibres." Optics Communications 283, no. 20 (October 2010): 4069–73. http://dx.doi.org/10.1016/j.optcom.2010.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bartelt, H., J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, et al. "Preparation and application of functionalized photonic crystal fibres." physica status solidi (a) 204, no. 11 (November 2007): 3805–21. http://dx.doi.org/10.1002/pssa.200776406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pustelny, T., and M. Grabka. "Photonic-Crystal Fibres with Suspended Core - Numerical Analyses." Acta Physica Polonica A 114, no. 6A (December 2008): A—115—A—120. http://dx.doi.org/10.12693/aphyspola.114.a-115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Williams, Gareth O. S., Tijmen G. Euser, Philip St J. Russell, and Anita C. Jones. "Spectrofluorimetry with attomole sensitivity in photonic crystal fibres." Methods and Applications in Fluorescence 1, no. 1 (January 28, 2013): 015003. http://dx.doi.org/10.1088/2050-6120/1/1/015003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rothwell, John H., Dónal A. Flavin, William N. MacPherson, Julian D. Jones, Jonathan C. Knight, and Philip St J. Russell. "Photonic sensing based on variation of propagation properties of photonic crystal fibres." Optics Express 14, no. 25 (2006): 12445. http://dx.doi.org/10.1364/oe.14.012445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Belhadj, W., F. AbdelMalek, and H. Bouchriha. "Characterization and study of photonic crystal fibres with bends." Materials Science and Engineering: C 26, no. 2-3 (March 2006): 578–79. http://dx.doi.org/10.1016/j.msec.2005.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Larsen, Thomas, Anders Bjarklev, David Hermann, and Jes Broeng. "Optical devices based on liquid crystal photonic bandgap fibres." Optics Express 11, no. 20 (October 6, 2003): 2589. http://dx.doi.org/10.1364/oe.11.002589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hong-Da, Tian, Yu Zhong-Yuan, Han Li-Hong, and Liu Yu-Min. "Lateral stress-induced propagation characteristics in photonic crystal fibres." Chinese Physics B 18, no. 3 (March 2009): 1109–15. http://dx.doi.org/10.1088/1674-1056/18/3/045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lin, Zhang, and Yang Chang-Xi. "Nonreciprocal Coupling in Asymmetric Dual-Core Photonic Crystal Fibres." Chinese Physics Letters 21, no. 8 (July 30, 2004): 1542–44. http://dx.doi.org/10.1088/0256-307x/21/8/036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sørensen, H. R., J. Canning, J. Lægsgaard, K. Hansen, and P. Varming. "Liquid filling of photonic crystal fibres for grating writing." Optics Communications 270, no. 2 (February 2007): 207–10. http://dx.doi.org/10.1016/j.optcom.2006.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tawfiq, Zainab H., Makram A. Fakhri, and Salah A. Adnan. "Photonic Crystal Fibres PCF for Different Sensors in Review." IOP Conference Series: Materials Science and Engineering 454 (December 12, 2018): 012173. http://dx.doi.org/10.1088/1757-899x/454/1/012173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sørensen, T., J. Broeng, E. Knudsen, H. R. Simonsen, J. R. Jensen, A. Bjarklev, T. P. Hansen, and S. E. B. Libori. "Spectral macro-bending loss considerations for photonic crystal fibres." IEE Proceedings - Optoelectronics 149, no. 5 (December 1, 2002): 206–10. http://dx.doi.org/10.1049/ip-opt:20020713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Obayya, S. S. A., K. T. V. Grattan, and B. M. A. Rahman. "Accurate finite element modal solution of photonic crystal fibres." IEE Proceedings - Optoelectronics 152, no. 5 (October 1, 2005): 241–46. http://dx.doi.org/10.1049/ip-opt:20045061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Debord, B., L. L. Alves, F. Gérôme, R. Jamier, O. Leroy, C. Boisse-Laporte, P. Leprince, and F. Benabid. "Microwave-driven plasmas in hollow-core photonic crystal fibres." Plasma Sources Science and Technology 23, no. 1 (February 4, 2014): 015022. http://dx.doi.org/10.1088/0963-0252/23/1/015022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Roberts, P. J., F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, et al. "Ultimate low loss of hollow-core photonic crystal fibres." Optics Express 13, no. 1 (2005): 236. http://dx.doi.org/10.1364/opex.13.000236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wadsworth, W. J., A. Witkowska, S. G. Leon-Saval, and T. A. Birks. "Hole inflation and tapering of stock photonic crystal fibres." Optics Express 13, no. 17 (2005): 6541. http://dx.doi.org/10.1364/opex.13.006541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Xiaoqi, Yongjun Liu, Weimin Sun, Jialu Wang, and Zongjun Huang. "The propagation characters of selective-filled photonic crystal fibres." Liquid Crystals 40, no. 5 (March 7, 2013): 565–69. http://dx.doi.org/10.1080/02678292.2013.777978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wadsworth, W. J., J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St J. Russell. "Soliton effects in photonic crystal fibres at 850 nm." Electronics Letters 36, no. 1 (2000): 53. http://dx.doi.org/10.1049/el:20000134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lebrun, S., P. Delaye, and G. Roosen. "Stimulated Raman scattering in hollow core photonic crystal fibres." Annales de Physique 32, no. 2-3 (2007): 45–51. http://dx.doi.org/10.1051/anphys:2008005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sørensen, T., T. P. Hansen, and A. Bjarklev. "Metal-assisted coupling to hollow-core photonic crystal fibres." Electronics Letters 41, no. 12 (2005): 691. http://dx.doi.org/10.1049/el:20051356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Roberts, P. J., and T. J. Shepherd. "The guidance properties of multi-core photonic crystal fibres." Journal of Optics A: Pure and Applied Optics 3, no. 6 (October 26, 2001): S133—S140. http://dx.doi.org/10.1088/1464-4258/3/6/363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Wenyu, Ghazal Fallah Tafti, Mingjie Ding, Yanhua Luo, Yuan Tian, Shuai Wang, Tomasz Karpisz, John Canning, Kevin Cook, and Gang-Ding Peng. "Structure formation dynamics in drawing silica photonic crystal fibres." Frontiers of Optoelectronics 11, no. 1 (March 2018): 69–76. http://dx.doi.org/10.1007/s12200-018-0775-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Taghizadeh, Mostafa, Mohsen Hatami, Hassan Pakarzadeh, and Mohammad Kazem Tavassoly. "Pulsed optical parametric amplification based on photonic crystal fibres." Journal of Modern Optics 64, no. 4 (September 28, 2016): 357–65. http://dx.doi.org/10.1080/09500340.2016.1237684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography