To see the other types of publications on this topic, follow the link: Photonic crystal fibre.

Journal articles on the topic 'Photonic crystal fibre'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photonic crystal fibre.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Russell, P. St J., R. Beravat, and G. K. L. Wong. "Helically twisted photonic crystal fibres." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150440. http://dx.doi.org/10.1098/rsta.2015.0440.

Full text
Abstract:
Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’.
APA, Harvard, Vancouver, ISO, and other styles
2

Rigby, Pauline. "A photonic crystal fibre." Nature 396, no. 6710 (December 1998): 415–16. http://dx.doi.org/10.1038/24739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Budaszewski, Daniel, and Tomasz R. Woliński. "Light propagation in a photonic crystal fiber infiltrated with mesogenic azobenzene dyes." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 51. http://dx.doi.org/10.4302/plp.v9i2.730.

Full text
Abstract:
In this paper, light propagation in an isotropic photonic crystal fiber as well in a silica-glass microcapillary infiltrated with a mesogenic azobenzene dye has been investigated. It appeared that light spectrum guided inside the photonic crystal fiber infiltrated with the investigated azobenzene dye depends on the illuminating wavelength of the absorption band and on linear polarization. Also, alignment of the mesogenic azobenzene dye molecules inside silica glass microcapillaries and photonic crystal fibers has been investigated. Results obtained may lead to a new design of optically tunable photonic devices. Full Text: PDF ReferencesP. Russell. St. J. "Photonic-Crystal Fibers", J. Lightwave Technol. 24, 4729 (2006). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Exp. 11, 2589 (2003). CrossRef D. C. Zografopoulos, A. Asquini, E. E. Kriezis, A. d'Alessandro, R. Beccherelli, "Guided-wave liquid-crystal photonics", Lab Chip, 12, 3598 (2012). CrossRef F. Du, Y-Q. Lu, S-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett 85, 2181 (2004) CrossRef D. C. Zografopoulos, E. E. Kriezis, "Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers", J. Lightwave Technol. 27 (6), 773 (2009) CrossRef S. Ertman, M. Tefelska, M. Chychłowski, A. Rodriquez, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T. R. Woliński. "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol. 30, 1208 (2012). CrossRef D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", Opt. Expr. 15, 7901 (2007) CrossRef M. M. Tefelska, M. S. Chychlowski, T. R. Wolinski, R. Dabrowski, W. Rejmer, E. Nowinowski-Kruszelnicki, P. Mergo, "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 558(1), 184 (2012). CrossRef S. Mathews, Y. Semenova, G. Farrell, "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre", Electronics Letters, 45(12), 617 (2009). CrossRef V. Chigrinov, H-S Kwok, H. Takada, H. Takatsu, "Photo-aligning by azo-dyes: Physics and applications", Liquid Crystals Today, 14:4, 1-15, (2005) CrossRef A. Siarkowska, M. Jóźwik, S. Ertman, T.R. Woliński, V.G. Chigrinov, "Photo-alignment of liquid crystals in micro capillaries with point-by-point irradiation", Opto-Electon. Rev. 22, 178 (2014); CrossRef D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, H-S. Kwok, "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 16 (2014) CrossRef J-H Liou, T-H. Chang, T. Lin, Ch-P. Yu, "Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers", Opt. Expr. 19, (7), 6756, (2011) CrossRef T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S-T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers", Opt. Exp, 12 (24), 5857 (2004) CrossRef K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer", Langmuir, 4, 1214 (1988) CrossRef http://www.beamco.com/Azobenzene-liquid-crystals DirectLink K. A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Phot. Lett, Poland, 8(2), 51 (2016). CrossRef L. Deng, H.-K. Liu, "Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films", Opt. Eng. 42, 2936-2941 (2003). CrossRef J. Si, J. Qiu, J. Guo, M. Wang, K. Hirao, "Photoinduced birefringence of azodye-doped materials by a femtosecond laser", Appl. Opt., 42, 7170-7173 (2008). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
4

Shu-Qin, Lou, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng. "Polarization-maintaining photonic crystal fibre." Chinese Physics 13, no. 7 (June 30, 2004): 1052–58. http://dx.doi.org/10.1088/1009-1963/13/7/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stevenson, M., C. Martelli, J. Canning, B. Ashton, and K. Lyytikainen. "Photonic crystal fibre optical attenuators." Electronics Letters 41, no. 21 (2005): 1167. http://dx.doi.org/10.1049/el:20052649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skibina, Julia S., Rumen Iliew, Jens Bethge, Martin Bock, Dorit Fischer, Valentin I. Beloglasov, Reiner Wedell, and Günter Steinmeyer. "A chirped photonic-crystal fibre." Nature Photonics 2, no. 11 (October 12, 2008): 679–83. http://dx.doi.org/10.1038/nphoton.2008.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shahiruddin, M. Ashique Hassan, Anand Kumar, and Dharmendra K. Singh. "Structural and Behavioural Analysis of As2Se3, TeO2, SiC, SiO2 and Si3N4 for Photonic Application." Materials Science Forum 978 (February 2020): 360–68. http://dx.doi.org/10.4028/www.scientific.net/msf.978.360.

Full text
Abstract:
The materials significantly influence the structural, optical and photoelectrical characteristic. Materials such as Arsenic selenide, Tellurite Glass, Silicon carbide, Silicon dioxide and Silicon nitride are investigated through finite element method. The models are established to analyse the structural behaviour of polarization preserving fibre of proposed materials. Photoelectric characteristic determines guided properties of photon particles. Refractive index of the materials influences the properties of photonic crystal fibre. A Polarization Splitter based hexagonal structure is proposed, where inner ring of cladding is in elliptical shape air holes and outer rings are in circular air holes. It provides highly negative dispersion, low confinement loss and high nonlinear coefficient between 1µm to 2µm wide wavelength ranges. The dispersion result shows -2000 db/km-nm at 1.55µm wavelength. Polarization beam splitters photonic crystal fiber characteristics of proposed materials are analysed with same structural parameters.
APA, Harvard, Vancouver, ISO, and other styles
8

Michie, Andrew, John Canning, Ian Bassett, John Haywood, Katja Digweed, Mattias Åslund, Brian Ashton, et al. "Spun elliptically birefringent photonic crystal fibre." Optics Express 15, no. 4 (February 19, 2007): 1811. http://dx.doi.org/10.1364/oe.15.001811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abdur Razzak, S. M., Y. Namihira, and F. Begum. "Ultra-flattened dispersion photonic crystal fibre." Electronics Letters 43, no. 11 (2007): 615. http://dx.doi.org/10.1049/el:20070558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Russell, P., and R. Dettmer. "A neat idea [photonic crystal fibre]." IEE Review 47, no. 5 (September 1, 2001): 19–23. http://dx.doi.org/10.1049/ir:20010503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Stone, James. "Hybridizing graphene and photonic crystal fibre." Nature Photonics 13, no. 11 (October 25, 2019): 731–32. http://dx.doi.org/10.1038/s41566-019-0541-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Knight, J. C., T. A. Birks, R. F. Cregan, P. St J. Russell, and J. P. de Sandro. "Large mode area photonic crystal fibre." Electronics Letters 34, no. 13 (1998): 1347. http://dx.doi.org/10.1049/el:19980965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wadsworth, W. J., J. C. Knight, W. H. Reeves, P. St J. Russell, and J. Arriaga. "Yb3+-doped photonic crystal fibre laser." Electronics Letters 36, no. 17 (2000): 1452. http://dx.doi.org/10.1049/el:20000942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Carvalho, J. P., H. Lehmann, H. Bartelt, F. Magalhães, R. Amezcua-Correa, J. L. Santos, J. Van Roosbroeck, F. M. Araújo, L. A. Ferreira, and J. C. Knight. "Remote System for Detection of Low-Levels of Methane Based on Photonic Crystal Fibres and Wavelength Modulation Spectroscopy." Journal of Sensors 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/398403.

Full text
Abstract:
In this work we described an optical fibre sensing system for detecting low levels of methane. The properties of hollow-core photonic crystal fibres are explored to have a sensing head with favourable characteristics for gas sensing, particularly in what concerns intrinsic readout sensitivity and gas diffusion time in the sensing structure. The sensor interrogation was performed applying the Wavelength Modulation Spectroscopy technique, and a portable measurement unit was developed with performance suitable for remote detection of low levels of methane. This portable system has the capacity to simultaneously interrogate four remote photonic crystal fibre sensing heads.
APA, Harvard, Vancouver, ISO, and other styles
15

Jiang, H., K. Xie, and Y. Wang. "Photonic crystal fibre for use in fibre Raman amplifiers." Electronics Letters 44, no. 13 (2008): 796. http://dx.doi.org/10.1049/el:20080757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Girard, S., A. Yahya, A. Boukenter, Y. Ouerdane, J. P. Meunier, R. E. Kristiansen, and G. Vienne. "-radiation-induced attenuation in photonic crystal fibre." Electronics Letters 38, no. 20 (2002): 1169. http://dx.doi.org/10.1049/el:20020805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hougaard, K. G., J. Broeng, and A. Bjarklev. "Low pump power photonic crystal fibre amplifiers." Electronics Letters 39, no. 7 (2003): 599. http://dx.doi.org/10.1049/el:20030385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pei-Guang, Yan, Ruan Shuang-Chen, Lin Hao-Jia, Du Chen-Lin, Yu Yong-Qin, Lu Ke-Cheng, and Yao Jian-Quan. "Supercontinuum Generation in a Photonic Crystal Fibre." Chinese Physics Letters 21, no. 6 (May 28, 2004): 1093–95. http://dx.doi.org/10.1088/0256-307x/21/6/032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pei-Guang, Yan, Ruan Shuang-Chen, Yu Yong-Qin, Guo Chun-Yu, Guo Yuan, and Liu Cheng-Xiang. "High Power Photonic Crystal Fibre Raman Laser." Chinese Physics Letters 23, no. 6 (May 30, 2006): 1476–78. http://dx.doi.org/10.1088/0256-307x/23/6/033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhou, J., K. Tajima, K. Nakajima, K. Kurokawa, T. Matsui, C. Fukai, and I. Sankawa. "PMD characteristics of twisted photonic crystal fibre." Electronics Letters 41, no. 7 (2005): 403. http://dx.doi.org/10.1049/el:20058095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

otmani, Hamza, Mohamed Bouchemat, Abdesselam Hocini, Touraya Boumaza, and ahlem benmerkhi. "Mode conversion in magneto photonic crystal fibre." Journal of Magnetism and Magnetic Materials 421 (January 2017): 377–83. http://dx.doi.org/10.1016/j.jmmm.2016.08.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

K�?ik, D., I. Turek, I. Martin?ek, J. Canning, N. A. Issa, and K. Lyytik�inen. "Intermodal interference in a photonic crystal fibre." Optics Express 12, no. 15 (2004): 3465. http://dx.doi.org/10.1364/opex.12.003465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Michie, Andrew, John Canning, Katja Lyytik�inen, Mattias �slund, and Justin Digweed. "Temperature independent highly birefringent photonic crystal fibre." Optics Express 12, no. 21 (2004): 5160. http://dx.doi.org/10.1364/opex.12.005160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Canning, J. "Grating confinement in a photonic crystal fibre." Optics Communications 176, no. 1-3 (March 2000): 121–24. http://dx.doi.org/10.1016/s0030-4018(00)00524-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Harun, S. W., S. N. Aziz, N. Tamchek, N. S. Shahabuddin, and H. Ahmad. "Brillouin fibre laser with 20 m-long photonic crystal fibre." Electronics Letters 44, no. 18 (2008): 1065. http://dx.doi.org/10.1049/el:20081310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Peucheret, C., B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen. "40 Gbit∕s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre." Electronics Letters 39, no. 12 (2003): 919. http://dx.doi.org/10.1049/el:20030585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mathews, S., Y. Semenova, and G. Farrell. "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre." Electronics Letters 45, no. 12 (2009): 617. http://dx.doi.org/10.1049/el.2009.0580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Canning, J., N. Groothoff, E. Buckley, T. Ryan, K. Lyytikainen, and J. Digweed. "All-fibre photonic crystal distributed Bragg reflector (PC-DBR) fibre laser." Optics Express 11, no. 17 (August 25, 2003): 1995. http://dx.doi.org/10.1364/oe.11.001995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

MacPherson, W. N., M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, et al. "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre." Optics Communications 193, no. 1-6 (June 2001): 97–104. http://dx.doi.org/10.1016/s0030-4018(01)01260-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wei, Chen, Li Jin-Yan, Lu Pei-Xiang, Li Shi-Yu, Ji Ling-Ling, Jiang Zuo-Wen, Zhang Ji-Huang, and Peng Jing-Gang. "All-Fibre Ytterbium-Doped Photonic Crystal Fibre Laser with High Efficiency." Chinese Physics Letters 25, no. 3 (March 2008): 960–62. http://dx.doi.org/10.1088/0256-307x/25/3/042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

A., Lavanya, and G. Geetha. "A novel hybrid hexagonal photonic crystal fibre for optical fibre communication." Optical Fiber Technology 59 (October 2020): 102321. http://dx.doi.org/10.1016/j.yofte.2020.102321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chaudhary, Laxmi. "Photonic Crystal Fibre: Developments, Properties and Applications in Optical Fiber Communication." International Journal for Research in Applied Science and Engineering Technology V, no. XI (November 23, 2017): 1828–32. http://dx.doi.org/10.22214/ijraset.2017.11264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Corbett, J., A. Dabirian, T. Butterley, N. A. Mortensen, and J. R. Allington-Smith. "The coupling performance of photonic crystal fibres in fibre stellar interferometry." Monthly Notices of the Royal Astronomical Society 368, no. 1 (May 1, 2006): 203–10. http://dx.doi.org/10.1111/j.1365-2966.2006.10085.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sørensen, T., J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori. "Macro-bending loss properties of photonic crystal fibre." Electronics Letters 37, no. 5 (2001): 287. http://dx.doi.org/10.1049/el:20010227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shu-Qin, Lou, Fang Hong, Guo Tie-Ying, and Jian Shui-Sheng. "Investigation on the Fabrication of Photonic Crystal Fibre." Chinese Physics Letters 23, no. 4 (March 2006): 860–63. http://dx.doi.org/10.1088/0256-307x/23/4/028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wadsworth, W., R. Percival, G. Bouwmans, J. Knight, and P. Russell. "High power air-clad photonic crystal fibre laser." Optics Express 11, no. 1 (January 13, 2003): 48. http://dx.doi.org/10.1364/oe.11.000048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

van Eijkelenborg, Martijn, John Canning, Tom Ryan, and Katja Lyytikainen. "Bending-induced colouring in a photonic crystal fibre." Optics Express 7, no. 2 (July 17, 2000): 88. http://dx.doi.org/10.1364/oe.7.000088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hsu, Jui-Ming, and Bing-Liang Wang. "Tailoring of broadband dispersion-compensating photonic crystal fibre." Journal of Modern Optics 64, no. 12 (December 6, 2016): 1134–45. http://dx.doi.org/10.1080/09500340.2016.1266053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Villatoro, Joel, and Joseba Zubia. "[INVITED] New perspectives in photonic crystal fibre sensors." Optics & Laser Technology 78 (April 2016): 67–75. http://dx.doi.org/10.1016/j.optlastec.2015.07.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Groothoff, Nathaniel, John Canning, Tom Ryan, Katja Lyytikainen, and Hugh Inglis. "Distributed feedback photonic crystal fibre (DFB-PCF) laser." Optics Express 13, no. 8 (2005): 2924. http://dx.doi.org/10.1364/opex.13.002924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jia, Meng, Hou Lan-Tian, Zhou Gui-Yao, Wang Kang, and Chen Chao. "Small-Pitch Kagome Hollow-Core Photonic Crystal Fibre." Chinese Physics Letters 25, no. 8 (July 29, 2008): 2860–62. http://dx.doi.org/10.1088/0256-307x/25/8/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Arriaga, J., and B. Meneses. "Band structure of air-photonic crystal fibre cladding." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 443–45. http://dx.doi.org/10.1016/s1386-9477(02)00830-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mathew, J., Y. Semenova, G. Rajan, and G. Farrell. "Humidity sensor based on photonic crystal fibre interferometer." Electronics Letters 46, no. 19 (2010): 1341. http://dx.doi.org/10.1049/el.2010.2080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dabirian, Ali, Mahmood Akbari, and Niels Asger Mortensen. "Propagation of light in photonic crystal fibre devices." Journal of Optics A: Pure and Applied Optics 7, no. 11 (October 11, 2005): 663–68. http://dx.doi.org/10.1088/1464-4258/7/11/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mangan, B. J., J. C. Knight, T. A. Birks, P. St J. Russell, and A. H. Greenaway. "Experimental study of dual-core photonic crystal fibre." Electronics Letters 36, no. 16 (2000): 1358. http://dx.doi.org/10.1049/el:20000979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Francis-Jones, Robert J. A., and Peter J. Mosley. "Characterisation of longitudinal variation in photonic crystal fibre." Optics Express 24, no. 22 (October 17, 2016): 24836. http://dx.doi.org/10.1364/oe.24.024836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

McConnell, G., and E. Riis. "Ultra-short pulse compression using photonic crystal fibre." Applied Physics B: Lasers and Optics 78, no. 5 (March 1, 2004): 557–63. http://dx.doi.org/10.1007/s00340-004-1412-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Moś, Joanna Ewa, Karol Antoni Stasiewicz, and Leszek Roman Jaroszewicz. "Liquid crystal cell with a tapered optical fiber as an active element to optical applications." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 13. http://dx.doi.org/10.4302/plp.v11i1.879.

Full text
Abstract:
The work describes the technology of a liquid crystal cell with a tapered optical fiber as an element providing light. The tapered optical fiber with the total optical loss of 0.22 ± 0.07 dB, the taper waist diameter of 15.5 ± 0.5 μm, and the elongation of 20.4 ± 0.3 mm has been used. The experimental results are presented for a liquid crystal cell filled with a mixture 1550* for parallel orientation of LC molecules to the cross section of the taper waist. Measurement results show the influence of the electrical field with voltage in the range of 0-200 V, without, as well as with different modulation for spectral characteristics. The sinusoidal and square signal shapes are used with a 1-10 Hz frequency range. Full Text: PDF ReferencesZ. Liu, H. Y. Tam, L. Htein, M. L.Vincent Tse, C. Lu, "Microstructured Optical Fiber Sensors", J. Lightwave Technol. 35, 16 (2017). CrossRef T. R. Wolinski, K. Szaniawska, S. Ertman1, P. Lesiak, A. W. Domański, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 5 (2006). CrossRef K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev,T. Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, 8 (2005). CrossRef A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y, Gang Shee, R. Ahmed, F. Rafiq, M Adikan, "Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core", Sensors 15, 5 (2015) CrossRef Y. Huang, Z.Tian, L.P. Sun, D. Sun, J.Li, Y.Ran, B.-O. Guan "High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle", Opt. Express 23, 21 (2015). CrossRef X. Wang, O. S. Wolfbeis, "The 2016 Annual Review Issue", Anal. Chem., 88, 1 (2016). CrossRef Ye Tian, W. Wang, N. Wu, X. Zou, X.Wang, "Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules", Sensors 11, 4 (2011). CrossRef O. Katsunari, Fundamentals of Optical Waveguides, (London, Academic Press, (2006). DirectLink A. K. Sharma, J. Rajan, B.D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review", IEEE Sensors Journal 7, 8 (2007). CrossRef C. Caucheteur, T. Guo, J. Albert, "Review of plasmonic fiber optic biochemical sensors: improving the limit of detection", Anal. Bioanal.Chem. 407, 14 (2015). CrossRef S. F. Silva L. Coelho, O. Frazão, J. L. Santos, F. X.r Malcata, "A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection", IEEE SENSORS JOURNAL 12, 1 (2012). CrossRef H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.P. Loock, "Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy", Sensors 10, 3 (2010). CrossRef S. Zhu, F. Pang, S. Huang, F.Zou, Y.Dong, T.Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD", Opt. Express 23, 11 (2015). CrossRef L. Zhang, J. Lou, L. Tong, "Micro/nanofiber optical sensors", Photonics sensor 1, 1 (2011). CrossRef L.Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides", Opt. Express 11, 6 (2004). CrossRef H. Moyyed, I. T. Leite, L. Coelho, J. L. Santos, D. Viegas, "Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers", IEEE Sensors Journal 14, 10 (2014). CrossRef A. González-Cano, M. Cruz Navarette, Ó. Esteban, N. Diaz Herrera , "Plasmonic sensors based on doubly-deposited tapered optical fibers", Sensors 14, 3 (2014). CrossRef K. A. Stasiewicz, J.E. Moś, "Threshold temperature optical fibre sensors", Opt. Fiber Technol. 32, (2016). CrossRef L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film", Opt. Express 16, 17 (2008). CrossRef S.Zhu, F.Pang, S. Huang, F. Zou, Q. Guo, J. Wen, T. Wang, "High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology", Sensors 16, 8 (2016). CrossRef G.Brambilla, "Optical fibre nanowires and microwires: a review", J. Optics 12, 4 (2010) CrossRef M. Ahmad, L.L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers", Biosens. Bioelectron. 20, 7 (2005). CrossRef L.M. Blinov, Electrooptic Effects in Liquid Crystal Materials (New York, Springftianer, 1994). CrossRef L. Scolari, T.T. Alkeskjold, A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre", Electron. Lett. 42, 22 (2006). CrossRef J. Moś, M. Florek, K. Garbat, K.A. Stasiewicz, N. Bennis, L.R. Jaroszewicz, "In-Line Tunable Nematic Liquid Crystal Fiber Optic Device", J. of Lightwave Technol. 36, 4 (2017). CrossRef J. Moś, K A Stasiewicz, K Garbat, P Morawiak, W Piecek, L R Jaroszewicz, "Tapered fiber liquid crystal hybrid broad band device", Phys. Scripta. 93, 12 (2018). CrossRef Ch. Veilleux, J. Lapierre, J. Bures, "Liquid-crystal-clad tapered fibers", Opt. Lett. 11, 11 (1986). CrossRef R. Dąbrowski, K. Garbat, S. Urban, T.R. Woliński, J. Dziaduszek, T. Ogrodnik, A,Siarkowska, "Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application", Liq. Cryst. 44, (2017). CrossRef S. Lacroix, R. J. Black, Ch. Veilleux, J. Lapierre, "Tapered single-mode fibers: external refractive-index dependence", Appl. Opt., 25, 15 (1986). CrossRef J.F. Henninot, D. Louvergneaux , N.Tabiryan, M. Warenghem, "Controlled Leakage of a Tapered Optical Fiber with Liquid Crystal Cladding", Mol. Cryst.and Liq.Cryst., 282, 1(1996). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
49

Abdelghani, Amr M., Mohamed Farhat O. Hameed, Salah S. A. Obayya, Moataza Abd el Hamid Hindy, and Maher Abdelrazzak. "Liquid crystal photonic crystal fibre with high non-linearity and birefringence." IET Optoelectronics 8, no. 6 (December 1, 2014): 210–16. http://dx.doi.org/10.1049/iet-opt.2013.0116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Azab, Mohammad Y., Salah S. A. Obayya, Somia M. El-Hefnawy, and Mohamed Farhat O. Hameed. "Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer–demultiplexer." IET Optoelectronics 10, no. 1 (February 1, 2016): 21–27. http://dx.doi.org/10.1049/iet-opt.2015.0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography