Journal articles on the topic 'Photonic crystal cavity (PhC cavity)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Photonic crystal cavity (PhC cavity).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yang, Jin-Kyu, Chae-Young Kim, and Minji Lee. "High-Sensitive TM Modes in Photonic Crystal Nanobeam Cavity with Horizontal Air Gap for Refractive Index Sensing." Applied Sciences 9, no. 5 (March 7, 2019): 967. http://dx.doi.org/10.3390/app9050967.
Full textGonzález, Evelyn Yamel, José Antonio Medina, and José Guadalupe Murillo. "High sensitivity photonic crystal sensor based on transition between photonic bands." Laser Physics 32, no. 10 (October 1, 2022): 106202. http://dx.doi.org/10.1088/1555-6611/ac9526.
Full textMedina-Vázquez, José A., Evelyn Y. González-Ramírez, and José G. Murillo-Ramírez. "Photonic crystal meso-cavity with double resonance for second-harmonic generation." Journal of Physics B: Atomic, Molecular and Optical Physics 54, no. 24 (December 22, 2021): 245401. http://dx.doi.org/10.1088/1361-6455/ac461e.
Full textEbrahimy, Mehdi N., Aydin B. Moghaddam, Alireza Andalib, Mohammad Naziri, and Nazli Ronagh. "Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application." International Journal of Nanoscience 14, no. 05n06 (October 2015): 1550026. http://dx.doi.org/10.1142/s0219581x1550026x.
Full textSingaravelu, Praveen K. J., Sharon M. Butler, Robert N. Sheehan, Alexandros A. Liles, Stephen P. Hegarty, and Liam O’Faolain. "Study of the Effects of Cavity Mode Spacing on Mode-Hopping in III–V/Si Hybrid Photonic Crystal Lasers." Crystals 11, no. 8 (July 22, 2021): 848. http://dx.doi.org/10.3390/cryst11080848.
Full textJannesari, Reyhaneh, Thomas Grille, and Bernhard Jakoby. "Highly sensitive fluid sensing due to slow light in pillar-based photonic crystal ring resonators." tm - Technisches Messen 85, no. 7-8 (July 26, 2018): 515–20. http://dx.doi.org/10.1515/teme-2017-0135.
Full textHaron, Mohamad Hazwan, Burhanuddin Yeop Majlis, and Ahmad Rifqi Md Zain. "Increasing the Quality Factor (Q) of 1D Photonic Crystal Cavity with an End Loop-Mirror." Photonics 8, no. 4 (March 31, 2021): 99. http://dx.doi.org/10.3390/photonics8040099.
Full textFrancis, Henry, Si Chen, Kai-Jun Che, Mark Hopkinson, and Chaoyuan Jin. "Photonic Crystal Cavity-Based Intensity Modulation for Integrated Optical Frequency Comb Generation." Crystals 9, no. 10 (September 25, 2019): 493. http://dx.doi.org/10.3390/cryst9100493.
Full textXia, Ji, Qifeng Qiao, Guangcan Zhou, Fook Siong Chau, and Guangya Zhou. "Opto-Mechanical Photonic Crystal Cavities for Sensing Application." Applied Sciences 10, no. 20 (October 12, 2020): 7080. http://dx.doi.org/10.3390/app10207080.
Full textLu, Tsan-Wen, Yu-Kai Feng, Huan-Yeuh Chu, and Po-Tsung Lee. "Photonic Crystal Polymeric Thin-Film Dye-Lasers for Attachable Strain Sensors." Sensors 21, no. 16 (August 6, 2021): 5331. http://dx.doi.org/10.3390/s21165331.
Full textKim, Kyoung-Ho, Muhammad Sujak, Evan S. H. Kang, and You-Shin No. "Tunable non-Hermiticity in Coupled Photonic Crystal Cavities with Asymmetric Optical Gain." Applied Sciences 10, no. 22 (November 14, 2020): 8074. http://dx.doi.org/10.3390/app10228074.
Full textBin, Jingtong, Kerui Feng, Wei Shen, Minjia Meng, and Qifa Liu. "Investigation on GaN-Based Membrane Photonic Crystal Surface Emitting Lasers." Materials 15, no. 4 (February 16, 2022): 1479. http://dx.doi.org/10.3390/ma15041479.
Full textWang, Ziye, Pinyao Wang, Huanyu Lu, Bo Meng, Yanjing Wang, Cunzhu Tong, and Lijun Wang. "Symmetry Criterion and Far-Field Control of Photonic-Crystal Surface-Emitting Lasers." Applied Sciences 12, no. 20 (October 20, 2022): 10581. http://dx.doi.org/10.3390/app122010581.
Full textAhmed, Umair, Yousuf Khan, Muhammad Khurram Ehsan, Muhammad Rizwan Amirzada, Naqeeb Ullah, Abdul Rafay Khatri, Atiq Ur Rehman, and Muhammad A. Butt. "Investigation of Spectral Properties of DBR-Based Photonic Crystal Structure for Optical Filter Application." Crystals 12, no. 3 (March 17, 2022): 409. http://dx.doi.org/10.3390/cryst12030409.
Full textLi, Liang, and Haoyue Hao. "Simulated Study of High-Sensitivity Gas Sensor with a Metal-PhC Nanocavity via Tamm Plasmon Polaritons." Photonics 8, no. 11 (November 10, 2021): 506. http://dx.doi.org/10.3390/photonics8110506.
Full textRehman, Atiq Ur, Yousuf Khan, Muhammad Irfan, and Muhammad A. Butt. "Investigation of Optical-Switching Mechanism Using Guided Mode Resonances." Photonics 10, no. 1 (December 23, 2022): 13. http://dx.doi.org/10.3390/photonics10010013.
Full textHoang, Thi Hong Cam, Thanh Binh Pham, Thuy Van Nguyen, Van Dai Pham, Huy Bui, Van Hoi Pham, Elena Duran, et al. "Hybrid Integrated Nanophotonic Silicon-based Structures." Communications in Physics 29, no. 4 (December 16, 2019): 481. http://dx.doi.org/10.15625/0868-3166/29/4/13855.
Full textSun, Jiayi, Kenichi Maeno, Shoma Aki, Kenji Sueyoshi, Hideaki Hisamoto, and Tatsuro Endo. "Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications." Micromachines 9, no. 8 (August 17, 2018): 410. http://dx.doi.org/10.3390/mi9080410.
Full textMatsuo, Shinji, and Koji Takeda. "λ-Scale Embedded Active Region Photonic Crystal (LEAP) Lasers for Optical Interconnects." Photonics 6, no. 3 (July 25, 2019): 82. http://dx.doi.org/10.3390/photonics6030082.
Full textLai, Guo Zhong, Xi Yao Chen, Yu Fei Wang, and Hong Lin. "Photonic Crystal Fabry-Perot Self-Collimation Interferometer by Liquid Crystal Infiltration." Key Engineering Materials 428-429 (January 2010): 573–78. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.573.
Full textBattula, Arvind, Yalin Lu, R. J. Knize, Kitt Reinhardt, and Shaochen Chen. "Extraordinary Transmission and Enhanced Emission with Metallic Gratings Having Converging-Diverging Channels." Active and Passive Electronic Components 2007 (2007): 1–8. http://dx.doi.org/10.1155/2007/24084.
Full textIadanza, S., A. A. Liles, S. M. Butler, S. P. Hegarty, and L. O’Faolain. "Photonic crystal lasers: from photonic crystal surface emitting lasers (PCSELs) to hybrid external cavity lasers (HECLs) and topological PhC lasers [Invited]." Optical Materials Express 11, no. 9 (September 1, 2021): 3245. http://dx.doi.org/10.1364/ome.430748.
Full textJames Singh, Konthoujam, Hao-Hsuan Ciou, Ya-Hui Chang, Yen-Shou Lin, Hsiang-Ting Lin, Po-Cheng Tsai, Shih-Yen Lin, Min-Hsiung Shih, and Hao-Chung Kuo. "Optical Mode Tuning of Monolayer Tungsten Diselenide (WSe2) by Integrating with One-Dimensional Photonic Crystal through Exciton–Photon Coupling." Nanomaterials 12, no. 3 (January 27, 2022): 425. http://dx.doi.org/10.3390/nano12030425.
Full textAly, Arafa, S. Awasthi, A. Mohamed, Z. Matar, M. Mohaseb, M. Al-Dossari, M. Tammam, Zaky Zaky, A. Amin, and Walied Sabra. "Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design." Crystals 11, no. 12 (December 9, 2021): 1533. http://dx.doi.org/10.3390/cryst11121533.
Full textLabbani, Amel, MoumenisImene, and Faiza Bounaas. "A T-branch diplexer based on directional couplers and resonant cavities in photonic crystal." MATEC Web of Conferences 292 (2019): 02002. http://dx.doi.org/10.1051/matecconf/201929202002.
Full textAbolhaasani-Kaleibar, Abolfazl, and Alireza Andalib. "Studying Photonics Crystal Cavities by Design and Simulation of a 1 to 8 Optical Demultiplexer." Frequenz 72, no. 9-10 (August 28, 2018): 459–64. http://dx.doi.org/10.1515/freq-2017-0189.
Full textTakahashi, Shun, Erika Kimura, Takeshi Ishida, Takeyoshi Tajiri, Katsuyuki Watanabe, Kenichi Yamashita, Satoshi Iwamoto, and Yasuhiko Arakawa. "Fabrication of three-dimensional photonic crystals for near-infrared light by micro-manipulation technique under optical microscope observation." Applied Physics Express 15, no. 1 (December 21, 2021): 015001. http://dx.doi.org/10.35848/1882-0786/ac414a.
Full textGadalla, Mena N., Andrew S. Greenspon, Rodrick Kuate Defo, Xingyu Zhang, and Evelyn L. Hu. "Enhanced cavity coupling to silicon vacancies in 4H silicon carbide using laser irradiation and thermal annealing." Proceedings of the National Academy of Sciences 118, no. 12 (March 17, 2021): e2021768118. http://dx.doi.org/10.1073/pnas.2021768118.
Full textIadanza, Simone, Chinna Devarapu, Alexandros Liles, Robert Sheehan, and Liam O’Faoláin. "Hybrid External Cavity Laser with an Amorphous Silicon-Based Photonic Crystal Cavity Mirror." Applied Sciences 10, no. 1 (December 28, 2019): 240. http://dx.doi.org/10.3390/app10010240.
Full textSingh, Rajpal, and Anami Bhargava. "Chalcogenide Photonic Crystal: Channel Drop Filter." IOP Conference Series: Materials Science and Engineering 1221, no. 1 (March 1, 2022): 012056. http://dx.doi.org/10.1088/1757-899x/1221/1/012056.
Full textNayak, K. P., Pengfei Zhang, and K. Hakuta. "Optical nanofiber-based photonic crystal cavity." Optics Letters 39, no. 2 (January 6, 2014): 232. http://dx.doi.org/10.1364/ol.39.000232.
Full textKarle, T. J., D. H. Brown, R. Wilson, M. Steer, and T. E. Krauss. "Planar photonic crystal coupled cavity waveguides." IEEE Journal of Selected Topics in Quantum Electronics 8, no. 4 (July 2002): 909–18. http://dx.doi.org/10.1109/jstqe.2002.801741.
Full textGiannopoulos, A. V., J. D. Sulkin, C. M. Long, J. J. Coleman, and K. D. Choquette. "Decimated Photonic Crystal Defect Cavity Lasers." IEEE Journal of Selected Topics in Quantum Electronics 17, no. 6 (November 2011): 1693–97. http://dx.doi.org/10.1109/jstqe.2011.2141975.
Full textFaraon, Andrei, Edo Waks, Dirk Englund, Ilya Fushman, and Jelena Vučković. "Efficient photonic crystal cavity-waveguide couplers." Applied Physics Letters 90, no. 7 (February 12, 2007): 073102. http://dx.doi.org/10.1063/1.2472534.
Full textSun, Yi-zhi, Yang Yu, Hui-lan Liu, Zhi-yuan Li, and Wei Ding. "Optical microfiber-based photonic crystal cavity." Journal of Physics: Conference Series 680 (January 2016): 012029. http://dx.doi.org/10.1088/1742-6596/680/1/012029.
Full textRyckman, Judson D., and Sharon M. Weiss. "Slotted Photonic Crystal Single Nanobeam Cavity." Optics and Photonics News 24, no. 12 (December 1, 2013): 41. http://dx.doi.org/10.1364/opn.24.12.000041.
Full textXiao, Ting-Hui, Ziqiang Zhao, Wen Zhou, Mitsuru Takenaka, Hon Ki Tsang, Zhenzhou Cheng, and Keisuke Goda. "Mid-infrared germanium photonic crystal cavity." Optics Letters 42, no. 15 (July 17, 2017): 2882. http://dx.doi.org/10.1364/ol.42.002882.
Full textSchubert, Martin, Troels Suhr, Sara Ek, Elizaveta S. Semenova, Jørn M. Hvam, and Kresten Yvind. "Lambda shifted photonic crystal cavity laser." Applied Physics Letters 97, no. 19 (November 8, 2010): 191109. http://dx.doi.org/10.1063/1.3501968.
Full textMahnkopf, S., R. Marz, M. Kamp, Guang-Hua Duan, F. Lelarge, and A. Forchel. "Tunable photonic crystal coupled-cavity laser." IEEE Journal of Quantum Electronics 40, no. 9 (September 2004): 1306–14. http://dx.doi.org/10.1109/jqe.2004.831638.
Full textSünner, T., T. Stichel, S. H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel. "Photonic crystal cavity based gas sensor." Applied Physics Letters 92, no. 26 (June 30, 2008): 261112. http://dx.doi.org/10.1063/1.2955523.
Full textWang, Qiugu, Depeng Mao, and Liang Dong. "MEMS Tunable Photonic Crystal-Cantilever Cavity." Journal of Microelectromechanical Systems 28, no. 5 (October 2019): 741–43. http://dx.doi.org/10.1109/jmems.2019.2936450.
Full textQiu, Peng, Guang Long Wang, Jiang Lei Lu, and Hong Pei Wang. "Properties Investigation for Single-Defect Square-Lattice Photonic Crystal Slab Cavity in Crystal Material Application." Advanced Materials Research 578 (October 2012): 170–74. http://dx.doi.org/10.4028/www.scientific.net/amr.578.170.
Full textXu, Xiaochuan, Harish Subbaraman, Swapnajit Chakravarty, Amir Hosseini, John Covey, Yalin Yu, David Kwong, et al. "Flexible Single-Crystal Silicon Nanomembrane Photonic Crystal Cavity." ACS Nano 8, no. 12 (November 24, 2014): 12265–71. http://dx.doi.org/10.1021/nn504393j.
Full textZhou, Renlong, Mengxiong Wu, Yingyi Xiao, Lingxi Wu, Qiong Liu, Suxia Xie, Hui Deng, Lisan Zeng, and Guozheng Nie. "Modes and Carrier Density in Dispersive and Nonlinear Gain Planar Photonic Crystal Cavity." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/580157.
Full textTong Kai, 童凯, 张振国 Zhang Zhenguo, 卢建如 Lu Jianru, 李汉卿 Li Hanqing, and 高鹏耀 Gao Pengyao. "Hybrid Plasmonic Photonic Crystal Nano Micro-Cavity." Chinese Journal of Lasers 41, no. 9 (2014): 0905009. http://dx.doi.org/10.3788/cjl201441.0905009.
Full textSharma, Naresh, Govind Kumar, Vivek Garg, Rakesh G. Mote, and Shilpi Gupta. "Reconstructive spectrometer using a photonic crystal cavity." Optics Express 29, no. 17 (August 3, 2021): 26645. http://dx.doi.org/10.1364/oe.432831.
Full textGan, Xuetao, Xinwen Yao, Ren-Jye Shiue, Fariba Hatami, and Dirk Englund. "Photonic crystal cavity-assisted upconversion infrared photodetector." Optics Express 23, no. 10 (May 8, 2015): 12998. http://dx.doi.org/10.1364/oe.23.012998.
Full textShambat, Gary, Bryan Ellis, Jan Petykiewicz, Marie A. Mayer, Tomas Sarmiento, James Harris, Eugene E. Haller, and Jelena Vučković. "Nanobeam photonic crystal cavity light-emitting diodes." Applied Physics Letters 99, no. 7 (August 15, 2011): 071105. http://dx.doi.org/10.1063/1.3625432.
Full textPerani, Tommaso, Daniele Aurelio, and Marco Liscidini. "Bloch-surface-wave photonic crystal nanobeam cavity." Optics Letters 44, no. 21 (October 17, 2019): 5133. http://dx.doi.org/10.1364/ol.44.005133.
Full textDanner, Aaron J., James J. Raftery, Paul O. Leisher, and Kent D. Choquette. "Single mode photonic crystal vertical cavity lasers." Applied Physics Letters 88, no. 9 (February 27, 2006): 091114. http://dx.doi.org/10.1063/1.2181268.
Full text