Academic literature on the topic 'Photonic crystal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photonic crystal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photonic crystal"

1

Alnasser, Khadijah, Steve Kamau, Noah Hurley, Jingbiao Cui, and Yuankun Lin. "Photonic Band Gaps and Resonance Modes in 2D Twisted Moiré Photonic Crystal." Photonics 8, no. 10 (September 23, 2021): 408. http://dx.doi.org/10.3390/photonics8100408.

Full text
Abstract:
The study of twisted bilayer 2D materials has revealed many interesting physics properties. A twisted moiré photonic crystal is an optical analog of twisted bilayer 2D materials. The optical properties in twisted photonic crystals have not yet been fully elucidated. In this paper, we generate 2D twisted moiré photonic crystals without physical rotation and simulate their photonic band gaps in photonic crystals formed at different twisted angles, different gradient levels, and different dielectric filling factors. At certain gradient levels, interface modes appear within the photonic band gap. The simulation reveals “tic tac toe”-like and “traffic circle”-like modes as well as ring resonance modes. These interesting discoveries in 2D twisted moiré photonic crystal may lead toward its application in integrated photonics.
APA, Harvard, Vancouver, ISO, and other styles
2

Woliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, Daniel Budaszewski, Marzena Sala-Tefelska, Miłosz Chychłowski, Kamil Orzechowski, Karolina Bednarska, and Piotr Lesiak. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology." Photonics Letters of Poland 11, no. 2 (July 1, 2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.

Full text
Abstract:
Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented. Full Text: PDF ReferencesT.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
3

Defvi, Eunike Friska, and Lita Rahmasari. "Photonic Crystals based Biosensors in Various Biomolecules Applications." Physics Communication 7, no. 2 (August 31, 2023): 80–90. http://dx.doi.org/10.15294/physcomm.v7i2.43447.

Full text
Abstract:
Over the past decades, photonic crystals have emerged as interesting photonic structures. It plays a vital role in many fields of optical communication, biomedical sensing, and other applications due to its compactness, high sensitivity, high selectivity, fast responsiveness, etc. Strong light confinement in photonic crystals and adjustment of its geometrical parameters have led to the emergence of photonic crystal biosensors. Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. Photonics crystal-based biosensor is one of the solutions to detect various diseases. By using literature review method, this paper aims to explore applications of photonic crystal-based biosensors to encounter the sensitivity of various biomolecules for cancer, malaria, and blood components detection.
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Shawn-Yu, J. G. Fleming, and E. Chow. "Two- and Three-Dimensional Photonic Crystals Built with VLSI Tools." MRS Bulletin 26, no. 8 (August 2001): 627–31. http://dx.doi.org/10.1557/mrs2001.157.

Full text
Abstract:
The drive toward miniature photonic devices has been hindered by our inability to tightly control and manipulate light. Moreover, photonics technologies are typically not based on silicon and, until recently, only indirectly benefited from the rapid advances being made in silicon processing technology. In the first part of this article, the successful fabrication of three-dimensional (3D) photonic crystals using silicon processing will be discussed. This advance has been made possible through the use of integrated-circuit (IC) fabrication technologies (e.g., very largescale integration, VLSI) and may enable the penetration of Si processing into photonics. In the second part, we describe the creation of 2D photonic-crystal slabs operating at the λ = 1.55 μm communications wavelength. This class of 2D photonic crystals is particularly promising for planar on-chip guiding, trapping, and switching of light.
APA, Harvard, Vancouver, ISO, and other styles
5

Budaszewski, Daniel, and Tomasz R. Woliński. "Light propagation in a photonic crystal fiber infiltrated with mesogenic azobenzene dyes." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 51. http://dx.doi.org/10.4302/plp.v9i2.730.

Full text
Abstract:
In this paper, light propagation in an isotropic photonic crystal fiber as well in a silica-glass microcapillary infiltrated with a mesogenic azobenzene dye has been investigated. It appeared that light spectrum guided inside the photonic crystal fiber infiltrated with the investigated azobenzene dye depends on the illuminating wavelength of the absorption band and on linear polarization. Also, alignment of the mesogenic azobenzene dye molecules inside silica glass microcapillaries and photonic crystal fibers has been investigated. Results obtained may lead to a new design of optically tunable photonic devices. Full Text: PDF ReferencesP. Russell. St. J. "Photonic-Crystal Fibers", J. Lightwave Technol. 24, 4729 (2006). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Exp. 11, 2589 (2003). CrossRef D. C. Zografopoulos, A. Asquini, E. E. Kriezis, A. d'Alessandro, R. Beccherelli, "Guided-wave liquid-crystal photonics", Lab Chip, 12, 3598 (2012). CrossRef F. Du, Y-Q. Lu, S-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett 85, 2181 (2004) CrossRef D. C. Zografopoulos, E. E. Kriezis, "Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers", J. Lightwave Technol. 27 (6), 773 (2009) CrossRef S. Ertman, M. Tefelska, M. Chychłowski, A. Rodriquez, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T. R. Woliński. "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol. 30, 1208 (2012). CrossRef D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", Opt. Expr. 15, 7901 (2007) CrossRef M. M. Tefelska, M. S. Chychlowski, T. R. Wolinski, R. Dabrowski, W. Rejmer, E. Nowinowski-Kruszelnicki, P. Mergo, "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 558(1), 184 (2012). CrossRef S. Mathews, Y. Semenova, G. Farrell, "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre", Electronics Letters, 45(12), 617 (2009). CrossRef V. Chigrinov, H-S Kwok, H. Takada, H. Takatsu, "Photo-aligning by azo-dyes: Physics and applications", Liquid Crystals Today, 14:4, 1-15, (2005) CrossRef A. Siarkowska, M. Jóźwik, S. Ertman, T.R. Woliński, V.G. Chigrinov, "Photo-alignment of liquid crystals in micro capillaries with point-by-point irradiation", Opto-Electon. Rev. 22, 178 (2014); CrossRef D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, H-S. Kwok, "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 16 (2014) CrossRef J-H Liou, T-H. Chang, T. Lin, Ch-P. Yu, "Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers", Opt. Expr. 19, (7), 6756, (2011) CrossRef T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S-T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers", Opt. Exp, 12 (24), 5857 (2004) CrossRef K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer", Langmuir, 4, 1214 (1988) CrossRef http://www.beamco.com/Azobenzene-liquid-crystals DirectLink K. A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Phot. Lett, Poland, 8(2), 51 (2016). CrossRef L. Deng, H.-K. Liu, "Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films", Opt. Eng. 42, 2936-2941 (2003). CrossRef J. Si, J. Qiu, J. Guo, M. Wang, K. Hirao, "Photoinduced birefringence of azodye-doped materials by a femtosecond laser", Appl. Opt., 42, 7170-7173 (2008). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
6

Olyaee, Saeed. "Ultra-fast and compact all-optical encoder based on photonic crystal nano-resonator without using nonlinear materials." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 10. http://dx.doi.org/10.4302/plp.v11i1.890.

Full text
Abstract:
In this paper an ultra-compact all-optical encoder is presented by using a two-dimensional photonic crystal. The designed logic gate is based on the interference effect. The proposed structure consists of several photonic crystal waveguides connected by 2 nano-resonators. The nano-resonators are designed to reduce the size of the radius of the dielectric rods. The contrast ratios and delay time for the proposed all-optical encoder are respectively 6 dB and 125 fs. The size of the structure is equal to 132 µm2. Equality of the output power in the logic states “one”, the small dimensions, the low delay time, compact and simple structure have shown that the logic gate is suitable for the using in optical integrated circuits. Full Text: PDF ReferencesA. Salmanpour, Sh. Mohammadnejad, A. Bahrami, "Photonic crystal logic gates: an overview", Optical and Quantum Electronics. 47, 2249 (2015). CrossRef S. C. Xavier, B. E. Carolin, A. p. Kabilan, W. Johnson, "Compact photonic crystal integrated circuit for all-optical logic operation", IET Optoelectronics. 10, 142 (2016). CrossRef Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, K. Kitayama, "Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function", Optics Express. 16, 2570 (2008). CrossRef D. K. Gayen, A. Bhattachryya, T. Chattopadhyay, J. N. Roy, "Ultrafast All-Optical Half Adder Using Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer", Journal of Lightwave Technology. 30, 3387 (2012). CrossRef A. Mohebzadeh-Bahabady, S. Olyaee, "All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect", IET Optoelectronics. 12, 191 (2018). CrossRef Z. Mohebbi, N. Nozhat, F. Emami, "High contrast all-optical logic gates based on 2D nonlinear photonic crystal", Optics Communications. 355, 130 (2015). CrossRef M. Mansouri-Birjandi, M. Ghadrdan, "Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators", Photonics and Nanostructures-Fundamentals and Applications. 21, 44 (2016). CrossRef H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, "Effect of scattering rods in the frequency response of photonic crystal demultiplexers", Journal of Optoelectronics and Advanced Materials. 17, 259 (2015). DirectLink A. Mohebzadeh-Bahabady, S. Olyaee, H. Arman, "Optical Biochemical Sensor Using Photonic Crystal Nano-ring Resonators for the Detection of Protein Concentration", Current Nanoscience. 13, 421 (2017). CrossRef S. Olyaee, A. Mohebzadeh-Bahabady, "Designing a novel photonic crystal nano-ring resonator for biosensor application", Optical and Quantum Electronics. 47, 1881 (2015). CrossRef F. Parandin, R. Malmir, M. Naseri, A. Zahedi, "Reconfigurable all-optical NOT, XOR, and NOR logic gates based on two dimensional photonic crystals", Superlattices and Microstructures. 113, 737 (2018). CrossRef F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, "Proposal for 4-to-2 optical encoder based on photonic crystals", IET Optoelectronics. 11, 29 (2017). CrossRef M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, H. Alipour-Banaei, "A novel all optical reversible 4 × 2 encoder based on photonic crystals", Optik. 126, 2368 (2015). CrossRef T. A. Moniem, "All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators", Journal of Modern Optics. 63, 735 (2016). CrossRef S. Gholamnejad, M. Zavvari, "Design and analysis of all-optical 4–2 binary encoder based on photonic crystal", Optical and Quantum Electronics. 49, 302 (2017). CrossRef H. Seif-Dargahi, "Ultra-fast all-optical encoder using photonic crystal-based ring resonators", Photonic Network Communications. 36, 272 (2018). CrossRef S. Olyaee, M. Seifouri, A. Mohebzadeh-Bahabady, and M. Sardari, "Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size", Optical and Quantum Electronics. 50, 12 (2018). CrossRef C. J. Wu, C. P. Liu, Z. Ouyang, "Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials", Applied Optics.51, 680 (2012). CrossRef Y. C. Jiang, S. B. Liu, H. F. Zhang, X. K. Kong. "Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals", Optics Communications. 348, 90 (2015). CrossRef A. Salmanpour, S. Mohammadnejad, P. T. Omran, "All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators", Optical and Quantum Electronics. 47, 3689 (2015). CrossRef E. H. Shaik, N. Rangaswamy, "Single photonic crystal structure for realization of NAND and NOR logic functions by cascading basic gates", Journal of Computational Electronics. 17, 337 (2018). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
7

Christensen, Thomas, Charlotte Loh, Stjepan Picek, Domagoj Jakobović, Li Jing, Sophie Fisher, Vladimir Ceperic, John D. Joannopoulos, and Marin Soljačić. "Predictive and generative machine learning models for photonic crystals." Nanophotonics 9, no. 13 (June 29, 2020): 4183–92. http://dx.doi.org/10.1515/nanoph-2020-0197.

Full text
Abstract:
AbstractThe prediction and design of photonic features have traditionally been guided by theory-driven computational methods, spanning a wide range of direct solvers and optimization techniques. Motivated by enormous advances in the field of machine learning, there has recently been a growing interest in developing complementary data-driven methods for photonics. Here, we demonstrate several predictive and generative data-driven approaches for the characterization and inverse design of photonic crystals. Concretely, we built a data set of 20,000 two-dimensional photonic crystal unit cells and their associated band structures, enabling the training of supervised learning models. Using these data set, we demonstrate a high-accuracy convolutional neural network for band structure prediction, with orders-of-magnitude speedup compared to conventional theory-driven solvers. Separately, we demonstrate an approach to high-throughput inverse design of photonic crystals via generative adversarial networks, with the design goal of substantial transverse-magnetic band gaps. Our work highlights photonic crystals as a natural application domain and test bed for the development of data-driven tools in photonics and the natural sciences.
APA, Harvard, Vancouver, ISO, and other styles
8

Hao, Shi. "Study on the Effect of Material Absorption of Photonic Crystals on Transverse Magnetic Wave Band." Materials Physics and Chemistry 1, no. 1 (February 7, 2018): 34. http://dx.doi.org/10.18282/mpc.v1i1.562.

Full text
Abstract:
<p align="justify">Photonic crystals are a major discovery in physics and have an important influence on our present life. The biggest feature of the photonic crystals is that they have bandgap which can block photons of a certain frequency, thus affecting the photon movement. This effect resembles the influence of the semiconductor body on electrons. Therefore, research and discovery of the photonic crystal have a broad prospect and people have large expectation on the photonic crystal. The emergence of photonic crystals makes it possible for the miniaturization and integration of some aspects of information technology. Their structure studies enable us to determines their characteristics, thus the discovery of the photonic crystal structure and function will lay the foundation for the study of its application. In this paper, the study focuses on the research of material absorption of photonic crystal on Transverse Magnetic (TM) wave band. Firstly, the basic knowledge and principle of photonic crystal are introduced. Then, the research is carried out to study the effect of characteristic matrix method on photon crystal TM energy wave. </p><p align="justify"> </p>
APA, Harvard, Vancouver, ISO, and other styles
9

Astrova, Ekaterina V., V. A. Tolmachev, Yulia A. Zharova, Galya V. Fedulova, A. V. Baldycheva, and Tatiana S. Perova. "Silicon Periodic Structures and their Liquid Crystal Composites." Solid State Phenomena 156-158 (October 2009): 547–54. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.547.

Full text
Abstract:
This paper summarises results on the design, fabrication and characterisation of one-dimensional (1D) Photonic Crystals (PCs) for silicon micro-photonics. Anisotropic and photo-electrochemical etching were used to obtain silicon wall arrays with a high aspect ratio. The characteristics of these wet etching techniques, including their advantages and disadvantages are considered. Optical reflection and transmission spectra of the photonic structures fabricated were characterised by Fourier Transform Infra-Red (FTIR) micro-spectroscopy over a wide spectral range of =1.5-14.5m. These measurements reveal that side-wall roughness impacts the optical properties of 1D PCs. Problems associated with Photonic Band-Gap (PBG) tuning in periodic structures infiltrated with nematic liquid crystals are discussed. A design of a composite 1D PC on an SOI platform for electro-tuning is proposed. The structure was fabricated and tuning due to an electro-optical effect with E7 liquid crystal filler was demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
10

Xiang, Hongming, Shu Yang, Emon Talukder, Chenyan Huang, and Kaikai Chen. "Research and Application Progress of Inverse Opal Photonic Crystals in Photocatalysis." Inorganics 11, no. 8 (August 15, 2023): 337. http://dx.doi.org/10.3390/inorganics11080337.

Full text
Abstract:
In order to solve the problem of low photocatalytic efficiency in photocatalytic products, researchers proposed a method to use inverse opal photonic crystal structure in photocatalytic materials. This is due to a large specific surface area and a variety of optical properties of the inverse opal photonic crystal, which are great advantages in photocatalytic performance. In this paper, the photocatalytic principle and preparation methods of three-dimensional inverse opal photonic crystals are introduced, including the preparation of basic inverse opal photonic crystals and the photocatalytic modification of inverse opal photonic crystals, and then the application progresses of inverse opal photonic crystal photocatalyst in sewage purification, production of clean energy and waste gas treatment are introduced.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Photonic crystal"

1

Zhou, Ying. "CHOLESTERIC LIQUID CRYSTAL PHOTONIC CRYSTAL LASERS AND PHOTONIC DEVICES." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2706.

Full text
Abstract:
This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser emission is further demonstrated in a hybrid photonic band edge - Fabry-Perot (FP) type structure by sandwiching the CLC active layer within a circular polarized resonator consisting of two CLC reflectors. The resonator generates multiple FP modes while preserving the PBE mode from the active layer. More importantly this band edge mode can be greatly enhanced by the external resonator under some conditions. Theoretical analysis is conducted based on 4×4 transfer matrix and scattering matrix and the results are consistent with our experimental observations. To make the CLC laser more compact and miniaturized, we have developed a flexible polymer laser using dye-doped cholesteric polymeric films. By stacking the mirror reflecting layer, the active layer and the CLC reflecting layer, enhanced laser emission was observed in opposite-handed circular polarization state, because of the light recycling effect. On the other hand, we use the stacked cholesteric liquid crystal films, or the cholesteric liquid crystals and polymer composite films to demonstrate the single film broadband circular polarizers, which are helpful for converting a randomly polarized light into linear polarization. New fabrication methods are proposed and the circular polarizers cover ~280 nm in the visible spectral range. Both theoretical simulation and experimental results are presented with a good match.
Ph.D.
Optics and Photonics
Optics and Photonics
Optics PhD
APA, Harvard, Vancouver, ISO, and other styles
2

Yamashita, Tsuyoshi. "Unraveling photonic bands : characterization of self-collimation in two-dimensional photonic crystals." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-06072005-104606/.

Full text
Abstract:
Thesis (Ph. D.)--School of Materials Science and Engineering, Georgia Institute of Technology, 2006.
Summers, Christopher, Committee Chair ; Chang, Gee-Kung, Committee Member ; Carter, Brent, Committee Member ; Wang, Zhong Lin, Committee Member ; Meindl, James, Committee Member ; Li, Mo, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
3

ANGELINI, ANGELO. "Photon Management on a Photonic Crystal Platform." Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2611159.

Full text
Abstract:
A multilayered dielectric structure, namely a one dimensional photonic crystal (1DPC), is proposed as a suitable platform for photon management, due to the low absorption of the dielectric materials. When properly designed, a 1DPC can sustain surface electromagnetic modes called Bloch Surface Waves (BSWs). In this PhD Thesis it is shown how light coupled to BSW can be focused or guided by means of ultrathin polymeric refractive structures directly patterned on the surface. Moreover, by patterning the surface with surface relief gratings, far-field radiation can be efficiently coupled to the surface modes, thus providing an enhanced electromagnetic field at the truncation interface of the 1DPC. By shaping the grating in a circular symmetry, light can be in-plane focused into a sub-wavelength spot. The same structure can be used to re-shape the radiation pattern of dipolar emitters. It is shown that an emitter lying on the surface of the 1DPC couples to the photonic structure and the fluorescence radiated couple with the surface modes. The so called BSW-coupled fluorescence propagates along the surface with low losses and a well-defined wavevector. By means of surface diffraction gratings properly designed, fluorescence can be extracted along any direction, thus improving the fluorescence collection with no need of high numerical aperture optics or critical alignements. A novel method for evaluating the enhancement gained with such photonic structures on the extraction efficiency is proposed. Such method is capable of providing at the same time spatial resolution, angular resolution and spectral resolution. A biosensing experiment to detect small amounts of labeled proteins is provided, in order to show the sensing capabilities of the photonic structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Pfeiffenberger, Neal Thomas. "Single Crystal Sapphire Photonic Crystal Fibers." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77179.

Full text
Abstract:
A single crystal sapphire optical fiber has been developed with an optical cladding that is used to reduce the number of modes that propagate in the fiber. This fiber is the first single crystal sapphire photonic crystal fiber ever produced. Fabrication of the optical cladding reduces the number of modes in the fiber by lowering the effective refractive index around the core, which limits the amount of loss. Different fiber designs were analyzed using Comsol Multiphysics to find the modal volumes of each. The MIT Photonic Bands modeling program was used to see if the first photonic band gap fiber could be achieved theoretically. The fibers were qualified using far field pattern and photodetector measurements as well as gas sensing experiments. The fibers were then exposed to a harsh environment of 1000 °C with a coating of alumina to test the resistance to scattering of the fiber. The fibers were also examined using materials characterization equipment to see how the harsh environments impacted the optical and mechanical stability of the bundled fiber.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Vincent W. "Fabrication and chemical modifications of photonic crystals produced by multiphoton lithography." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45918.

Full text
Abstract:
This thesis is concerned with the fabrication methodology of polymeric photonic crystals operating in the visible to near infrared regions and the correlation between the chemical deposition morphologies and the resultant photonic stopband enhancements of photonic crystals. Multiphoton lithography (MPL) is a powerful approach to the fabrication of polymeric 3D micro- and nano-structures with a typical minimum feature size ~ 200 nm. The completely free-form 3D fabrication capability of MPL is very well suited to the formation of tailored photonic crystals (PCs), including structures containing well defined defects. Such structures are of considerable current interest as micro-optical devices for their filtering, stop-band, dispersion, resonator, or waveguiding properties. More specifically, the stop-band characteristics of polymer PCs can be finely controlled via nanoscale changes in rod spacings and the chemical functionalities at the polymer surface can be readily utilized to impart new optical properties. Nanoscale features as small as 65 ± 5 nm have been formed reproducibly by using 520 nm femtosecond pulsed excitation of a 4,4'-bis(di-n-butylamino)biphenyl chromophore to initiate crosslinking in a triacrylate blend. Dosimetry studies of the photoinduced polymerization were performed on chromophores with sizable two-photon absorption cross-sections at 520 and 730 nm. These studies show that sub-diffraction limited line widths are obtained in both cases with the lines written at 520 nm being smaller. Three-dimensional multiphoton lithography at 520 nm has been used to fabricate polymeric woodpile photonic crystal structures that show stop bands in the visible to near-infrared spectral region. 85 ± 4 nm features were formed using swollen gel photoresist by 730 nm excitation MPL. An index matching oil was used to induce chemical swelling of gel resists prior to MPL fabrication. When swollen matrices were subjected to multiphoton excitation, a similar excitation volume is achieved as in normal unswollen resins. However, upon deswelling of the photoresist following development a substantial reduction in feature size was obtained. PCs with high structural fidelity across 100 µm × 100 µm × 32 layers exhibited strong reflectivity (>60% compared to a gold mirror) in the near infrared region. The positions of the stop-bands were tuned by varying the swelling time, the exposure power (which modifies the feature sizes), and the layer spacing between rods. Silver coatings have been applied to PCs with a range of coverage densities and thicknesses using electroless deposition. Sparse coatings resulted in enhanced reflectivity for the stop band located at ~5 µm, suggesting improved interface reflectivity inside the photonic crystal due to the Ag coating. Thick coatings resulted in plasmonic bandgap behavior with broadband reflectivity enhancement and PC lattice related bandedge at 1.75 µm. Conformal titania coatings were grown onto the PCs via a surface sol-gel method. Uniform and smooth titania coatings were achieved, resulting in systematically red-shifted stopbands from their initial positions with increasing thicknesses, corresponding to the increased effective refractive index of the PC. High quality titania shell structures with modest stopbands were obtained after polymer removal. Gold replica structures were obtained by electroless deposition on the silica cell walls of naturally occurring diatoms and the subsequent silica removal. The micron-scaled periodic hole lattice originated from the diatom resulted in surface plasmon interferences when excited by infrared frequencies. The hole patterns were characterized and compared with hexagonal hole arrays fabricated by focused ion beam etching of similarly gold plated substrate. Modeling of the hole arrays concluded that while diatom replicas lack long-ranged periodicity, the local hole to hole spacings were sufficient to generate enhanced transmission of 13% at 4.2 µm. The work presented herein is a step towards the development of PCs with new optical and chemical functionalities. The ability to rapidly prototype polymeric PCs of various lattice parameters using MPL combined with facile coating chemistries to create structures with the desired optical properties offers a powerful means to produce tailored high performance photonic crystal devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Xiong, Chunle. "Nonlinearity in photonic crystal fibres." Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512286.

Full text
Abstract:
This thesis introduces the linear and nonlinear properties of photonic crystal fibre (PCF), describes the fabrication and characterisation of different PCFs, and demonstrates their applications to supercontinuum (SC) generation and single-photon sources. The linear properties of PCF include endlessly single-mode transmission, highly controllable dispersion and birefringence. These unique properties have made PCFs the best media to demonstrate all kinds of nonlinear effects such as self-phase modulation (SPM), cross-phase modulation (XPM), Raman effects, four-wave mixing and modulation instability (FWM and MI), and soliton effects. The combination of these nonlinear effects has led to impressive spectral broadening known as SC generation in PCFs. The intrinsic correlation of signal and idler photons from FWM has brought PCF to the application of single-photon generation. Four projects about SC generation were demonstrated. The first was visible continuum generation in a monolithic PCF device, which gave a compact, bright (-20 dBm/nm), flat and single-mode visible continuum source extending to short wavelength at 400 nm. The second was polarised SC generation in a highly bire-fringent PCF. A well linearly polarised continuum source spanning 450-1750 nm was achieved with >99% power kept in a single linear polarisation. This polarised continuum source was then applied to tuneable visible/UV generation in a BIBO crystal. The third was residual pump peak removal for SC generation in PCFs. The fourth was to design an all-fibre dual-wavelength pumping for spectrally localised continuum generation. Two projects about photon pair generation using FWM were then demonstrated. One was an all-fibre photon pair source designed in the telecom band for quantum communication. This source achieved >50% heralding efficiency which is the highest in fibre photon pair sources reported so far. Another one was to design birefringent PCFs for naturally narrow band photon pair generation in the Si SPAD high detection efficiency range. 0.122 nm bandwidth signal photons at 596.8 nm were generated through cross polarisation phase matched FWM in a weakly birefringent PCF pumped by a picosecond Ti:Sapphire laser at 705 nm in the normal dispersion regime.
APA, Harvard, Vancouver, ISO, and other styles
7

Kurt, Hamza. "Photonic crystals analysis, design and biochemical sensing applications /." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-06252006-174301/.

Full text
Abstract:
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2007.
Papapolymerou, John, Committee Member ; Adibi, Ali, Committee Member ; Citrin, David, Committee Chair ; Summers, Christopher, Committee Member ; Voss, Paul, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
8

Chong, Harold Meng Hoon. "Photonic crystal and photonic wire structures for photonic integrated circuits." Thesis, University of Glasgow, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fan, Yun-Hsing. "TUNABLE LIQUID CRYSTAL PHOTONIC DEVICES." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3926.

Full text
Abstract:
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices and their fabrication methods. The devices presented include inhomogeneous polymer-dispersed liquid crystal (PDLC), polymer network liquid crystals (PNLC) and phase-separated composite film (PSCOF). Liquid crystal/polymer composites could exist in different forms depending on the fabrication conditions. In Chap. 3, we demonstrate a novel nanoscale PDLC device that has inhomogeneous droplet size distribution. In such a PDLC, the inhomogeneous droplet size distribution is obtained by exposing the LC/monomer with a non-uniform ultraviolet (UV) light. An electrically tunable-efficiency Fresnel lens is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. Different gradient profiles are obtained by using different photomasks. The nanoscale LC droplets are randomly distributed within the polymer matrix, so that the devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated a polymer-network liquid crystal (PNLC) using a rod-like monomer structure. Since the monomer concentration is only about 5%, the operating voltage is below 10 Vrms. The PNLC devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. In Chap. 3, another approach to lower the operating voltage is to use phase-separated composite film (PSCOF) where the LC and polymer are separated completely to form two layers. Without multi-domain formed in the LC cell, PSCOF is free from light scattering. Using PNLC and PSCOF, we also demonstrated LC blazed grating and Fresnel lens. The diffraction efficiency of these devices is continuously controlled by the electric field. Besides Fresnel lens, another critical need for imaging and display is to develop a system with continuously tunable focal length. A conventional zooming system controls the lens distance by mechanical motion along the optical axis. This mechanical zooming system is bulky and power hungry. To overcome the bulkiness, in Chap. 4 we developed an electrically tunable-focus flat LC spherical lens which consists of a spherical electrode imbedded in the top flat substrates while a planar electrode on the bottom substrate. The electric field from the spherical and planar electrodes induces a centrosymmetric gradient refractive index distribution within the LC layer which, in turn, causes the focusing effect. The focal length is tunable by the applied voltage. A tunable range from 0.6 m to infinity is achieved. Microlens array is an attractive device for optical communications and projection displays. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative or vise versa by the applied voltage. The top spherical electrode glass substrate is flattened with a polymer layer. The top convex substrate and LC layer work together like a zoom lens. By tuning the refractive index profile of the LC layer, the focal length of the microlens array can be switched from positive to negative or vise versa. The tunable LC microlens array would be a great replacement of a conventional microlens array which can be moved by mechanical elements. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. A special feature for LC/polymer composites is light scattering. The concept is analogous to the light scattering of clouds which consist of water droplets. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The PNLC can present anisotropic or isotropic light scattering behavior depending on the fabrication methods. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. The applications for display, light shutters, and switchable windows are emphasized. Although polymer networks help to reduce liquid crystal response time, they tend to scatter light. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. As a result, the PNLC response time is ~300X faster than that of a pure LC mixture except that the threshold voltage is increased by ~25X. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
Ph.D.
Other
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
10

Paturi, Naveen Kumar. "Analysis of photonic crystal defects for biosensing applications." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4861.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains viii, 70 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 55-57).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Photonic crystal"

1

Skorobogatiy, Maksim. Fundamentals of photonic crystal guiding. New York: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Photonic crystals: Physics and technology. Milano: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bjarklev, Anders. Photonic Crystal Fibres. Boston, MA: Springer US, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bjarklev, Anders, Jes Broeng, and Araceli Sanchez Bjarklev. Photonic Crystal Fibres. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0475-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jes, Broeng, and Sanchez Bjarklev Araceli, eds. Photonic crystal fibres. Boston: Kluwer Academic Publishers, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sibilia, C. Photonic crystals: Physics and technology. Milano: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

K, Busch, ed. Photonic crystals: Advances in design, fabrication, and characterization. Weinheim: Wiley-VCH, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1964-, Prather Dennis W., ed. Photonic crystals: Theory, applications, and fabrication. Hoboken, N.J: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dahl, William L. Photonic crystals: Optical properties, fabrication, and applications. New York: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Europe, SPIE, Akademie věd České republiky. Fyzikální ústav, and SPIE (Society), eds. Photonic crystal fibers III: 22-23 April 2009, Prague, Czech Republic. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photonic crystal"

1

Lee, Jae-Hwang, and Edwin L. Thomas. "Photonic Crystal." In Encyclopedia of Polymeric Nanomaterials, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_163-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Jae-Hwang, and Edwin L. Thomas. "Photonic Crystal." In Encyclopedia of Polymeric Nanomaterials, 1590–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baba, T. "Photonic Crystal Devices." In Photonic Crystals, 237–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40032-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sukhoivanov, Igor A., and Igor V. Guryev. "Photonic Crystal Waveguides." In Photonic Crystals, 177–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02646-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kirchhof, Johannes, Jens Kobelke, Kay Schuster, Hartmut Bartelt, Rumen Iliew, Christoph Etrich, and Falk Lederer. "Photonic Crystal Fibers." In Photonic Crystals, 266–88. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527602593.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Solgaard, Olav. "Photonic Crystal Fundamentals." In Photonic Microsystems, 1–28. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68351-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sukhoivanov, Igor A., and Igor V. Guryev. "Photonic Crystal Optical Fibers." In Photonic Crystals, 127–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02646-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forberich, Karen, Stefan Riechel, Suresh Pereira, Andreas Gombert, Kurt Busch, Jochen Feldmann, and Uli Lemmer. "Polymeric Photonic Crystal Lasers." In Photonic Crystals, 247–65. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527602593.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gerken, Martina, and Richard De La Rue. "Photonic Crystal Biosensors." In Biomedical Optical Sensors, 109–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48387-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Panajotov, Krassimir, Maciej Dems, and Tomasz Czyszanowski. "Photonic-Crystal VCSELs." In Compact Semiconductor Lasers, 149–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527655342.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photonic crystal"

1

Noda, S. "Photonic Crystals for Society 5.0 - Photonic-Crystal Lasers -." In 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.pl-04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pshenay-Severin, E., C. C. Chen, T. Pertsch, M. Augustin, A. Chipouline, and A. Tunnermann. "Photonic crystal lens for Photonic Crystal waveguide coupling." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kalra, Yogita, and Ravindra K. Sinha. "Photonic crystal polarizer." In Photonic Crystal Materials and Devices VI. SPIE, 2007. http://dx.doi.org/10.1117/12.698962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shepherd, T. J. "Photonic Band Gaps." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.tut1.

Full text
Abstract:
Photonic band gaps are ranges of frequency within which electromagnetic propagation is completely forbidden. They are present in certain materials which possess a periodicity of permittivity at the wavelength scale. Materials with these extreme properties are not known to occur naturally, and. at the optical wavelength scale, require fabrication methods at the current limits of technological feasibility. Such a photonic crystal provides a lossless barrier to propagation, and can suppress the emission of a photon by a decaying atom if the frequency of the emitted photon lies within the gap. A preferred propagation route, or mode, can be specified by designed defects within the photonic crystal; thus it is expected that I photonic crystals can provide a means whereby spontaneous emission is controlled in active media, and that all the spontaneously emitted light enters a single mode, resulting in an ideal zero-threshold laser. More generally, the photonic density of states is altered in these materials, and spontaneous emission can be enhanced or suppressed, as required. Other applications include novel all-angle reflectors, narrow-band filters, resonators, waveguides, and delay lines. When the fabrication problems for optical photonic crystals have been conquered, wavelength-scale periodic media will form an essential functions in a large range of optoelectronic systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Noda, Susumu, Menaka De Zoysa, Masahiro Yoshida, Kenji Ishizaki, Takuya Inoue, and Ryoichi Sakata. "Progress of photonic-crystal surface-emitting lasers for LiDAR applications." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctuw2_03.

Full text
Abstract:
Recent progresses of photonic-crystal surface-emitting lasers (PCSELs) are described, particularly based on recently developed photonic crystals, so called “double lattice photonic crystals” and “dually modulated photonic crystals”. Their applications to LiDAR systems are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Bjarklev, Anders, Thomas Tanggaard Larsen, David Sparre Hermann, and Jes Broeng. "Liquid crystal photonic crystal fiber." In Frontiers in Optics. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/fio.2004.fwo4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burger, Sven, Roland Klose, Achim Schaedle, Frank Schmidt, and Lin W. Zschiedrich. "FEM modeling of 3D photonic crystals and photonic crystal waveguides." In Integrated Optoelectronic Devices 2005, edited by Yakov Sidorin and Christoph A. Waechter. SPIE, 2005. http://dx.doi.org/10.1117/12.585895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mazhirina, Ju A., L. A. Melnikov, and V. S. Shevandin. "Waveguiding in photonic crystal fibers and photonic crystal structures." In SPIE Proceedings, edited by Vladimir L. Derbov, Leonid A. Melnikov, and Lev M. Babkov. SPIE, 2007. http://dx.doi.org/10.1117/12.754420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ikemachi, Nozomi, Ryota Nakano, Shohei Kurogi, and Koji Miyazaki. "Thermal Radiation From a Photonic Crystal of Silica-Particles." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44515.

Full text
Abstract:
Thermal radiation properties, such as reflectivity and emissivity, have been well modified by using a photonic crystal in this decade. In this paper we fabricated three-dimensional photonic crystals by self-assembled silica particles with 3 μm diameter. The close-packed hexagonal photonic crystal with defects is observed by SEM. The measured specular reflectance explained by modified Bragg’s law is measured with a diffuse reflectance by FT-IR. The near normally incident diffuse reflectance is measured by using paraboloidal mirrors to understand the diffuse reflection. We experimentally confirmed the strong diffuse reflectance in the near infrared regions. We numerically calculated reflectance of the three-dimensional photonic crystals by RCWA. The diffuse reflectance in near infrared is calculated only in the photonic crystal with defects. The numerically calculated diffuse reflectance is roughly explained by Mie scattering theory. The directional emissivity of the photonic crystal is measured by FT-IR with collimator. The normal emittance is suppressed in the photonic gap, but the directional emittance is enhanced in 30 degrees. The absorptance is numerically calculated to understand the experimental results. The numerical results show that the directional absorptance is increased in narrow direction. The directional sharp peak in 30 degrees is calculated although the monocrystalline photonic crystal is assumed in the numerical model. The effects of the defects in the photonic crystal on the emittance should be considered to explain the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
10

Waks, Edo, Dirk Englund, David Fattal, Jelena Vuckovic, and Yoshihisa Yamamoto. "Photonic-crystal based single photon source." In Optics & Photonics 2005, edited by Ronald E. Meyers and Yanhua Shih. SPIE, 2005. http://dx.doi.org/10.1117/12.615503.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Photonic crystal"

1

Clem, Paul Gilbert, Weng Wah Dr Chow, .), Ganapathi Subramanian Subramania, James Grant Fleming, Joel Robert Wendt, and Ihab Fathy El-Kady. 3D Active photonic crystal devices for integrated photonics and silicon photonics. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/882052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Glushko, E. Ya, and A. N. Stepanyuk. Pneumatic photonic crystals: properties and application in sensing and metrology. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2875.

Full text
Abstract:
A pneumatic photonic crystal i.e. a medium containing regularly distributed gas-filled voids divided by elastic walls is proposed as an optical indicator of pressure and temperature. The indicator includes layered elastic platform, optical fibers and switching valves, all enclosed into a chamber. We have investigated theoretically distribution of deformation and pressure inside a pneumatic photonic crystal, its bandgap structure and light reflection changes depending on external pressure and temperature.
APA, Harvard, Vancouver, ISO, and other styles
3

Hansen, Kim P. Erbium-doped Photonic Crystal Fiber. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada524643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Choquette, Kent D., Jr Raftery, and James J. Photonic Crystal Light Emitting Diodes. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada459348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cowan, Benjamin M. Photonic Crystal Laser Accelerator Structures. Office of Scientific and Technical Information (OSTI), May 2003. http://dx.doi.org/10.2172/813138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cowan, Benjamin M. Photonic Crystal Laser-Driven Accelerator Structures. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/915385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dobson. Photonic Crystal Chip-Scale Optical Networks. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada427690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gaeta, Alexander. Light Propagation in Photonic Crystal Fibers. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada433691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Everitt, Henry O. A Millimeter-Wave Photonic Crystal Laser. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada413755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cowan, B. Photonic Crystal Laser-Driven Accelerator Structures. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/829738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography