Academic literature on the topic 'Photometric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photometric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photometric"
Evans, D. W., M. Riello, F. De Angeli, J. M. Carrasco, P. Montegriffo, C. Fabricius, C. Jordi, et al. "Gaia Photometric Catalogue: the calibration of the DR2 photometry." Proceedings of the International Astronomical Union 14, A30 (August 2018): 466–70. http://dx.doi.org/10.1017/s174392131900512x.
Full textWittman, D., P. Riechers, and V. E. Margoniner. "Photometric Redshifts and Photometry Errors." Astrophysical Journal 671, no. 2 (November 16, 2007): L109—L112. http://dx.doi.org/10.1086/525020.
Full textFotopoulou, S., and S. Paltani. "CPz: Classification-aided photometric-redshift estimation." Astronomy & Astrophysics 619 (October 30, 2018): A14. http://dx.doi.org/10.1051/0004-6361/201730763.
Full textLi, Xiao Pan, Cheng Yang, Li Zhou, and Hai Tao Yang. "Photometric Data Procession of the Swift/UVOT Instrument." Advanced Materials Research 989-994 (July 2014): 3489–92. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.3489.
Full textWalker, Alistair, Saul Adelman, Eugene Milone, Barbara Anthony-Twarog, Pierre Bastien, Wen Ping Chen, Steve Howell, et al. "DIVISION B COMMISSION 25: ASTRONOMICAL PHOTOMETRY AND POLARIMETRY." Proceedings of the International Astronomical Union 11, T29A (August 2015): 159–70. http://dx.doi.org/10.1017/s1743921316000727.
Full textTedesco, Edward F. "Archiving Asteroid Photometric Data." Highlights of Astronomy 9 (1992): 719–20. http://dx.doi.org/10.1017/s1539299600010169.
Full textRufener, F. "Passbands and Photometric Systems." Highlights of Astronomy 7 (1986): 813–17. http://dx.doi.org/10.1017/s1539299600007334.
Full textPforr, Janine. "The Spitzer Extragalactic Representative Volume Survey - measuring photometric redshifts for ∼4 million galaxies - challenges and ways forward." Proceedings of the International Astronomical Union 15, S341 (November 2019): 157–61. http://dx.doi.org/10.1017/s1743921319002412.
Full textBessell, Michael S. "Photometric Systems." International Astronomical Union Colloquium 136 (1993): 22–39. http://dx.doi.org/10.1017/s025292110000734x.
Full textZhou, Rongpu, Michael C. Cooper, Jeffrey A. Newman, Matthew L. N. Ashby, James Aird, Christopher J. Conselice, Marc Davis, et al. "Deep ugrizY imaging and DEEP2/3 spectroscopy: a photometric redshift testbed for LSST and public release of data from the DEEP3 Galaxy Redshift Survey." Monthly Notices of the Royal Astronomical Society 488, no. 4 (July 25, 2019): 4565–84. http://dx.doi.org/10.1093/mnras/stz1866.
Full textDissertations / Theses on the topic "Photometric"
Halliday, Colin George. "Aspects of photometric titration." Thesis, Queen's University Belfast, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329513.
Full textPowell, Christopher. "Mutual illumination photometric stereo." Thesis, University of East Anglia, 2018. https://ueaeprints.uea.ac.uk/67065/.
Full textPocino, Yuste Andrea. "Cosmology with photometric redshift." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671733.
Full textLos cartografiados de galaxias fotométricos actuales y futuros observarán un gran volumen del universo que nos permitirá acotar con precisión el modelo cosmológico. Aun así, la capacidad de los cartografiados para delimitar el modelo a través de las sondas cosmológicas depende de la precisión y certeza con las que se determina el redshift de las galaxias. Por lo tanto, la determinación del redshift fotométrico y sus efectos en los análisis cosmológicos deben ser tratados y estudiados cuidadosamente. En la primera parte de la tesis, transformamos la fotometría de simulaciones que ya existen para imitar las mediciones fotométricas del Dark Energy Survey (DES). De esta forma, esperamos recuperar la distribución real del redshift fotométrico en simulaciones, y así crear una base aún más realista para comprobar los resultados de los análisis cosmológicos de DES que usan redshifts fotométricos. Para transformar las simulaciones utilizamos diversos métodos que transfieren las propiedades estadísticas de la fotometría de observaciones reales a las simulaciones. En la segunda parte de la tesis, utilizamos la técnica del Self-Organizing Map para seleccionar galaxias para ser observadas con espectroscopia, contribuyendo así al proyecto C3R2 que quiere establecer un mapa correlacional entre el espacio de colores y redshift y llenarlo con información espectroscópica. En esta parte también exploramos el espacio de colores definido por la fotometría del Physics of the Accelerating Universe Survey (PAUS) con tal de estudiar la cobertura del redshift espectroscópico de su espacio de colores. Queremos determinar la cantidad del espacio de color sin cobertura espectroscópica porque la falta de representación espectroscópica puede originar un sesgo cuando la precisión del redshift fotométrico se evalúa comparándolo con el redshift espectroscópico o cuando el redshift espectroscópico se utiliza como muestra de entrenamiento para determinar el redshift fotométrico con algoritmos de entrenamiento. Finalmente, exploramos como la variación en la profundidad de las observaciones desde tierra combinadas con las de Euclid afecta la precisión de los redshifts fotométricos y, por lo tanto, la capacidad de Euclid para determinar los parámetros cosmológicos sobre todo cuando se utilizan galaxy clustering y galaxy-galaxy lensing como sondas cosmológicas. También estudiamos como la densidad de las muestras de galaxias afecta la capacidad de acotar los parámetros cosmológicos y cuál es la configuración de bines tomográficos de redshift que permiten extraer la máxima información para delimitar los parámetros cosmológicos. Para llevar a cabo este análisis, creamos diversas distribuciones realistas de redshift fotométrico basadas en la simulación Flagship de Euclid y utilizamos el formalismo de Fisher para hacer una estimación de la capacidad de acotar los parámetros cosmológicos de las diferentes configuraciones de las muestras de galaxias.
Current and future photometric surveys will observe a large volume of the universe that will allow us to accurately constrain the cosmological model. However, the constraining power from cosmological probes of photometric surveys highly relies on the accuracy and precision with which we can determine the galaxies redshifts. Therefore, the determination of photometric redshifts (photo-zs) and their effect in cosmological analysis should be treated and studied carefully. In the first part of this thesis, we transform the photometry of existing simulations to mimic the photometric measurements of the Dark Energy Survey (DES). With this exercise, we expect to recover the real photo-z distribution in simulations, thus creating a more realistic environment to crosscheck the performance of DES in cosmological analyses that use photo-z. We transform the simulations using several method to transfer the statistical properties from the real observations photometry to the simulations. In the second part of the thesis, we use the Self-Organizing Map technique to select spectroscopic targets for the C3R2 program aimed at establishing the mapping between color and redshift space. We also explore the color space defined by the photometry of galaxies from the Physics of the Accelerating Universe Survey (PAUS) in order to study the spectroscopic redshift coverage of its color space. We want to quantify the regions of color space without spectroscopic redshifts because the lack of spectroscopic representation can be a source of bias when the accuracy of photo-zs is evaluated by comparing it to spectroscopic redshifts and when the spectroscopic redshifts are used to determine the photo- z with training-based algorithms. Lastly, we explore how the variation of the depth of ground-based observations combined with Euclid observations affects the accuracy and precision of the photo-z and thus the cosmological constraining power of Euclid focusing on photometric galaxy clustering and galaxy-galaxy lensing analyses. We also study how the number density of photometric galaxy samples affects the constraining power and which tomographic redshift binning configuration returns the maximum information to constrain the cosmological parameters. To perform such analyses, we create several realistic photo-z distributions based on the Euclid Flagship simulation and we use the Fisher forecast and the cosmological inference code, CosmoSIS, over the different configurations of the galaxy samples to determine the cosmological constraining power.
Universitat Autònoma de Barcelona. Programa de Doctorat en Física
Bezanson, Rachel, David A. Wake, Gabriel B. Brammer, Pieter G. van Dokkum, Marijn Franx, Ivo Labbé, Joel Leja, et al. "LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621218.
Full textBlake, R. Melvin. "Photometric decomposition of NGC 6166." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22790.pdf.
Full textSilva, Fernández Simón Yeco. "Photometric Redshifts in the HDFS." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/133104.
Full textSe presenta fotometría óptica en 11 bandas medias a partir de observaciones realizadas con el telescopio de 2.2m en LSO (WFI) sobre un campo de ~30'×30' deg extendido en el Hubble Deep Field-South (EHDF-S), el cual es uno de los campos que contiene información en multibandas como parte del Multiwavelength Survey by Yale-Chile (MUSYC). Este campo tiene una gran cantidad de datos públicos y datos auxiliares en bandas UV, óptico, infrarrojo cercano e infrarrojo lejano. Se determinaron aperturas óptimas para fotometría de alta precisión para diversas fuentes y brillos. Se proporcionan incertezas en magnitud a través de una técnica mejorada que considera correlaciones a mayor y menor escala en el ruido. Se incluyen datos auxiliares en el óptico a partir del catálogo de MUSYC en bandas UBVRIz ' hasta una magnitud total de R=25 (AB), además de datos en infrarrojo cercano JHK de dos campos de 10 '× 10' deg con profundidades de J~22.5, H~21.5 y K~21 (5σ; Vega). Se creó un catálogo fotométrico de ~62.000 galaxias detectadas en la imagen BVR de MUSYC. Se miden redshifts fotométricos mediante el código EAzY y se compara con ~500 fuentes identificadas espectroscópicamente con la finalidad de probar la precisión y desempeño de los filtros en bandas medias. Los redshifts fotométricos resultaron más confiables para R<24 cuando la muestra contiene ~12.000 galaxias, particularmente en 0.1 < z < 1.2, región de sampleo en el óptico de características como el quiebre de Balmer. La precisión de los redshifts fotométricos en Δz/(1+z) es de 0.029, lo cual es comparable a estudios recientes con un mejoramiento del 20%. Estos valores se degradan en calidad para galaxias más débiles o cuando se utilizan menos bandas. Como demostración de la calidad de los resultados, se derivan tipos espectrales de las fuentes, luego se construyen funciones de luminosidad para comparar con trabajos similares, y así confirmar la fuerte dependencia de las SEDs con la densidad numérica de fuentes. Se incorporan datos observacionales en radio en el HDFS del Australia Telescopio Hubble Deep Field-South para estudiar en detalle su población. Este proyecto realizó observaciones en cuatro longitudes de onda, 20, 11, 6 y 3 cm y alcanza una sensibilidad en rms alrededor de 10 μJy para cada longitud de onda. Utilizando una muestra de 227 fuentes en radio seleccionadas, se realiza una clasificación detallada de la población en AGNs (-loud de radio (9%) y -quiet (46%)), galaxias con formación estelar (SFG; 39%), y galaxias normales (6%), usando los redshifts fotométricos, información en multibanda, un template combinado quasares, índices espectrales, las SEDs derivadas y la dependencia redshift luminosidad. Se confirman los resultados recientes sobre la disribución de AGNs y SFGs. Asimismo las LFs muestran consistencia para las fuentes en radio para z~1.0. Los resultados obtenidos siguen la tendencia de los trabajos previos de los últimos 4 a 5 años en la distribución de las fuentes de radio, y sugiere nuevas metodologías en torno a la caracterizacón la población en radio.
Campisi, Andrea. "Development of a photometric stereo system." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textBotzler, Christine S. "Finding Structures in Photometric Redshift Surveys." Diss., lmu, 2004. http://nbn-resolving.de/urn:nbn:de:bvb:19-22187.
Full textBuyukatalay, Soner. "Photometric Stereo Considering Highlights And Shadows." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613749/index.pdf.
Full textSamaddar, Debasmita. "Photometric variability of three brown dwarfs." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 2.24 Mb., 65 p, 2006. http://proquest.umi.com/pqdlink?did=1075713471&Fmt=7&clientId=8331&RQT=309&VName=PQD.
Full textBooks on the topic "Photometric"
Ohno, Yoshihiro. Photometric calibrations. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Find full textBooker, Robert L. Photometric calibrations. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1992.
Find full textA, McSparron Donald, and United States. National Bureau of Standards., eds. Photometric calibrations. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Find full textOhno, Yoshihiro. Photometric calibrations. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Find full textOhno, Yoshihiro. Photometric calibrations. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Find full textOhno, Yoshihiro. Photometric calibrations. [Gaithersburg, MD]: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Find full textBooker, Robert L. NBS measurement services: Photometric calibrations. Washington, D.C: National Bureau of Standards, 1987.
Find full textDurou, Jean-Denis, Maurizio Falcone, Yvain Quéau, and Silvia Tozza, eds. Advances in Photometric 3D-Reconstruction. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51866-0.
Full textEndre, Upor. Photometric methods in inorganic trace analysis. Amsterdam: Elsevier, 1985.
Find full textLopez-Cruz, Omar. Photometric properties of low-redshift galaxy clusters. Toronto: Dept. of Astronomy, University of Toronto, 1997.
Find full textBook chapters on the topic "Photometric"
Weik, Martin H. "photometric." In Computer Science and Communications Dictionary, 1271. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14004.
Full textGooch, Jan W. "Photometric." In Encyclopedic Dictionary of Polymers, 534. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8682.
Full textBasri, Ronen. "Photometric Stereo." In Computer Vision, 603–8. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_254.
Full textZickler, Todd. "Photometric Invariants." In Computer Vision, 599–603. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-0-387-31439-6_544.
Full textRobles-Kelly, Antonio, and Cong Phuoc Huynh. "Photometric Invariance." In Imaging Spectroscopy for Scene Analysis, 63–87. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4652-0_6.
Full textIkeuchi, Katsushi, Yasuyuki Matsushita, Ryusuke Sagawa, Hiroshi Kawasaki, Yasuhiro Mukaigawa, Ryo Furukawa, and Daisuke Miyazaki. "Photometric Stereo." In Active Lighting and Its Application for Computer Vision, 107–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56577-0_5.
Full textIkeuchi, Katsushi, Yasuyuki Matsushita, Ryusuke Sagawa, Hiroshi Kawasaki, Yasuhiro Mukaigawa, Ryo Furukawa, and Daisuke Miyazaki. "Photometric Estimation." In Active Lighting and Its Application for Computer Vision, 183–209. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56577-0_8.
Full textSterken, Chr, and J. Manfroid. "Photometric systems." In Astrophysics and Space Science Library, 229–47. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2476-8_16.
Full textSterken, Chr, and J. Manfroid. "Photometric filters." In Astrophysics and Space Science Library, 81–92. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2476-8_5.
Full textZickler, Todd. "Photometric Invariants." In Computer Vision, 970–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63416-2_544.
Full textConference papers on the topic "Photometric"
Zwinkels, Joanne C. "Issues and Strategies for Improving Measurement Uncertainties for Solid-State Lighting." In NCSL International Workshop & Symposium. NCSL International, 2016. http://dx.doi.org/10.51843/wsproceedings.2016.23.
Full textHaefner, Bjoern, Yvain Queau, and Daniel Cremers. "Photometric Segmentation: Simultaneous Photometric Stereo and Masking." In 2019 International Conference on 3D Vision (3DV). IEEE, 2019. http://dx.doi.org/10.1109/3dv.2019.00033.
Full textPopescu, Nedelia A. "Photometric redshifts determinations for galaxies by means of multicolor photometry." In FIFTY YEARS OF ROMANIAN ASTROPHYSICS. AIP, 2007. http://dx.doi.org/10.1063/1.2720449.
Full textHauagge, Daniel, Scott Wehrwein, Kavita Bala, and Noah Snavely. "Photometric Ambient Occlusion." In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2013. http://dx.doi.org/10.1109/cvpr.2013.325.
Full textLap-Fai Yu, Sai-Kit Yeung, Yu-Wing Tai, D. Terzopoulos, and T. F. Chan. "Outdoor photometric stereo." In 2013 IEEE International Conference on Computational Photography (ICCP). IEEE, 2013. http://dx.doi.org/10.1109/iccphot.2013.6528306.
Full textDu, Hao, Dan Goldman, and Steven Seitz. "Binocular Photometric Stereo." In British Machine Vision Conference 2011. British Machine Vision Association, 2011. http://dx.doi.org/10.5244/c.25.84.
Full textDraper, R. J. "Reflective photometric stereo." In 6th International Conference on Image Processing and its Applications. IEE, 1997. http://dx.doi.org/10.1049/cp:19970926.
Full textOlczak, Paul, and Jack Tumblin. "Photometric camera calibration." In ACM SIGGRAPH 2014 Posters. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2614217.2614244.
Full textHigo, Tomoaki, Yasuyuki Matsushita, and Katsushi Ikeuchi. "Consensus photometric stereo." In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010. http://dx.doi.org/10.1109/cvpr.2010.5540084.
Full textCalef, Brandoch, John Africano, Brian Birge, Doyle Hall, and Paul Kervin. "Photometric signature inversion." In SPIE Optics + Photonics, edited by Victor L. Gamiz, Paul S. Idell, and Marija S. Strojnik. SPIE, 2006. http://dx.doi.org/10.1117/12.683015.
Full textReports on the topic "Photometric"
Ohno, Yoshihiro. Photometric calibrations. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.sp.250-37.
Full textBooker, Robert L., and Donald A. McSparron. Photometric calibrations. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.sp.250-15.
Full textPerrin, TE, CC Brown, ME Poplawski, and NJ Miller. Characterizing Photometric Flicker. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1607663.
Full textZong, Yuqin, Maria E. Nadal, Benjamin K. Tsai, and C. Cameron Miller. NIST measurement services: photometric calibrations. Gaithersburg, MD: National Institute of Standards and Technology, July 2018. http://dx.doi.org/10.6028/nist.sp.250-95.
Full textLeon, Felipe A., Joshua A. McIntosh, Addison J. Rutz, Naomi J. Miller, and Michael P. Royer. Characterizing Photometric Flicker - Handheld Meters. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1567860.
Full textKent, Stephen, Mary Elizabeth Kaiser, Susana E. Deustua, J. Allyn Smith, Saul Adelman, Sahar S. Allam, Brian Baptista, et al. Photometric calibrations for 21st century science. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/951353.
Full textLandolt, Arlo. Faint Photoelectric Photometric Standard Star Sequences. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada201999.
Full textMay, M. J. Photometric Calibration of the SPRED at the FTU Tokamak. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/15004653.
Full textCarrasco Kind, Matias. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1172583.
Full textOrtiz, M. Growing Self-Organizing Maps as Predictors for Photometric Redshift. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557954.
Full text