Dissertations / Theses on the topic 'Photoluminescent semiconductor nanocrystals'

To see the other types of publications on this topic, follow the link: Photoluminescent semiconductor nanocrystals.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 23 dissertations / theses for your research on the topic 'Photoluminescent semiconductor nanocrystals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ho, Minh Q. "Colloidal Synthesis and Optical Characterizations of Semiconductor Nanocrystals from Nontoxic Elements." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3915.

Full text
Abstract:
To date, the search efforts have shifted from the toxic II-VI, III-V and IV-VI semiconductors to more environmentally friendly materials. Among Group II-V semiconductors, Zn3P2 has shown to be a more benign option, similar to Group IV (Ge, Si) materials, for future applications in photovoltaics and optoelectronics. This work is dedicated to the development of wet-chemical synthetic routes of (1) Zn3P2 and (2) Group IV (Ge, Si, Si1-xGex) nanocrystals with precise control over composition, crystal structure, size and dispersity by adjusting different reaction parameters such as temperature, time and solvent composition. Different characterizations will also be employed to probe the size- and composition-dependent physical and optical properties of resulting products. The first part of this work illustrates the synthesis of luminescent Zn3P2 nanocrystals, an earth-abundant and a direct-gap semiconductor possessing high absorption coefficient and long carrier diffusion length, which uphold promising potential in many optoelectronic applications. A hot injection method by using highly reactive P and Zn precursors (P[Si(CH3)3]3 and diethyl zinc) in hexadecylamine and octadecene was developed to prepare a series of alkyl-amine-passivated tetragonal Zn3P2 crystallites with varying size sizes. Substantial blue shifts in the absorption onsets (2.11−2.73 eV) in comparison to the bulk counterpart (1.4−1.5 eV) and a clear red shift with increasing particle size indicates the quantum confinement effects. This is also consistent with the photoluminescent studies with the size-tunable maxima in the visible region (469−545 nm) as a function of growth temperature and time. The phase purity and alkyl-amine passivation of the nanocrystals were determined by structural and surface analysis, confirming the presence of N–Zn and N–P bonds on the tetragonal Zn3P2 crystallites. The second part of this works focuses on the development of a colloidal synthetic strategy of alkyl-amine capped Si1-xGex nanocrystals with control over size- and composition-dependent optical properties. Despite their high miscibility at all compositions, developing a wet-chemical synthesis of Si1-xGex alloys in the nanoscale remains a challenging task, owing to the difference of their crystallization temperatures and the high surface oxidation of Si. Thus an adapted colloidal method is utilized to fabricate single-element Ge and Si nanocrystals. Powder X-ray diffraction indicates successful production of cubic crystalline Ge and amorphous Si nanoparticles individually in oleylamine/octadecene (surfactant/solvent) mixture at 300°C. Absorption onset values of 1.28 eV and 3.11 eV are obtained for resulting Ge and Si colloids, respectively. By alloying these two materials in their nano-regime, tunable optical properties can be achieved throughout the visible to the near IR region by simply varying their elemental compositions. The success of this bandgap engineering process offers more options for new material design by taking advantage of unique properties from each component material.
APA, Harvard, Vancouver, ISO, and other styles
2

Urgessa, Zelalem Nigussa. "Growth and characterization of ZnO nanorods using chemical bath deposition." Thesis, Nelson Mandela Metropolitan University, 2012. http://hdl.handle.net/10948/d1021124.

Full text
Abstract:
Semiconductor devices are commonplace in every household. One application of semiconductors in particular, namely solid state lighting technology, is destined for a bright future. To this end, ZnO nanostructures have gained substantial interest in the research community, in part because of its requisite large direct band gap. Furthermore, the stability of the exciton (binding energy 60 meV) in this material, can lead to lasing action based on exciton recombination and possibly exciton interaction, even above room temperature. Therefore, it is very important to realize controllable growth of ZnO nanostructures and investigate their properties. The main motivation for this thesis is not only to successfully realize the controllable growth of ZnO nanorods, but also to investigate the structure, optical and electrical properties in detail by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy (steady state and time resolved) and X-ray diffraction (XRD). Furthermore, strong rectification in the ZnO/p-Si heterojunction is demonstrated. Nanorods have been successfully synthesized on silicon by a two-step process, involving the pre-coating of the substrate by a seed layer, followed by the chemical bath deposition of the nanorods. ZnO seed layers with particle sizes of about 5 nm are achieved by the thermal decomposition of zinc acetate dihydrate dissolved in ethanol. The effects of the seed layer density on the distribution, alignment and uniformity of subsequently grown nanorods were studied. The aspect ratio, orientation and distribution of nanorods are shown to be well controlled through adjusting the density of the ZnO nanoparticles pre-coated onto the substrates. It is shown that the seed layer is a prerequisite for the growth of well aligned ZnO nanorods on lattice mismatched Si substrate. The influence of various nanorod growth parameters on the morphology, optical and electrical properties of the nanorods were also systematically studied. These include the oxygen to zinc molar ratio, the pH of the growth solution, the concentration of the reactants, the growth temperature and growth time, different hydroxide precursors and the addition of surface passivating agents to the growth solution. By controlling these xii parameters different architectures of nanostructures, like spherical particles, well aligned nanorods, nanoflowers and thin films of different thicknesses are demonstrated. A possible growth mechanism for ZnO nanostructures in solution is proposed. XRD indicated that all the as-grown nanostructures produced above 45 C crystallize in the wurtzite structure and post growth annealing does not significantly enhance the crystalline quality of the material. In material grown at lower temperature, traces of zinc hydroxide were observed. The optical quality of the nanostructures was investigated using both steady-state PL and time-resolved (TR) PL from 4 K to room temperature. In the case of as-grown samples, both UV and defect related emissions have been observed for all nanostructures. The effect of post-growth annealing on the optical quality of the nanostructures was carefully examined. The effect of annealing in different atmospheres was also investigated. Regardless of the annealing environment annealing at a temperature as low as 300 C enhances the UV emission and suppresses defect related deep level emission. However, annealing above 500 C is required to out-diffuse hydrogen, the presence of which is deduced from the I4 line in the low temperature PL spectra of ZnO. TRPL was utilized to investigate lifetime decay profiles of nanorods upon different post growth treatments. The bound exciton lifetime strongly depends on the post-growth annealing temperature: the PL decay time is much faster for as grown rods, confirming the domination of surface assisted recombination. In general, the PL analysis showed that the PL of nanorods have the same characteristics as that of bulk ZnO, except for the stronger contribution from surface related bound excitons in the former case. Surface adsorbed impurities causing depletion and band bending in the near surface region is implied from both time resolved and steady state PL. Finally, although strong rectification in the ZnO/p-Si heterojunction is illustrated, no electroluminescence has been achieved. This is explained in terms of the band offset between ZnO and Si and interfacial states. Different schemes are proposed to improve the performance of ZnO/Si heterojunction light emitting devices.
APA, Harvard, Vancouver, ISO, and other styles
3

Serincan, Ugur. "Formation Of Semiconductor Nanocrystals In Sio2 By Ion Implantation." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605016/index.pdf.

Full text
Abstract:
In this study, we used ion implantation technique to synthesize semiconductor (Ge, Si) nanocrystals in SiO2 matrix. Ge and Si nanocrystals have been successfully formed by Ge and Si implantation and post annealing. Implanted samples were examined by characterization techniques such as TEM, XPS, EDS, SAD, SIMS, PL, Raman and FTIR spectroscopy and the presence of Ge and Si nanocrystals in the SiO2 matrix has been evidenced by these measurements. It was shown that implantation dose, implantation energy, annealing temperature, annealing time and annealing ambient are important parameters for the formation and evolution of semiconductor nanocrystals embedded in SiO2 matrix. The size and size distribution of Ge and Si nanocrystals were estimated successfully by fitting Raman and PL spectra obtained from Ge and Si implanted samples, respectively. It was demonstrated that Si implanted and post annealed samples exhibit two broad PL peaks at &
#8764
625 and 850 nm, even at room temperature. Origin of these peaks was investigated by temperature, excitation power and excitation wavelength dependence of PL spectrum and etch-measure experiments and it was shown that the peak observed at &
#8764
625 nm is related with defects (clusters or chain of Si located near the surface) while the other is related to the Si nanocrystals. As an expected effect of quantum size phenomenon, the peak observed at &
#8764
850 nm was found to depend on the nanocrystal size. Finally, the formation and evolution of Ge and Si nanocrystals were monitored by FTIR spectroscopy and it was shown that the deformation in SiO2 matrix caused by ion implantation tends to recover itself much quicker in the case of the Ge implantation. This is a result of effective segregation of Ge atoms at relatively low temperatures.
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Xuedan [Verfasser], and Alf [Akademischer Betreuer] Mews. "Manipulation of Photoluminescence from Semiconductor Nanocrystals by Bandgap Engineering and Surface Plasmons / Xuedan Ma. Betreuer: Alf Mews." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2011. http://d-nb.info/1020418745/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leubner, Susanne. "On the ligand shell complexity of strongly emitting, water-soluble semiconductor nanocrystals." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-163298.

Full text
Abstract:
Colloidal semiconductor nanocrystals (NCs) have attracted a great deal of interest as bright and stable chromophores for a variety of applications. Their superior physicochemical properties depend on characteristics of the inorganic core, as well as on the chemical nature and structure of the stabilizing organic ligand shell. To evaluate the promising material, a thorough knowledge of structure-property relationships is still demanded. The present work addresses this challenge to three water-soluble NC systems, namely thiol-capped CdTe, thiol-capped CdHgTe, and DNA-functionalized CdTe NCs with special emphasis on the investigation of structure, modification, and influence of the ligand shell. Remarkably, CdTe NCs show bright emission in the visible spectral region and can be synthesized in high quality directly in water. It was shown that the aqueous synthesis also facilitates the preparation of strongly near-infrared (NIR) emitting CdHgTe NCs. The current work presents a detailed study on parameters, by which the emission can be tuned, such as the growth time, the initial Cd : Hg ratio, and the choice of ligand. These insights contribute to the knowledge, which is essential for the design of highly emissive and long-term stable NIR emitting NCs. Further variations of the NC/ligand system include the modification of the ligand shell of CdTe NCs with oligonucleotides based on the strong attachment of DNA molecules to the NC. The successful functionalization of NCs with single-stranded DNA molecules is very promising for the precise and programmable assembly of NCs using DNA origami structures as templates. For both, functionality and optical properties, the surface chemistry of the NCs plays a substantial role and was subject to an extensive investigation. As there is no generally applicable technique to determine the amount of stabilizers and the structure of the ligand shell, the presented study is based on a combination of various methods particularly tailored to the analysis of water-soluble CdTe NCs capped by short-chain thiols. CdTe NCs served as a model system for the described analysis of the ligand shell, since they are thoroughly studied regarding synthesis and features of the core. Aiming for the quantification of thiols, a straightforward colorimetric assay, the Ellman\'s test, is for the first time introduced for the analysis of NCs. Accompanied by elemental analysis an approximate number of thiols per NC becomes accessible. Moreover, theoretical calculations were performed to estimate the amount of ligand that would cover the NC in a monolayer of covalently bound molecules. In contrast to these results, the experimental values point to a larger amount of thiols immobilized on the NC. Attempts to remove the ligand indicate the presence of Cd in the ligand shell and thermogravimetric studies show that the ligands are not loosely assembled in the ligand shell. The outstanding conclusion of these findings involves the presence of Cd-thiol complexes in the ligand shell. Further results unambiguously show that the amount of Cd-thiol complexes present in the NC solution strongly influences the concentration-dependent emission yield of the NCs. Additional studies dedicated to the considerable influence of the ligand shell highlight a strong effect of pH, NC concentration, type and purity of the solvent, and the number of precipitation steps on the emission of water-soluble semiconductor NCs. These substantial investigations emphasize the need to carefully control the conditions applied for handling, optical measurements, and application of NCs. In order to gain a deeper insight into the complex structure of the native ligand shell, techniques deliberately chosen for the in situ analysis were applied for thioglycolic acid-capped CdTe NCs. Information from dynamic light scattering (DLS) regarding the stability and the shell thickness are consistent with previous results showing a large ligand network on the NC surface and a decreasing stability of the NCs upon dilution. Importantly, nuclear magnetic resonance (NMR) spectroscopy allows for the distinction of bound and free ligands directly in solution and proves the presence of these species for the NCs studied. In particular, the results indicate that the ligands are not strongly bound to the NC core and that both, free and bound ligand species, consist of modified thiol molecules, such as Cd-thiol complexes. These findings support previous assumptions and allow to establish a distinct picture of the ligand shell of water-soluble semiconductor NCs. Further insights were obtained from small-angle X-ray scattering (SAXS), which facilitates the identification and the determination of the composition of NC core as well as ligand shell. Element-specific SAXS yields the final proof of the presence of Cd in the ligand shell. The model developed for the optimal fitting of the experimental scattering curves additionally confirms the findings from the other methods. In conclusion, the present work contributes to the challenging goal of a comprehensive knowledge of interactions between the NC core and the ligands. The fundamental development of a structural model of water-soluble CdTe NCs including information on stoichiometries is accomplished by the combination of the techniques presented and emphasizes the challenge to assign a clear border between the ligand shell and the Cd-thiol complexes in solution. Altogether, CdTe NCs capped by thioglycolic acid are best described by a crystalline core surrounded by a water-swollen Cd-thiolate shell that considerably affects the optical properties of the system. Notably, the results of the versatile study provide the opportunity to control the overall properties and to evaluate water-soluble semiconductor NCs for particular applications in photonics and optoelectronics.
APA, Harvard, Vancouver, ISO, and other styles
6

Pedetti, Silvia. "Synthesis and optical properties of II-VI colloidal two-dimensional nanocrystals : homo- and hetero-structures." Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066755.

Full text
Abstract:
Ces travaux de thèse ont porté sur une nouvelle classe de semi-conducteurs colloïdaux sous forme de nanoplaquettes composées de chalcogénures de cadmium. Ces nanocristaux, comparables à des puits quantiques, présentent un confinement excitonique dans une seule direction, l’épaisseur, qui est contrôlée au niveau atomique. Les nanoplaquettes sont caractérisées par une excellente résolution spectrale et de bons rendements quantiques. Par conséquence, elles représentent de potentiels candidats pour développer des dispositifs optoélectroniques comme des diodes électroluminescentes ou bien des photo-détecteurs. Toutefois, dans ce but, il est nécessaire d’élargir la gamme de longueurs d’ondes d’absorption et d’émission et d’augmenter leur rendement quantique. Pour cela, nous avons étudié la synthèse colloïdale de nanoplaquettes à base d’homo- et d’hétèro-nanoplaquetts des groupes II-VI. Les nanocristaux fabriqués ont été caractérisé par spectroscopie UV-visible et de fluorescence, par diffraction à rayons X et par microscopie électronique. Dans un premier temps, nous avons optimisé la préparation de nanoplaquettes de CdTe en utilisant des procédés de synthèse colloïdale par injection de précurseurs à hautes températures. Ensuite, des structures plus complexes ont été investiguées. Par exemple, nous avons synthétisé nanoplaquettes cœur/couronne de CdSe/CdTe qui possèdent une structure électronique de type-II. Nous avons également étudié la croissance de couches d’un deuxième semi-conducteur dans la direction de l’épaisseur de plaquettes cœur pour la fabrication de structures type cœur/coque. Grâce au contrôle de la composition chimique du cœur et de la coque, l’alignement de bande a été modulé pour obtenir structures électroniques de type-I, quasi type-II et type-II
This thesis project is based on the development of a novel class of colloidal two-dimensional nanocrystals, i.e. nanoplatelets (NPLs), composed of cadmium chalcogenides. These nanocrystals, in analogy to quantum wells, are characterized by an exciton confinement along one direction, i.e. the thickness, which can be controlled at atomic level. Nanoplatelets possess unique optical features as an excellent spectral resolution and good quantum yields. As consequence these nanocrystals are potential candidates for the fabrication of optoelectronic devices such as electroluminescent diodes or photo-detectors. However, for this aim it is necessary to enlarge the range of the absorption and emission wavelengths and to increase their quantum yield. For this reason, we investigated the colloidal synthesis of II-VI homo- and hetero-nanoplatelets which have been characterized by UV-Vis and photoluminescence spectroscopy, by X-ray diffraction and by electronic microscopy. First, we optimized the synthesis of CdTe NPLs using colloidal synthesis based on precursors injection at high temperatures. Then, we focused on more complexes hetero-structures. For example, through lateral extension reactions we obtained CdSe/CdTe core/crown NPLs which possess a type-II electronic structure. Successively, we studied the synthesis of core/shell NPLs by the growth of a second semiconductor layer along the thickness of NPLs cores. Depending on the core and shell chemical composition we could engineer the band gap of the nanoplatelets between type-I, quasi type-II and type-II electronic structures
APA, Harvard, Vancouver, ISO, and other styles
7

Ramanathan, Swati. "Polarization Studies of Coupled Quantum Dots." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1194984001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Flores, Yesica. "Hybrid semiconducting nanoplatelets : synthesis and molecule-driven assembly." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS464.

Full text
Abstract:
Ce doctorat avait pour objet l’exploration des propriétés chimiques de nanoplaquettes de séléniure de cadmium en les fonctionnalisant par des complexes paramagnétiques de coordination. En effet, l’association des propriétés magnétiques des complexes avec les propriétés optiques très originales de ces objets pourrait conduire à la découverte de nouvelles propriétés magnéto-optiques. Cette thèse, en cohérence avec des résultats récents de la littérature, a confirmé que la forme plaquettaire de ces nano-objets induisait leur empilement lorsqu’ils sont recouverts de ligands appropriés et dispersés dans des solvants adaptés. Cette thèse présente trois chapitres portant sur (i) la description des nanoplaquettes de CdSe du point de vue de leur structure et de leurs propriétés, (ii) une étude de l’assemblage des plaquettes lorsque celles-ci sont fonctionnalisées par des molécules de type azobenzène isomérisable et (iii) l’étude de l’assemblage des nanoplaquettes par l’intermédiaire de phtalocyanines de cobalt(II) conduisant à des matériaux composites. Nous avons montré que la fonctionnalisation des nanoplaquettes par des molécules d’azobenzène permettait leur assemblage hors équilibre c’est à dire sous apport continu d’énergie. Par ailleurs, deux voies d’assemblage des nanoplaquettes avec la phtalocyanine de cobalt ont été explorées. Ces deux voies permettent d’obtenir des composites de structures différentes et dans un cas il a été observé une émission de lumière polarisée circulairement sous champ magnétique. Ce résultat montre l’existence d’une rupture de symétrie dans le composite liée à la présence du complexe de cobalt et donc l’apparition de propriétés magnéto-optiques
This Ph.D. aimed at a better understanding of the chemical properties of cadmium selenide nanoplatelets by functionalization by paramagnetic coordination complexes. Indeed, the original optical properties of the platelets associated to the paramagnetism of transition metal complexes could lead to new magneto-optic properties. In agreement with recent literature results, this Ph.D. confirms that the planar morphology of these nano-objets induces their stacking when covered by appropriate ligands and dispersed in appropriate solvents. This thesis presents three chapters about (i) the description of the structure and the properties of CdSe nanoplatelets, (ii) a study of azobenzenedecorated nanoplatelets and (iii) the self-assembly of CdSe nanoplatelets mediated by cobalt(II) phtalocyanines to produce composite materials. This work shows that functionalizing CdSe nanoplatelets with azobenzene moieties allows their out-of-equilibrium assembly. Furthermore, two ways of assembling nanoplatelets with cobalt(II) phtalocyanines have been developed leading to composites bearing different structures. For one of these structures a circularly polarized light is emitted under magnetic field revealing a symmetry braking in the composite thanks to the cobalt complex and thus magneto-optic effects
APA, Harvard, Vancouver, ISO, and other styles
9

Shiman, Dmitriy I., Vladimir Sayevich, Christian Meerbach, Pavel A. Nikishau, Irina V. Vasilenko, Nikolai Gaponik, Sergei V. Kostjuk, and Vladimir Lesnyak. "Robust Polymer Matrix Based on Isobutylene (Co)polymers for Efficient Encapsulation of Colloidal Semiconductor Nanocrystals." American Chemical Association, 2019. https://tud.qucosa.de/id/qucosa%3A74322.

Full text
Abstract:
We introduce new oxygen- and moisture-proof polymer matrixes based on polyisobutylene (PIB) and its block copolymer with styrene [poly(styrene-block-isobutylene-blockstyrene), PSt-b-PIB-b-PSt] for the encapsulation of colloidal semiconductor nanocrystals. In order to prepare transparent and processable composites, we developed a special procedure of nanocrystal surface engineering including ligand exchange of parental organic ligands to inorganic species followed by the attachment of specially designed short-chain PIB functionalized with an amino group. The latter provides excellent compatibility of the particles with the polymer matrixes. As colloidal nanocrystals, we chose CdSe nanoplatelets (NPLs) because they possess a large surface and thus are very sensitive to the environment, in particular in terms of their limited photostability. The encapsulation strategy is quite general and can be applied to a wide variety of semiconductor nanocrystals, as demonstrated on the example of PbS quantum dots. All obtained composites exhibited excellent photostability, being tested in a focus of a powerful white-light source, as well as exceptional chemical stability in a strongly acidic media. We compared these properties of the new composites with those of widely used polyacrylate-based materials, demonstrating the superiority of the former. The developed composites are of particular interest for application in optoelectronic devices, such as color-conversion light-emitting diodes, laser diodes, luminescent solar concentrators, etc.
APA, Harvard, Vancouver, ISO, and other styles
10

Monahan, Bradley Michael. "Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1404732007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hatami, Soheil, Christian Würth, Martin Kaiser, Susanne Leubner, Stefanie Gabriel, Lydia Bahrig, Vladimir Lesnyak, et al. "Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd₁₋ₓHgₓTe and PbS quantum dots: method- and material-inherent challenges." Royal Society of Chemistry, 2015. https://tud.qucosa.de/id/qucosa%3A36307.

Full text
Abstract:
Bright emitters with photoluminescence in the spectral region of 800–1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φf ). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600–1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φf of the organic dyes |trybe, IR140, and IR26 and several infrared (IR)-emissive Cd₁₋ₓHgₓTe and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φf of IR26, the most frequently used IR reference dye, to 1.1 × 10⁻³ in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φf values of IR-emissive nanomaterials and offer guidelines for improved Φf measurements.
APA, Harvard, Vancouver, ISO, and other styles
12

Dickerson, Bryan Douglas. "Organometallic Synthesis Kinetics of CdSe Quantum Dots." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27322.

Full text
Abstract:
CdSe quantum dots produced by organometallic synthesis are useful as tunable emitters for photonic devices and as multi-colored protein markers for biomedical imaging, applications requiring bright and narrow emission. A diffusion-limited model helped monitor growth rates via photoluminescence and absorbance spectroscopy, in order to characterize synthesis kinetics in stearic acid, dodecylamine, and in trioctylphosphine oxide. The nucleation rate increased with Se concentration, while the growth rate followed the Cd concentration. Emission peak widths, emission redshift rates, nanocrystal growth rates, and reactant concentrations all decreased to a minimum when emission reached the critical wavelength, at a reaction completion time, tc. The temperature dependence of 1/tc and of redshift rates followed Arrhenius behavior governed by activation energies, which were tailored by the choice of solvent. Synthesis in solvents, such as stearic acid, with lower activation energies produced faster initial nanocrystal growth and longer critical wavelengths. The highest photoluminescence quantum yield was generally at wavelengths shorter than the critical wavelength, when moderate growth rates enabled surface reconstruction while precursors were still available.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
13

Adam, Marcus. "Embedding of QDs into Ionic Crystals:." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-191160.

Full text
Abstract:
Colloidal semiconductor quantum dots (QDs) have gained substantial interest as adjustable, bright and spectrally tunable fluorophores in the past decades. Besides their in-depth analyses in the scientific community, first industrial applications as color conversion and color enrichment materials were implemented. However, stability and processability are essential for their successful use in these and further applications. Methods to embed QDs into oxides or polymers can only partially solve this challenge. Recently, our group introduced the embedding of QDs into ionic salts, which holds several advantages in comparison to polymer or oxide-based counterparts. Both gas permeability and environmental-related degradation processes are negligible, making these composites an almost perfect choice of material. To evaluate this new class of QD-salt mixed crystals, a thorough understanding of the formation procedure and the final composites is needed. The present work is focused on embedding both aqueous-based and oil-based metal-chalcogenide QDs into several ionic salts and the investigations of their optical and chemical properties upon incorporation into the mixed crystals. QDs with well-known, reproducible and high-quality synthetic protocols are chosen as emissive species. CdTe QDs were incorporated into NaCl as host matrix by using the straightforward "classical" method. The resulting mixed crystals of various shapes and beautiful colors preserve the strong luminescence of the incorporated QDs. Besides NaCl, also borax and other salts are used as host matrices. Mercaptopropionic acid stabilized CdTe QDs can easily be co-crystallized with NaCl, while thioglycolic acid as stabilizing agent results in only weakly emitting powder-like mixed crystals. This challenge was overcome by adjusting the pH, the amount of free stabilizer and the type of salt used, demonstrating the reproducible incorporation of highest-quality CdTe QDs capped with thioglycolic acid into NaCl and KCl salt crystals. A disadvantage of the "classical" mixed crystallization procedure was its long duration which prevents a straightforward transfer of the protocol to less stable QD colloids, e.g., initially oil-based, ligand exchanged QDs. To address this challenge, the "Liquid-liquid-diffusion-assisted-crystallization" (LLDC) method is introduced. By applying the LLDC, a substantially accelerated ionic crystallization of the QDs is shown, reducing the crystallization time needed by one order of magnitude. This fast process opens the field of incorporating ligand-exchanged Cd-free QDs into NaCl matrices. To overcome the need for a ligand exchange, the LLDC can also be extended towards a two-step approach. In this modified version, the seed-mediated LLDC provides for the first time the ability to incorporate oil-based QDs directly into ionic matrices without a prior phase transfer. The ionic salts appear to be very tight matrices, ensuring the protection of the QDs from the environment. As one of the main results, these matrices provide extraordinary high photo- and chemical stability. It is further demonstrated with absolute measurements of photoluminescence quantum yields (PL-QYs), that the PL-QYs of aqueous CdTe QDs can be considerably increased upon incorporation into a salt matrix by applying the "classical" crystallization procedure. The achievable PL enhancement factors depend strongly on the PL-QYs of the parent QDs and can be described by the change of the dielectric surrounding as well as the passivation of the QD surface. Studies on CdSe/ZnS in NaCl and CdTe in borax showed a crystal-induced PL-QY increase below the values expected for the respective change of the refractive index, supporting the derived hypothesis of surface defect curing by a CdClx formation as one main factor for PL-QY enhancement. The mixed crystals developed in this work show a high suitability as color conversion materials regarding both their stability and spectral tunability. First proof-of-concept devices provide promising results. However, a combination of the highest figures of merit at the same time is intended. This ambitious goal is reached by implementing a model-experimental feedback approach which ensures the desired high optical performance of the used emitters throughout all intermediate steps. Based on the approach, a white LED combining an incandescent-like warm white with an exceptional high color rendering index and a luminous efficacy of radiation is prepared. It is the first time that a combination of this highly related figures of merit could be reached using QD-based color converters. Furthermore, the idea of embedding QDs into ionic matrices gained considerable interest in the scientific community, resulting in various publications of other research groups based on the results presented here. In summary, the present work provides a profound understanding how this new class of QD-salt mixed crystal composites can be efficiently prepared. Applying the different crystallization methods and by changing the matrix material, mixed crystals emitting from blue to the near infrared region of the electromagnetic spectrum can be fabricated using both Cd-containing and Cd-free QDs. The resulting composites show extraordinary optical properties, combining the QDs spectral tunability with the rigid and tight ionic matrix of the salt. Finally, their utilization as a color conversion material resulted in a high-quality white LED that, for the first time, combines an incandescent-like hue with outstanding optical efficacy and color rendering properties. Besides that, the mixed crystals offer huge potential in other high-quality applications which apply photonic and optoelectronic components.
APA, Harvard, Vancouver, ISO, and other styles
14

Freitas, Alysson Miranda de. "Estudo dos parâmetros de emissão laser de vidros fosfatos dopados com nanocristais de ZnTe e co-dopados com íons de Yb3+." Universidade Federal de Juiz de Fora (UFJF), 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/4903.

Full text
Abstract:
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-09T11:42:53Z No. of bitstreams: 1 alyssonmirandadefreitas.pdf: 61947422 bytes, checksum: fabd334a3f9ff790ff3a3b4c6d2016d5 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-26T19:59:08Z (GMT) No. of bitstreams: 1 alyssonmirandadefreitas.pdf: 61947422 bytes, checksum: fabd334a3f9ff790ff3a3b4c6d2016d5 (MD5)
Made available in DSpace on 2017-06-26T19:59:08Z (GMT). No. of bitstreams: 1 alyssonmirandadefreitas.pdf: 61947422 bytes, checksum: fabd334a3f9ff790ff3a3b4c6d2016d5 (MD5) Previous issue date: 2015-03-30
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Neste trabalho, propomos uma nova matriz vítrea, denominada de PZABP, de composição nominal 60P205 . 15ZnO . 5A/203 . 10Ba0 . 10Pb0, em mol %, nanoestruturada com nanocristais de ZnTe e dopada com íons de Yb3+ e avaliamos a viabilidade de utilização deste material para aplicações em dispositivos fotônicos, tais como, lasers de alta potência, fibras ópticas lasers, lasers de pulsos ultra-curtos e lasers sintonizáveis na região do infravermelho. As amostras foram produzidas através do método de fusão-resfriamento, sendo confeccionado dois conjuntos. Um deles, PZABP + xYb, foi dopado apenas com íons de Yb3+ em concentrações que variam de 0% a 10%, em wt%, com acréscimos de 1%. Outro conjunto, PZABP + 1ZnTe + xYb, foi dopado com 1% de nanocristais semicondutores de ZnTe e íons de Yb3+ em concentrações que variam de 0% a 5%, em wt%. As propriedades ópticas das amostras e as interações entre os íons de Yb3+ vizinhos e entre os nanocristais de ZnTe e os íons Yb3+ foram estudadas através das técnicas de Absorção Óptica, Fotoluminescência e Fotoluminescência Resolvida no Tempo. A Espectroscopia de Lente Térmica e a técnica de Capacidade Térmica Volumétrica, também conhecida como pc, foram utilizadas para caracterizar as propriedades térmicas das amostras. Alguns dos principais parâmetros que analisam o desempenho e o limiar de ação laser do material foram estimados a partir da determinação das seções de choque de absorção e emissão dos íons de Yb3+ quando inseridos nessa matriz. De forma geral, a matriz vítrea PZABP demonstrou-se um excelente material hospedeiro para os íons de Yb3+ por apresentar uma ampla janela óptica, ser tolerante a altas concentrações de dopantes e não formar aglomerados de íons de Yb3+, garantindo assim uma boa qualidade óptica para aplicações em fotônica. Parâmetros importantes como o tempo de vida e a eficiência quântica do material apresentaram valores comparáveis aos encontrados na literatura. Foi verificado que a presença dos nanocristais de ZnTe intensificou a emissão dos íons de Yb3+, indicando que houve transferência de energia entre os nanocristais e os íons. Com relação a análise térmica, foram encontrados valores desejáveis para aplicações que envolvem ambientes superaquecidos. A alta difusividade e condutividade térmica das amostras as permitem dissipar calor rapidamente e a baixa variação do caminho óptico com a temperatura (ds/dT) indica que o feixe não sofre desvios muito acentuados no interior da cavidade óptica. Os parâmetros de emissão laser encontrados estão comparáveis aos de outras matrizes vítreas já estudadas, embora a presença dos nanocristais de ZnTe pareça prejudicar esses parâmetros. Portanto, de acordo com os resultados encontrados e com base nas possíveis melhoras que podem ser realizadas, concluímos que a matriz vítrea PZABP nanoestruturada com nanocristais semicondutores de ZnTe e dopada com íons de Yb3+ é um material viável para aplicações em dispositivos fotônicos de alta potência.
In this work, we have proposed a new glass matrix, called PZABP, with nominal composition 60P205 . 15ZnO . 5A/203 . 10Ba0 . 10Pb0, in mol %, nanostructured with ZnTe semiconductor nanocrystals and doped with Yb3+ ions, then, we analized its availability to photonics devices application like high power lasers, optical fiber lasers, ultra-short pulses lasers and tunable lasers in the infrared region. The samples were produced by fusion method, being made two sets. One, PZABP + xYb, was doped with Yb3+ ions at various concentrations from 0% to 10%, in wt%.The other one, PZABP + 1ZnTe + xYb, was doped with semiconductors nanocrystals of ZnTe and Yb3+ ions at concentrations from 0% to 5%, in wt%. The optical properties of the samples and the interactions between neighbors Yb3+ ions and between semiconductors nanocrystals of ZnTe and Yb3+ ions were studied by Optical Absorption, Photoluminescence and Time Resolved Photoluminescence techniques. Thermal Lens Spectroscopy and Heat Volumetric Capacity, also know as pc, were used to characterize the thermal properties of the samples. The main parameters that avail the performance laser and the threshold action laser were estimated by the determination of absorption and emission cross section of the Yb3+ ions when they are inserted in this matrix. The PZABP glass matrix showed to be an excellent host material to Yb3+ ions because it present a large optical window, it is tolerant to high dopants concentration and not showed Yb3+ clusters. Important parameters like lifetime and quantum efficience showed values comparable to others found in the literature. It was verified that the presence of ZnTe nanocrystals had enhanced the emission of the Yb3+ ions, indicating that have occurred energy transfer between ZnTe nanocrystals and Yb3+ ions. Thermal properties have presented interesting values to applications that involved superheated environment. The high thermal diffusivity and high thermal conductivity allow the sample to dissipate the heat quickly. The low variation of the optical path with the temperature (ds/dT) indicate that the laser beam not strongly deviates into the optical cavity. The laser performance parameters obtained are comparable to the other glass matrix found in the literature, although the presence of the ZnTe nanocrystals seems to prejudice these parameters. According with the results found and the improvement that could be done, we have conclude that the glass matrix PZABP nanostructured with semiconductores nanocrystals of ZnTe and doped with Yb3+ ions is a viable material to application in high power photonics devices materials.
APA, Harvard, Vancouver, ISO, and other styles
15

Ouma, Linda Achiengꞌ. "Synthesis, optical and morphological characterization of pbse quantum dots for diagnostic studies: a model study." Thesis, University of the Western Cape, 2013. http://hdl.handle.net/11394/3975.

Full text
Abstract:
>Magister Scientiae - MSc
In this study PbSe quantum dots (QDs) were successfully synthesized via the organometallic and aqueous routes. Optical characterization was carried out using photoluminescence (PL) spectroscopy, structural and morphological characterization were carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Energy-dispersive X-ray spectroscopy (EDS) was used to determine the composition of the QDs. All the synthesized QDs were found to have emissions within the near-infrared region of the spectrum (≥1000 nm) with most of them being less than 5 nm in size. The aqueous synthesized QDs had a perfect Gaussian emission spectrum with a FWHM of ~23 nm indicating pure band gap emission and narrow size distribution respectively. The QDs were determined to have a cubic rock-salt crystal structure consistent with bulk PbSe. The aqueous synthesized QDs were however not stable in solution with the QDs precipitating after approximately 48 h. The organometallic synthesized QDs were transferred into the aqueous phase by exchanging the surface oleic acid ligands with 11-mercaptoundecanoic acid ligands. The ligand exchanged QDs were however stable in solution for over two weeks. The effects of reaction parameters on the optical and structural properties of the organometallic synthesized QDs were investigated by varying the reaction time, temperature, ligand purity, lead and selenium sources. It was observed that larger QDs were formed with longer reaction times, with reactions proceeding faster at higher reaction temperatures than at lower temperatures. Varying the ligand purity was found to have minimal effects on the properties of the synthesized QDs. The lead and selenium sources contributed largely to the properties of the QDs with lead oxide producing spherical QDs which were smaller compared to the cubic QDs produced from lead acetate. TBPSe was seen to produce smaller QDs as compared to TOPSe. The cytotoxity of the synthesized QDs was determined following the WST-1 cell viability assay with the QDs being found to be non-toxic at all the tested concentrations
APA, Harvard, Vancouver, ISO, and other styles
16

Trenkmann, Ines. "Mikroskopie und optische Spektroskopie an heterogenen Nano- und Mikrostrukturen: Halbleiter-Nanokristalle, molekulare Farbstofffilme und funktionalisierte Hybridstrukturen." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175178.

Full text
Abstract:
In dieser Arbeit wird die Abhängigkeit der Photolumineszenz (PL) von CdSe/ZnS-Nanokristallen von der Umgebung und der Einfluss der Filmdicke und -morphologie auf die optische Absorption von Farbstofffilmen untersucht sowie die Oberfläche von Hybridstrukturen durch Funktionalisierung mit Farbstoff analysiert. Untersuchungen von CdSe/ZnS-Nanokristallen in Toluol-Lösung zeigen, dass die PL-Intensität der Nanopartikel durch Zugabe des organischen Halbleiters TPD gequencht wird. Die zusätzliche Auswertung der PL-Lebensdauer verdeutlicht, dass die Abnahme (fast) vollständig durch statisches Quenchen, infolge der Abnahme der Anzahl der mittierenden Nanokristalle verursacht wird, bei einem Anstieg der langlebigsten Lebensdauerkomponente. Die Analyse der PL-Unterbrechung einzelner Nanokristalle auf PVA und Siliziumoxid sowie eingebettet in PS und TPD zeigt eine Ab- bzw. Zunahme der Häufigkeit langer An- bzw. Aus-Zeiten und somit eine deutliche Abhängigkeit der PL-Unterbrechung von den dielektrischen Eigenschaften der Umgebung. Bei Variation der Anregungsleistung zeigt sich für einzelne Nanokristalle auf Siliziumoxid und eingebettet in TPD eine lineare Zunahme der Blinkaktivität und eine Abnahme des An-Zeit-Anteils. Die Änderung der Verteilungen der An- und Aus-Zeiten zeigen eine deutliche Abhängigkeit von der Matrix. Die Untersuchung der optischen Absorption von aufgedampften MePTCDI- und Cl4MePTCDI-Filmen zeigt eine Verschiebung des energieärmsten optischen Überganges mit wachsender mittlere Filmdicke. Es wird ein (geometrisches) Schicht-Modell vorgestellt, das die energetische Verschiebung mit der mittleren Filmdicke korreliert und dabei die kristalline, nadelförmige Morphologie von MePTCDIFilmen und die amorphe Kugelkappen-Struktur von Cl4MePTCDI-Filmen berücksichtigt. Die Oberfläche von Hybridfilmen aus PMMA mit Siliziumoxid-Partikeln wird durch Anbindung von R6G an die Oxid-Partikel gezielt funktionalisiert. Die Ergebnisse von fluoreszenzmikroskopischen Untersuchungen zeigen, dass dadurch der Anteil der freien Oxid-Oberfläche bestimmt werden kann.
APA, Harvard, Vancouver, ISO, and other styles
17

Krasselt, Cornelius. "Dynamik der Photo-Lumineszenz-Unterbrechung von Halbleiter-Nanokristallen in elektrischen Feldern." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-172910.

Full text
Abstract:
Diese Arbeit untersucht die Photo-Lumineszenz (PL)-Unterbrechung (Blinken) einzelner in Polymer-Nanopartikeln eingebetteter CdSe/CdS Halbleiter-Nanokristalle (Quantenpunkte) im Einfluss elektrischer Gleich- und Wechselfelder mittels Weitfeld-Mikroskopie. Hierbei emittieren die einzelnen Quantenpunkte trotz kontinuierlicher Anregung mit einer zwischen hellen An- und dunklen Aus-Zuständen variierenden PL-Intensität. Die Ergebnisse zeigen, dass die Dynamik dieses Blinkens durch Wechselfelder stark beeinflusst wird und von deren Feldstärke, teilweise auch deren Feldfrequenz abhängt. Für zunehmende Feldstärken lässt sich ein schnellerer Wechsel zwischen An- und Aus-Zuständen (erhöhte Blinkfrequenz) beobachten, der von einer reduzierten Häufigkeit langer An- und Aus-Ereignisse begleitet wird. Der Verlauf der An-Zeit-Verteilungen bei kleinen Zeiten wird zunehmend (monoton) flacher, während die Verteilungen der Aus-Zeiten zunächst ebenfalls einem analogen Trend folgen, ab einer bestimmten und von der Feldfrequenz abhängenden Feldstärke jedoch wieder steiler verlaufen. Ein solcher Monotonie-Wechsel in der Blinkdynamik im Fall einer gleichbleibenden Variation einer äußeren Bedingung wurde bei Halbleiter-Nanokristallen so erstmalig beobachtet. Für Gleichfelder zeigen sich hingegen nahezu keine Auswirkungen. Lediglich die An-Zeit-Verteilungen sowie die Blinkfrequenz im Fall hoher Feldstärken werden modifiziert. Die Ergebnisse werden im Kontext verschiedener aktueller Modelle zur PL-Unterbrechung wie dem trapping-Modell, dem self-trapping-Mechanismus oder dem Modell multipler Rekombinationszentren diskutiert und diese entsprechend erweitert. Dabei stehen die dielektrischen Eigenschaften und die Relaxationsdynamik der lokalen Quantenpunkt-Umgebung im Mittelpunkt, deren Reaktion auf die externen Felder durch eine zeitabhängige Ausrichtung permanenter Dipole beschrieben werden kann.
APA, Harvard, Vancouver, ISO, and other styles
18

Silva, Alessandra dos Santos. "Estudo de propriedades físicas de nanocristais de ZnTe e Zn1-xAxTe (A = Mn; Co) no sistema vítreo P2O5 ZnO Al2O3 BaO PbO." Universidade Federal de Uberlândia, 2015. https://repositorio.ufu.br/handle/123456789/15620.

Full text
Abstract:
Fundação de Amparo a Pesquisa do Estado de Minas Gerais
In this work, Zn1-xAxTe (A = Mn, Co) diluted magnetic semiconductors (DMS) nanocrystal (NCs) were successfully grown in the P2O5 ZnO Al2O3 BaO PbO glass system synthesized by the method of Fusion-Nucleation, after subjecting to appropriate thermal annealing. Various experimental techniques were used in this study in order to get a comprehensive understanding of the optical, morphological, structural and magnetic properties these NCs. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) images revealed the size of both of Zn1-xMnxTe and Zn1-xCoxTe NCs. From the vibrating sample magnetometer (VSM) technique, there was growth behavior of magnetization and magnetic susceptibility as a function of the Mn concentration in the samples containing Zn1-xMnxTe NCs. At lower Mn concentrations, the sp electrons of ZnTe host semiconductor interact with the d electrons of Mn2+ ions, resulting in the sp-d exchange interaction, which causes a small increase in susceptibility. At higher Mn concentrations, the d-d exchange interaction between Mn atoms dominates over the sp-d exchange interaction, resulting in an abrupt increase in susceptibility. The EPR spectra, in addition to prove the results exhibited the well-known sextet hyperfine lines of Mn2+ ions, since samples with low Mn concentrations revealed the presence of Mn2+ ions within and near the surface of the ZnTe NCs. From the optical absorption spectra (OA) and photoluminescence (PL), analyzed on the basis of crystal field theory (CFT) as well as of the diffraction X-ray (XRD), Raman scattering (RS) and electron microscopy transmission (TEM) techniques, the substitutional incorporation of Mn2+ ions was confirmed up to its solubility limit (x = 0.100) ZnTe NCs. Above this concentration, can observe the formation of manganese oxide NCs such as MnO and MnO2, since the nucleation rate for the formation of these NCs is greater than that of Zn1-xMnxTe NCs, at high concentrations. Furthermore, from the PL spectra, it was found that it is possible to tune the emission of energy related to transition 4T1(4G) → 6A1(6S) of Mn2+ ions, of the spectral orange region to the near infrared, depending on Mn concentration. This is possible due to the variation of the local crystal field, where these ions are inserted. From the OA spectra, analyzed on the basis of CFT, it showed that Co2+ ions are substitutionally incorporated in tetrahedral sites of ZnTe NCs, due to its characteristics transitions in visible and near infrared spectral region. This evidence has been enhanced from MFM images, since NCs doped with magnetic ions, magnetically respond when induced by the magnetization of the probe.
Neste trabalho, nanocristais semicondutores magnéticos diluídos (SMD) de Zn1-xAxTe (A = Mn; Co) foram crescidos com sucesso no sistema vítreo P2O5 ZnO Al2O3 BaO PbO, sintetizado pelo método de Fusão-Nucleação, após submetê-lo a tratamento térmico apropriado. Várias técnicas experimentais foram utilizadas neste estudo a fim de obter um entendimento compreensivo das propriedades ópticas, morfológicas, estruturais e magnéticas desses NCs. Imagens de microscopia eletrônica de transmissão (MET) e microscopia de força atômica (MFA) revelaram o tamanho tanto de NCs de Zn1-xMnxTe quanto de Zn1-xCoxTe. A partir da técnica de magnetometria de amostra vibrante (MAV), verificou-se o crescimento da magnetização e o comportamento da susceptibilidade magnética, em função da concentração de Mn, em amostras contendo NCs de Zn1-xMnxTe. Em baixas concentrações de Mn, os elétrons sp do semicondutor hospedeiro ZnTe, interagem com os elétrons d dos íons Mn2+, resultando na interação de troca sp-d, que provoca um pequeno aumento na susceptibilidade magnética. Já, em concentrações mais elevadas de Mn, a interação de troca d-d entre átomos de Mn domina a interação de troca sp-d, o que resulta em um aumento abrupto da susceptibilidade. Os espectros RPE, além de comprovar esses resultados, exibiram o bem conhecido sexteto de linhas hiperfinas de íons Mn2+, uma vez que amostras com baixas concentrações de Mn revelaram a presença de íons Mn2+ no interior e próximos à superfície dos NCs de ZnTe. A partir dos espectros de absorção óptica (AO) e fotoluminescência (FL), analisados com base na teoria do campo cristalino (TCC), bem como das técnicas de difração de raios-X (DRX), espalhamento Raman (ER) e microscopia eletrônica de transmissão (MET), confirmou-se a incorporação substitucional de íons Mn2+ até seu limite de solubilidade nominal (x = 0,100) em NCs de ZnTe. Acima dessa concentração, observa-se a formação de NCs de óxido de manganês, tais como MnO e MnO2, uma vez que a taxa de nucleação para a formação desses NCs é maior que a de NCs de Zn1-xMnxTe, em altas concentrações. Além disso, a partir dos espectros FL, verificou-se que é possível sintonizar a energia de emissão relacionada à transição 4T1(4G) → 6A1(6S) de íons Mn2+, da região espectral laranja ao infravermelho próximo, em função da concentração de Mn. Isso é possível devido à variação do campo cristalino local, onde esses íons estão inseridos. A partir dos espectros AO, analisados com base na TCC, evidenciou-se que íons Co2+ são incorporados substitucionalmente em sítios tetraédricos de NCs de ZnTe, devido às suas transições características na região espectral do visível e infravermelho próximo. Essa evidência foi reforçada a partir de imagens de MFM, uma vez que os NCs, dopados com íons magnéticos, respondem magneticamente quando induzidos pela magnetização da sonda.
Doutor em Física
APA, Harvard, Vancouver, ISO, and other styles
19

Hsia, Yuan-Lung, and 夏淵龍. "Photoluminescence of I-VII Semiconductor Compounds, ensitized Luminescence from “Deep States” Recombination in CuBr/AgBr Nanocrystals." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/12472942856643999311.

Full text
Abstract:
碩士
高雄醫學大學
醫藥暨應用化學研究所碩士在職專班
95
The photoluminescence (PL) properties of CuBr and CuBr/AgBr semiconductor nanocrystals (NCs) embedded in borosilicate glasses are measured under band-to-band excitation by a 355 nm Nd:YAG laser. We observed emission from CuBr (peaked at 520 nm) doped glass, which is associated with deep states in CuBr NCs. We also observed the sensitized blue to orange-red emission in CuBr/AgBr-glass systems (peaked at 520 and 570 nm), in which the luminescence intensity of CuBr decreases with increasing AgBr concentrations, while it is enhanced significantly around 570 nm. The results are discussed by the possible energy transfer between them, or by the multi-exitonic recombination process which ejects an excited carrier from CuBr to AgBr NCs.
APA, Harvard, Vancouver, ISO, and other styles
20

Das, Shyamashis. "Materials Chemistry in Search of Energy Materials : Photovoltaics and Photoluminescence." Thesis, 2016. http://hdl.handle.net/2005/2820.

Full text
Abstract:
One third of world’s total energy is used in production of electricity and one fifth of the total electricity produced in the world is used in lighting. Hence, the materials that have high potential in the field of photovoltaic’s and photoluminescence have recently drawn special attention to meet the ever increasing energy demands. In this thesis, we have studied a few materials that hold tremendous promises in fabricating photovoltaics and photoluminescent devices. Any ferroelectric material is an efficient solar energy converter as it contains an the intrinsic dipolar field which can effectively separate the photo excited electron and hole. We have developed a few materials which possess inherent polarization efficiently absorb over a wide portion of the solar spectrum and hence can find application in the field of photovoltaics. Secondly, we also dealt with semiconductor nonmaterial’s which are technologically very important owing to their improved photoluminescence properties. We tried to improve their light emitting efficiency by engineering crystal structure in nanometer length scales. The thesis deals with such advanced energy materials and is divided in seven chapters. Chapter 1 provides a brief introduction to the fundamental concepts that are relevant in the subsequent chapters. The chapter is started with a brief scenario of current status of energy production and its usage. Next, we have discussed the prospects of ferroelectric materials in photovoltaic devices. This is followed by a brief background on ferroelectricity and related properties which we have studied subsequently. At the end of this chapter a brief overview of photoluminescence properties in semiconductor nonmaterial’s is presented. In this section we have addressed the particular issues that need to be taken care of in order to improve their light emission properties. Chapter 2 describes different experimental and theoretical methods that have been employed to carry out different studies presented in the thesis. Chapter 3 addresses the possibility of employing BaTiO3 (BTO) based composite perovskite oxides as a potent photovoltaic material. It is known that BTO can produce photocurrent upon excitation with suitable light source. However, inability of BTO to absorb sufficient sunlight owing to its near UV band gap prevents to make use of this material in photovoltaic devices. In order to reduce the band gap we have tried to tune the electronic structure at the band edge by doping non-d0 transition metal ions at Ti site. As it is known in the literature an isovalent substitution of Ti4+ stabilizes non-polar phase of BTO we employed a co-doping strategy to substitute tetravalent Ti with equal percentage of a trivalent and a pentavalent metal ion. Keeping in mind off-centering of Ti4+ is primary reason behind the large ferroelectric polarization of BTO, a judicious choice of co-dopant was necessary to minimize reduction of polarization due to replacement of Ti. We have found at least two pairs of co-dopants, namely Mn3+-Nb5+ and Fe3+-Nb5+ which at low doping concentration ( < 10%) effectively reduces the band gap of BTO without affecting its polarization to a large extent. We systematically increase the doping concentration of both the pair of dopants and found Mn3+-Nb5+ pair is more efficient over Fe3+-Nb5+ both in terms of reducing band gap and retaining the polarization of BTO. We have characterized the ferroelectric nature of all the doped compositions with the help of dielectric, polarization and pyroelectric measurements. We have also performed first principle density functional theory (DFT) calculations for an equivalent doped composition and addressed the nature of modulations of electronic structure at the band edges which is responsible for such large reduction of band gap. Chapter 4 deals with composite perovskite materials which posses large tetragonal distortions with reduced optical band gaps. Here we have exploited Cu-Nb and Cu-Ta pair which upon complete substitution of Ti of BTO leads to composite perovskites with enhanced tetragonal distortion of the perovskite lattice. For two resultant compositions, namely BaCu1/3Nb2/3O3 and BaCu 1/3Ta2/3O3 we have characterized the optical and ferroelectric properties. We found though these material possess small band gap (∼ 2 eV), these are not ferroelectric in nature. Results of second harmonic generation measurements and refinement of powder X-ray diffraction both establish Centro symmetric nature of these materials. We infer from these results that presence of large tetragonal distortion is a result of symmetric Jahn-Teller type distortion of Cu2+ and not due to off-centering of any of the metal ions in their MO6 octahedral geometries. In Chapter 5, we have considered the material SrTiO3 (STO) which is stable in cubic paraelectric phase at room temperature. But at the same time this material is considered as an incipient ferroelectric due to presence of an active polar vibrational mode which does not become completely soft even at temperature close to 0 K. While this polar vibrational mode can easily be frozen by making substitution at Sr site, a similar attempt by making substitution at Ti site failed earlier. Keeping in mind Ti is easier to substitute than Sr we employed same co-doping strategy that we have considered in Chapter 3. We found Mn- Nb and Mn-Ta co-dopants at low doping concentration are extremely useful in transforming incipient ferroelectric STO into a dipolar glass. We have characterized the glassy dipolar property of doped STO with the help of tem-perature dependent dielectric response of these material. At the same time we found these co-doped STO possess enhanced static dielectric constant at room temperature with favourable dielectric loss values in comparison to pure STO. We have also ad-dressed the origin of a glassy dipolar state with the help of DFT calculation performed on equivalent doped composition that we have considered for our experiments. In Chapter 6, we have considered another incipient ferroelectric material TiO2 in rutile phase which also possess polar vibrational mode at temperature close to 0 K. A lattice strain along the polar vibrational mode make symmetric non-polar structure unstable with respect to the distorted polar structure. In this context, we found two particular compositions FeTiTaO6 and CrTiTaO6 that are also stable in rutile phases at room temperature but possess similar strain due to presence of larger Fe or Cr and Ta in rutile lattice. Considering the fact these two composite rutile oxides are relaxer ferroelectric in nature, we critically evaluated the effect of the particular kind of strain that these materials introduce in rutile lattice. We also characterized relaxor ferroelectric property and optical band gap of these materials and commented on the potential of these materials in exploiting them in photovoltaic devices. Chapter 7 presents a unique strategy of making use of crystal defects in improving photoluminescent properties of semiconductor nanocrystals. We have shown defects when introduced in nanocrystals in a controlled protected manner efficiently overcome the problem of self absorption which is known to reduce quantum efficiency of emit-ted light. Controlling synthesis conditions we separately prepared CdS nanocrystals with and without intergrowth defects. We characterized the presence of the intergrowth defect with the help of high resolution transmission electron microscope (HRTEM) image. We have also characterized Stokes’ shifted PL emission and ultrafast charge carrier dynamics of these NCs with intergrowth defects. To support these experimental findings we have computed the electronic structures of model nanoclusters possessing similar intergrowth defects that has been observed in HRTEM images. We find that the presence of defects in a nanocluster particularly affect the position of the band edge. However our joint density of state calculation shows that contribution of these defect states to an absorption spectra is negligible. Thus presence of defect states at band edge ensures a Stokes’ shifted emission without affecting the position of absorption. In a separate section of this chapter we have shown apart from intergrowth defects presence of twin boundary also provide similar mid-gap states that can alter its’ optical proper-ties to large extent. In summary, we have studied a few bulk and nano-materials which can show improved photovoltaic and photoluminescence property. We investigated effect of external dopant ions on a classical ferroelectric material BaTiO3 and two incipient ferroelectric materials SrTiO3 and rutile TiO2. We have also shown that efficient defect engineering could be extremely useful in improving photoluminescent property of CdS nanocrystals which is a prototype of II-VI semiconductor nanomaterials. In a separate Appendix Chapter, we have shown an easy and efficient way to suppress coffee ring effect which takes place universally when a drop of colloidal suspension is dried on a solid substrate. We have shown temporary modification of hydropho-bicity of a glass substrate not only can suppress the coffee ring effect but also leaves the particle in a highly ordered self-assembled phase after completion of drying process
APA, Harvard, Vancouver, ISO, and other styles
21

Leubner, Susanne. "On the ligand shell complexity of strongly emitting, water-soluble semiconductor nanocrystals." Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28600.

Full text
Abstract:
Colloidal semiconductor nanocrystals (NCs) have attracted a great deal of interest as bright and stable chromophores for a variety of applications. Their superior physicochemical properties depend on characteristics of the inorganic core, as well as on the chemical nature and structure of the stabilizing organic ligand shell. To evaluate the promising material, a thorough knowledge of structure-property relationships is still demanded. The present work addresses this challenge to three water-soluble NC systems, namely thiol-capped CdTe, thiol-capped CdHgTe, and DNA-functionalized CdTe NCs with special emphasis on the investigation of structure, modification, and influence of the ligand shell. Remarkably, CdTe NCs show bright emission in the visible spectral region and can be synthesized in high quality directly in water. It was shown that the aqueous synthesis also facilitates the preparation of strongly near-infrared (NIR) emitting CdHgTe NCs. The current work presents a detailed study on parameters, by which the emission can be tuned, such as the growth time, the initial Cd : Hg ratio, and the choice of ligand. These insights contribute to the knowledge, which is essential for the design of highly emissive and long-term stable NIR emitting NCs. Further variations of the NC/ligand system include the modification of the ligand shell of CdTe NCs with oligonucleotides based on the strong attachment of DNA molecules to the NC. The successful functionalization of NCs with single-stranded DNA molecules is very promising for the precise and programmable assembly of NCs using DNA origami structures as templates. For both, functionality and optical properties, the surface chemistry of the NCs plays a substantial role and was subject to an extensive investigation. As there is no generally applicable technique to determine the amount of stabilizers and the structure of the ligand shell, the presented study is based on a combination of various methods particularly tailored to the analysis of water-soluble CdTe NCs capped by short-chain thiols. CdTe NCs served as a model system for the described analysis of the ligand shell, since they are thoroughly studied regarding synthesis and features of the core. Aiming for the quantification of thiols, a straightforward colorimetric assay, the Ellman\'s test, is for the first time introduced for the analysis of NCs. Accompanied by elemental analysis an approximate number of thiols per NC becomes accessible. Moreover, theoretical calculations were performed to estimate the amount of ligand that would cover the NC in a monolayer of covalently bound molecules. In contrast to these results, the experimental values point to a larger amount of thiols immobilized on the NC. Attempts to remove the ligand indicate the presence of Cd in the ligand shell and thermogravimetric studies show that the ligands are not loosely assembled in the ligand shell. The outstanding conclusion of these findings involves the presence of Cd-thiol complexes in the ligand shell. Further results unambiguously show that the amount of Cd-thiol complexes present in the NC solution strongly influences the concentration-dependent emission yield of the NCs. Additional studies dedicated to the considerable influence of the ligand shell highlight a strong effect of pH, NC concentration, type and purity of the solvent, and the number of precipitation steps on the emission of water-soluble semiconductor NCs. These substantial investigations emphasize the need to carefully control the conditions applied for handling, optical measurements, and application of NCs. In order to gain a deeper insight into the complex structure of the native ligand shell, techniques deliberately chosen for the in situ analysis were applied for thioglycolic acid-capped CdTe NCs. Information from dynamic light scattering (DLS) regarding the stability and the shell thickness are consistent with previous results showing a large ligand network on the NC surface and a decreasing stability of the NCs upon dilution. Importantly, nuclear magnetic resonance (NMR) spectroscopy allows for the distinction of bound and free ligands directly in solution and proves the presence of these species for the NCs studied. In particular, the results indicate that the ligands are not strongly bound to the NC core and that both, free and bound ligand species, consist of modified thiol molecules, such as Cd-thiol complexes. These findings support previous assumptions and allow to establish a distinct picture of the ligand shell of water-soluble semiconductor NCs. Further insights were obtained from small-angle X-ray scattering (SAXS), which facilitates the identification and the determination of the composition of NC core as well as ligand shell. Element-specific SAXS yields the final proof of the presence of Cd in the ligand shell. The model developed for the optimal fitting of the experimental scattering curves additionally confirms the findings from the other methods. In conclusion, the present work contributes to the challenging goal of a comprehensive knowledge of interactions between the NC core and the ligands. The fundamental development of a structural model of water-soluble CdTe NCs including information on stoichiometries is accomplished by the combination of the techniques presented and emphasizes the challenge to assign a clear border between the ligand shell and the Cd-thiol complexes in solution. Altogether, CdTe NCs capped by thioglycolic acid are best described by a crystalline core surrounded by a water-swollen Cd-thiolate shell that considerably affects the optical properties of the system. Notably, the results of the versatile study provide the opportunity to control the overall properties and to evaluate water-soluble semiconductor NCs for particular applications in photonics and optoelectronics.
APA, Harvard, Vancouver, ISO, and other styles
22

Bennett, Ellie. "Synthetic and Analytical Advancements for Zinc Sulfide Containing Quantum Dots." Thesis, 2021. https://doi.org/10.7916/d8-pg23-8v73.

Full text
Abstract:
Colloidal semiconductor nanocrystals exist at the interface of inorganic chemistry, solid-state physics, and materials applications. The highly tunable and size-dependent properties position them as prime candidates for advancing a range of technologies, including improving efficiency in solid-state lighting devices and high color-purity displays. To be successful in these endeavors, quantum dots require excellent optical properties, such as bright emission. Optimization of a zinc sulfide coating is widely regarded as a key requirement to achieving these necessary performances. Even so, zinc sulfide nanocrystal chemistry remains underdeveloped. This dissertation addresses these shortcomings and provides comprehensive synthetic and analytical tools to harness the potential of zinc sulfide containing nanocrystals. Chapter 1 introduces semiconductor nanocrystals, also referred to as quantum dots, and begins with a description of the size-dependent optical properties. Factors that lead to poorer emission properties, such as undercoordinated surface atoms are discussed. Methods to alleviate these issues, including controlling the surface coordination environment, and design and growth of heterostructures are introduced. Lastly, synthetic approaches and nanocrystal formation mechanisms are described. Chapter 2 covers the synthesis and size-dependent optical properties of zinc sulfide nanocrystals. We find that commonly used solvents in nanocrystal reactions lead to the formation of polymeric byproducts that are challenging to purify away, and thus design the zinc sulfide synthesis such that these can be avoided. Leveraging a library of rate tunable thioureas the final nanocrystal size can be carefully controlled. The reactions follow a thermally activated growth process, with larger zinc sulfide nanocrystals accessible at higher temperatures. Most relevantly for later chapters, the surface coordination environment is highly important; bulkier zinc carboxylate ligands that cannot achieve high surface coverages result in higher growth rates. These results represent the most tunable size controls reported for zinc sulfide nanocrystals. Chapter 3 uses high resolution electron microscopy techniques to study the shape (morphology) of zinc sulfide nanocrystals, synthesized using the methods developed in the second chapter. Irregular, anisotropic growth is commonly seen in zinc sulfide shell growth and is attributed to core/shell interfacial strain. We find that this growth also occurs in the binary zinc sulfide system. Synthetic conditions favoring fast growth result in unselective, isotropic growth of spherical zinc sulfide. Conversely, slower conditions can lead to irregular, anisotropic shapes. The shape is also highly dependent on the coordination environment during growth. Small, sterically unencumbered ligands stabilize specific crystal facets, leading to selective, anisotropic growth. These findings are translated to shelling procedures in Chapter 6, and further emphasize the need to understand and characterize zinc sulfide surfaces. Chapter 4 establishes an empirical relationship between the band gap energy of a zinc sulfide nanocrystal and its diameter. The literature reports a wide spread of diameters for a given energy, meaning zinc sulfide sizes could not previously be easily calculated from their optical properties. Leveraging the size- and shape-control discussed in Chapters 2 and 3, we assess the utility of a range of nanocrystal characterization techniques for accurately sizing quantum confined zinc sulfide. Using electron microscopy and X-ray scattering methods we present an updated energy-size (“sizing curve”) relationship for zinc sulfide. These results represent the most comprehensive zinc sulfide nanocrystal sizing study and enable the rapid size characterization of zinc sulfide from its absorbance spectrum. This provided crucial insight into the reaction progressions described in Chapter 2. Chapter 5 covers our endeavors to characterize and quantify the zinc sulfide nanocrystal surface chemistry, which we believe is imperative to improving shelling procedures and optical properties in zinc sulfide heterostructures. With no published extinction coefficient, the surface coverages of zinc sulfide cannot be obtained. Using the size- and shape-controlled syntheses, in conjunction with optical absorption spectroscopy and elemental analysis, we calculate extinction coefficients for a range of zinc sulfide nanocrystal sizes. The size-dependence is well described by a power law, and this represents the first reported extinction coefficient for zinc sulfide. Using this, we report the first surface coverages of zinc sulfide nanocrystals and assess the binding affinity of zinc carboxylates to the surface by monitoring their displacement by L-type ligands. Chapter 6 widens the zinc sulfide synthetic methods developed in earlier chapters to deposit zinc sulfide shells onto blue-emitting II-VI and red-emitting III-V nanocrystals. The reaction shows versatility, shelling nanocrystals over a wide range of temperatures. We demonstrate morphology control over the zinc shell by altering the deposition kinetics and coordination environment. Usually, thick, homogenous shells are desired by the nanocrystal field. However, by correlating the shell morphology to its optical properties, we see that the anisotropic shells generally achieve higher photoluminescence quantum yields (PLQYs). We also report progress towards cadmium-free quantum dot downconverters for use in solid-state lighting applications. Among other things, the photoluminescence intensity evolution throughout the shelling procedure is highly dependent on the initial surface termination of the nanocrystal core. Application of surface treatments allows brighter zinc sulfide shelled III-V heterostructures to be accessed.
APA, Harvard, Vancouver, ISO, and other styles
23

Adam, Marcus. "Embedding of QDs into Ionic Crystals:: Methods, Characterization and Applications." Doctoral thesis, 2015. https://tud.qucosa.de/id/qucosa%3A29121.

Full text
Abstract:
Colloidal semiconductor quantum dots (QDs) have gained substantial interest as adjustable, bright and spectrally tunable fluorophores in the past decades. Besides their in-depth analyses in the scientific community, first industrial applications as color conversion and color enrichment materials were implemented. However, stability and processability are essential for their successful use in these and further applications. Methods to embed QDs into oxides or polymers can only partially solve this challenge. Recently, our group introduced the embedding of QDs into ionic salts, which holds several advantages in comparison to polymer or oxide-based counterparts. Both gas permeability and environmental-related degradation processes are negligible, making these composites an almost perfect choice of material. To evaluate this new class of QD-salt mixed crystals, a thorough understanding of the formation procedure and the final composites is needed. The present work is focused on embedding both aqueous-based and oil-based metal-chalcogenide QDs into several ionic salts and the investigations of their optical and chemical properties upon incorporation into the mixed crystals. QDs with well-known, reproducible and high-quality synthetic protocols are chosen as emissive species. CdTe QDs were incorporated into NaCl as host matrix by using the straightforward "classical" method. The resulting mixed crystals of various shapes and beautiful colors preserve the strong luminescence of the incorporated QDs. Besides NaCl, also borax and other salts are used as host matrices. Mercaptopropionic acid stabilized CdTe QDs can easily be co-crystallized with NaCl, while thioglycolic acid as stabilizing agent results in only weakly emitting powder-like mixed crystals. This challenge was overcome by adjusting the pH, the amount of free stabilizer and the type of salt used, demonstrating the reproducible incorporation of highest-quality CdTe QDs capped with thioglycolic acid into NaCl and KCl salt crystals. A disadvantage of the "classical" mixed crystallization procedure was its long duration which prevents a straightforward transfer of the protocol to less stable QD colloids, e.g., initially oil-based, ligand exchanged QDs. To address this challenge, the "Liquid-liquid-diffusion-assisted-crystallization" (LLDC) method is introduced. By applying the LLDC, a substantially accelerated ionic crystallization of the QDs is shown, reducing the crystallization time needed by one order of magnitude. This fast process opens the field of incorporating ligand-exchanged Cd-free QDs into NaCl matrices. To overcome the need for a ligand exchange, the LLDC can also be extended towards a two-step approach. In this modified version, the seed-mediated LLDC provides for the first time the ability to incorporate oil-based QDs directly into ionic matrices without a prior phase transfer. The ionic salts appear to be very tight matrices, ensuring the protection of the QDs from the environment. As one of the main results, these matrices provide extraordinary high photo- and chemical stability. It is further demonstrated with absolute measurements of photoluminescence quantum yields (PL-QYs), that the PL-QYs of aqueous CdTe QDs can be considerably increased upon incorporation into a salt matrix by applying the "classical" crystallization procedure. The achievable PL enhancement factors depend strongly on the PL-QYs of the parent QDs and can be described by the change of the dielectric surrounding as well as the passivation of the QD surface. Studies on CdSe/ZnS in NaCl and CdTe in borax showed a crystal-induced PL-QY increase below the values expected for the respective change of the refractive index, supporting the derived hypothesis of surface defect curing by a CdClx formation as one main factor for PL-QY enhancement. The mixed crystals developed in this work show a high suitability as color conversion materials regarding both their stability and spectral tunability. First proof-of-concept devices provide promising results. However, a combination of the highest figures of merit at the same time is intended. This ambitious goal is reached by implementing a model-experimental feedback approach which ensures the desired high optical performance of the used emitters throughout all intermediate steps. Based on the approach, a white LED combining an incandescent-like warm white with an exceptional high color rendering index and a luminous efficacy of radiation is prepared. It is the first time that a combination of this highly related figures of merit could be reached using QD-based color converters. Furthermore, the idea of embedding QDs into ionic matrices gained considerable interest in the scientific community, resulting in various publications of other research groups based on the results presented here. In summary, the present work provides a profound understanding how this new class of QD-salt mixed crystal composites can be efficiently prepared. Applying the different crystallization methods and by changing the matrix material, mixed crystals emitting from blue to the near infrared region of the electromagnetic spectrum can be fabricated using both Cd-containing and Cd-free QDs. The resulting composites show extraordinary optical properties, combining the QDs spectral tunability with the rigid and tight ionic matrix of the salt. Finally, their utilization as a color conversion material resulted in a high-quality white LED that, for the first time, combines an incandescent-like hue with outstanding optical efficacy and color rendering properties. Besides that, the mixed crystals offer huge potential in other high-quality applications which apply photonic and optoelectronic components.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography