Academic literature on the topic 'Photoluminescence - ZnO based Nanocomposites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photoluminescence - ZnO based Nanocomposites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photoluminescence - ZnO based Nanocomposites"

1

Astuti, Syukri Arief, Muldarisnur, Zulhadjri, and R. A. Usna. "Synthesis and Properties of Magnetic-Luminescent Fe3O4@ZnO/C Nanocomposites." Journal of Nanotechnology 2023 (April 8, 2023): 1–7. http://dx.doi.org/10.1155/2023/2381623.

Full text
Abstract:
A Fe3O4@ZnO/C nanocomposite with a core-shell structure was synthesized using the co-precipitation method. To prevent the aggregation of the Fe3O4 magnetic particles, polyethylene glycol (PEG) was added. The X-ray diffractometer (XRD) results confirmed the formation of Fe3O4 and ZnO phases, with Fe3O4 having a cubic crystal system and ZnO having a hexagonal crystal system. Carbon in Fe3O4@ZnO/C had no effect on the crystal structure of Fe3O4@ZnO. Images from transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanocomposite formed a core-shell structure. The Fourier transform infrared (FTIR) spectra verified the presence of bonds among ZnO, Fe3O4, and carbon. The appearance of the stretching vibration of the C≡C bond on the Fe3O4@ZnO/C sample revealed the nanocomposites’ carbon coupling. Photoluminescence (PL) spectroscopy was used to characterize the optical properties of the nanocomposites. Based on the results of the PL, the sample absorption of visible light was in the wavelength range of 400–700 nm. The photoluminescence of Fe3O4@ZnO differed from that of the Fe3O4@ZnO/C, especially in the deep-level emission (DLE) band. There was a phenomenon of broadening and shift of the band at a shorter wavelength, namely, in the blue wavelength region. Magnetic properties were characterized by vibrating-sample magnetometry (VSM). Based on the VSM results, the sample coupled with carbon exhibited a decrease in magnetic saturation. The presence of carbon changed photon energy into thermal energy. So, this material, apart from being a bioimaging material, can also be developed as a photothermal therapy material.
APA, Harvard, Vancouver, ISO, and other styles
2

Elderdery, Abozer Y., Abdulaziz H. Alhamidi, Ahmed M. E. Elkhalifa, Maryam M. Althobiti, Entesar M. A. Tebien, Nawal Eltayeb Omer, Siddiqa M. A. Hamza, et al. "Synthesis and characterization of ZnO–TiO2–chitosan–escin metallic nanocomposites: Evaluation of their antimicrobial and anticancer activities." Green Processing and Synthesis 11, no. 1 (January 1, 2022): 1026–39. http://dx.doi.org/10.1515/gps-2022-0086.

Full text
Abstract:
Abstract This work intended to formulate bio-nanocomposites of zinc oxide (ZnO), titanium oxide (TiO2), chitosan, and escin, characterize their physical properties, and evaluate their antimicrobial and anticancer properties. X-ray diffractometers (XRD) and scanning and transmission electron microscopes were applied to characterize the morphology and ultrastructure of chemically synthesized bio-nanocomposites. To investigate the functional groups of bio-nanocomposites, we used Perkin–Elmer spectrometers for Fourier transform infrared (FTIR) analysis and photoluminescence (PL) spectroscopy for PL spectrum analysis. Antimicrobial activities against bacterial and fungal strains were tested with agar well diffusion. Bio-nanocomposites were tested for anticancer effects on a MOLT4 blood cancer cell line using morphological analysis, methyl thiazole tetrazolium assay, apoptosis by acridine orange/ethidium bromide, and mitochondrial membrane potential (ΔΨm). In XRD, FTIR, and PL, the active compounds of ZnO–TiO2, chitosan, and escin peaks were observed. Our bio-nanocomposites demonstrated antimicrobial activity against bacterial and fungal pathogens. The bio-nanocomposite was cytotoxic to MOLT4 cells at an IC50 concentration of 33.4 µg·mL−1. Bio-nanocomposites caused cytotoxicity, changes in cell morphology, and mitochondrial membrane potential degradation, all of which resulted in apoptotic cell death. MOLT4 cells were found to be responsive to bio-nanocomposites based on ZnO–TiO2–chitosan–escin.
APA, Harvard, Vancouver, ISO, and other styles
3

Sanmugam, Anandhavelu, Dhanasekaran Vikraman, Sethuraman Venkatesan, and Hui Joon Park. "Optical and Structural Properties of Solvent Free Synthesized Starch/Chitosan-ZnO Nanocomposites." Journal of Nanomaterials 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7536364.

Full text
Abstract:
The objective of this work is to develop an environmentally friendly method for preparation of ZnO nanocomposites. ZnO nanocomposites were prepared by three natural fibers such as coir, sawdust, and chitosan using aqueous solution of zinc chloride and sodium hydroxide. The functional groups of ZnO, C=O for polysaccharide, and N-H bending vibration of amine were confirmed by FTIR spectroscopy. A new high intensity absorption band has been observed at 424 cm−1 which corresponds to the E2 mode of hexagonal ZnO. The crystallinity and phase formation of coir, chitosan, and sawdust combined ZnO nanocomposites were confirmed by X-ray diffraction patterns. XRD patterns revealed the polycrystalline nature of ZnO composites belonging to the hexagonal phase with (101) preferential lattice orientation. The microstructural parameters were calculated for coir, chitosan, and saw wood combined ZnO composites. Also texture coefficients were estimated for all the diffraction lines of ZnO based nanocomposites. SEM and TEM analyses confirmed evenly distributed nanosized grains in the ZnO composites. The UV-Vis absorption spectra were observed where the blue shift absorption peak was at 334 nm. The optical band gap values were estimated in the range of 3.18–3.26 eV. The emission peak was observed at ~388 nm and ~463 nm by photoluminescence spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
4

Astuti, Syukri Arief, Mulda Muldarisnur, Zulhadjri, and Sri R. A. Usna. "Enhancement in photoluminescence performance of carbon-based Fe3O4@ZnO–C nanocomposites." Vacuum 211 (May 2023): 111935. http://dx.doi.org/10.1016/j.vacuum.2023.111935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Popa, Adriana, Maria Stefan, Sergiu Macavei, Laura Elena Muresan, Cristian Leostean, Cornelia Veronica Floare-Avram, and Dana Toloman. "Photoluminescence and Photocatalytic Properties of MWNTs Decorated with Fe-Doped ZnO Nanoparticles." Materials 16, no. 7 (April 3, 2023): 2858. http://dx.doi.org/10.3390/ma16072858.

Full text
Abstract:
The present work reports the photoluminescence (PL) and photocatalytic properties of multi-walled carbon nanotubes (MWCNTs) decorated with Fe-doped ZnO nanoparticles. MWCNT:ZnO-Fe nanocomposite samples with weight ratios of 1:3, 1:5 and 1:10 were prepared using a facile synthesis method. The obtained crystalline phases were evidenced by X-ray diffraction (XRD). X-ray Photoelectron spectroscopy (XPS) revealed the presence of both 2+ and 3+ valence states of Fe ions in a ratio of approximately 0.5. The electron paramagnetic resonance EPR spectroscopy sustained the presence of Fe3+ ions in the ZnO lattice and evidenced oxygen vacancies. Transmission electron microscopy (TEM) images showed the attachment and distribution of Fe-doped ZnO nanoparticles along the nanotubes with a star-like shape. All of the samples exhibited absorption in the UV region, and the absorption edge was shifted toward a higher wavelength after the addition of MWCNT component. The photoluminescence emission spectra showed peaks in the UV and visible region. Visible emissions are a result of the presence of defects or impurity states in the material. All of the samples showed photocatalytic activity against the Rhodamine B (RhB) synthetic solution under UV irradiation. The best performance was obtained using the MWCNT:ZnO-Fe(1:5) nanocomposite samples, which exhibited a 96% degradation efficiency. The mechanism of photocatalytic activity was explained based on the reactive oxygen species generated by the nanocomposites under UV irradiation in correlation with the structural and optical information obtained in this study.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Jinghua, Xiaocai Yu, Liping Wang, Meicen Guo, Wanting Zhu, and Siyao Tian. "Photocatalytic degradation of chlortetracycline hydrochloride in marine aquaculture wastewater under visible light irradiation with CuO/ZnO." Water Science and Technology 80, no. 7 (October 1, 2019): 1249–56. http://dx.doi.org/10.2166/wst.2019.372.

Full text
Abstract:
Abstract A CuO/ZnO photocatalyst nanocomposite was successfully prepared by co-precipitation and characterized by investigating its chemical and physical properties by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, UV-vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The average particle size of CuO/ZnO composite was found to be around 80 nm. The degradation of chlortetracycline hydrochloride pollutants in marine aquaculture wastewater using ZnO and CuO/ZnO was compared and it was found that CuO/ZnO nanocomposite is more efficient than ZnO. The effects of external factors on the photocatalytic effectiveness of nanocomposite were investigated under visible light. Also, the photocatalytic conditions for the degradation of chlortetracycline hydrochloride by the nanocomposite were optimized. Based on both ability and efficiency of degradation, and on the cost and availability, 10:2 molar ratio of Zn2+/Cu2+ and 0.7 g/L nanocomposite, was found to be optimal, in which case the average photocatalytic degradation rate of chlortetracycline hydrochloride reached 91.10%.
APA, Harvard, Vancouver, ISO, and other styles
7

Chan, Yu Bin, Mohammod Aminuzzaman, Lai-Hock Tey, Yip Foo Win, Akira Watanabe, Sinouvassane Djearamame, and Md Akhtaruzzaman. "Impact of Diverse Parameters on the Physicochemical Characteristics of Green-Synthesized Zinc Oxide–Copper Oxide Nanocomposites Derived from an Aqueous Extract of Garcinia mangostana L. Leaf." Materials 16, no. 15 (August 2, 2023): 5421. http://dx.doi.org/10.3390/ma16155421.

Full text
Abstract:
Compared to conventional metal oxide nanoparticles, metal oxide nanocomposites have demonstrated significantly enhanced efficiency in various applications. In this study, we aimed to synthesize zinc oxide–copper oxide nanocomposites (ZnO-CuO NCs) using a green synthesis approach. The synthesis involved mixing 4 g of Zn(NO3)2·6H2O with different concentrations of mangosteen (G. mangostana) leaf extract (0.02, 0.03, 0.04 and 0.05 g/mL) and 2 or 4 g of Cu(NO3)2·3H2O, followed by calcination at temperatures of 300, 400 and 500 °C. The synthesized ZnO-CuO NCs were characterized using various techniques, including a UV-Visible spectrometer (UV-Vis), photoluminescence (PL) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD) analysis and Field Emission Scanning Electron Microscope (FE-SEM) with an Energy Dispersive X-ray (EDX) analyzer. Based on the results of this study, the optical, structural and morphological properties of ZnO-CuO NCs were found to be influenced by the concentration of the mangosteen leaf extract, the calcination temperature and the amount of Cu(NO3)2·3H2O used. Among the tested conditions, ZnO-CuO NCs derived from 0.05 g/mL of mangosteen leaf extract, 4 g of Zn(NO3)2·6H2O and 2 g of Cu(NO3)2·3H2O, calcinated at 500 °C exhibited the following characteristics: the lowest energy bandgap (2.57 eV), well-defined Zn-O and Cu-O bands, the smallest particle size of 39.10 nm with highest surface area-to-volume ratio and crystalline size of 18.17 nm. In conclusion, we successfully synthesized ZnO-CuO NCs using a green synthesis approach with mangosteen leaf extract. The properties of the nanocomposites were significantly influenced by the concentration of the plant extract, the calcination temperature and the amount of precursor used. These findings provide valuable insights for researchers seeking innovative methods for the production and utilization of nanocomposite materials.
APA, Harvard, Vancouver, ISO, and other styles
8

Fedorenko, Viktoriia, Roman Viter, Radosław Mrówczyński, Daina Damberga, Emerson Coy, and Igor Iatsunskyi. "Synthesis and photoluminescence properties of hybrid 1D core–shell structured nanocomposites based on ZnO/polydopamine." RSC Advances 10, no. 50 (2020): 29751–58. http://dx.doi.org/10.1039/d0ra04829a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagpal, Keshav, Erwan Rauwel, Elias Estephan, Maria Rosario Soares, and Protima Rauwel. "Significance of Hydroxyl Groups on the Optical Properties of ZnO Nanoparticles Combined with CNT and PEDOT:PSS." Nanomaterials 12, no. 19 (October 10, 2022): 3546. http://dx.doi.org/10.3390/nano12193546.

Full text
Abstract:
We report on the synthesis of ZnO nanoparticles and their hybrids consisting of carbon nanotubes (CNT) and polystyrene sulfonate (PEDOT:PSS). A non-aqueous sol–gel route along with hydrated and anhydrous acetate precursors were selected for their syntheses. Transmission electron microscopy (TEM) studies revealed their spherical shape with an average size of 5 nm. TEM also confirmed the successful synthesis of ZnO-CNT and ZnO-PEDOT:PSS hybrid nanocomposites. In fact, the choice of precursors has a direct influence on the chemical and optical properties of the ZnO-based nanomaterials. The ZnO nanoparticles prepared with anhydrous acetate precursor contained a high amount of oxygen vacancies, which tend to degrade the polymer macromolecule, as confirmed from X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, a relative increase in hydroxyl functional groups in the ZnO-CNT samples was observed. These functional groups were instrumental in the successful decoration of CNT and in producing the defect-related photoluminescence emission in ZnO-CNT.
APA, Harvard, Vancouver, ISO, and other styles
10

Tsai, Yu Sheng, Xin Dai Lin, Wei Lun Chan, Shang Che Tsai, Wei Jen Liao, Yew Chung Sermon Wu, and Hsiang Chen. "Morphological, Material, and Optical Properties of ZnO/ZnS/CNTs Nanocomposites on SiO2 Substrate." Nanomaterials 10, no. 8 (August 4, 2020): 1521. http://dx.doi.org/10.3390/nano10081521.

Full text
Abstract:
Ultraviolet A light (UV-A, 320–400 nm), which is unblockable by sunscreen, requires careful detection for disease avoidance. In this study, we propose a novel photosensing device capable of detecting UV-A. Cancer-causing UV light can be simultaneously monitored with tiny rapid response sensors for a high carrier transition speed. In our research, a multifunctional ZnO/ZnS nanomaterial hybrid-sprinkled carbon nanotube (CNT) was created for the purpose of fabricating a multipurpose, semiconductorbased application. For our research, ZnO nanorods (NRs) were grown by using a facile hydrothermal method on SiO2 substrate, then vulcanized to form ZnO/ZnS coreshell nanorods, which were sprinkled with carbon nanotubes (CNTs). Results indicate that SiO2/ZnO/ZnS/CNT structures exhibited a stronger conducting current with and without light than those samples without CNTs. Multiple material characterizations of the nanostructures, including of atomic force microscopy (AFM) surface morphology evaluation, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicate that CNTs could be successfully spread on top of the ZnO/ZnS coreshell structures. Furthermore, chemical binding properties, material crystallinity, and optical properties were examined by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and photoluminescence (PL). Owing to their compact size, simple fabrication, and low cost, ZnO/ZnS coreshell NRs/CNT/SiO2-based nanocomposites are promising for future industrial optoelectronic applications.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Photoluminescence - ZnO based Nanocomposites"

1

Bano, Nargis. "Fabrication and Characterization of ZnO Nanorods Based Intrinsic White Light Emitting Diodes (LEDs)." Doctoral thesis, Linköpings universitet, Fysik och elektroteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71829.

Full text
Abstract:
ZnO material based hetero-junctions are a potential candidate for the design andrealization of intrinsic white light emitting devices (WLEDs) due to several advantages overthe nitride based material system. During the last few years the lack of a reliable andreproducible p-type doping in ZnO material with sufficiently high conductivity and carrierconcentration has initiated an alternative approach to grow n-ZnO nanorods (NRs) on other ptypeinorganic and organic substrates. This thesis deals with ZnO NRs-hetero-junctions basedintrinsic WLEDs grown on p-SiC, n-SiC and p-type polymers. The NRs were grown by thelow temperature aqueous chemical growth (ACG) and the high temperature vapor liquid solid(VLS) method. The structural, electrical and optical properties of these WLEDs wereinvestigated and analyzed by means of scanning electron microscope (SEM), current voltage(I-V), photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL) anddeep level transient spectroscopy (DLTS). Room temperature (RT) PL spectra of ZnOtypically exhibit one sharp UV peak and possibly one or two broad deep level emissions(DLE) due to deep level defects in the bandgap. For obtaining detailed information about thephysical origin, growth dependence of optically active defects and their spatial distribution,especially to study the re-absorption of the UV in hetero-junction WLEDs structure depthresolved CL spectroscopy, is performed. At room temperature the CL intensity of the DLEband is increased with the increase of the electron beam penetration depth due to the increaseof the defect concentration at the ZnO NRs/substrate interface. The intensity ratio of the DLEto the UV emission, which is very useful in exploring the origin of the deep level emissionand the distribution of the recombination centers, is monitored. It was found that the deepcenters are distributed exponentially along the ZnO NRs and that there are more deep defectsat the root of ZnO NRs compared to the upper part. The RT-EL spectra of WLEDs illustrateemission band covering the whole visible range from 420 nm and up to 800 nm. The whitelightcomponents are distinguished using a Gaussian function and the components were foundto be violet, blue, green, orange and red emission lines. The origin of these emission lines wasfurther identified. Color coordinates measurement of the WLEDs reveals that the emitted lighthas a white impression. The color rendering index (CRI) and the correlated color temperature(CCT) of the fabricated WLEDs were calculated to be 80-92 and 3300-4200 K, respectively.
APA, Harvard, Vancouver, ISO, and other styles
2

Doddapaneni, Venkatesh. "On the polymer-based nanocomposites for electrical switching applications." Doctoral thesis, KTH, Tillämpad fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202702.

Full text
Abstract:
Recent research demonstrated that polymer based nanocomposites (PNCs) have been engineered in order to improve the arc interruption capability of the circuit breakers. PNCs are the combination of nano-sized inorganic nanoparticles (NPs) and polymers, opened up new developments in materials science and engineering applications. Inorganic NPs are selected based on their physical and chemical properties which could make multifunctional PNCs in order to interrupt the electrical arcs effectively. In particular, we presented the PNCs fabricated by using CuO, Fe3O4, ZnO and Au NPs in a poly (methyl methacrylate) (PMMA) matrix via in-situ polymerization method, recently developed method to avoid NPs agglomeration, leading to good spatial distribution in the polymer matrix. Thus, several samples with various wt% of NPs in PMMA matrix have been fabricated. These PNCs have been characterized in detail for the morphology of NPs, interaction between NPs and polymer matrix, and radiative/thermal energy absorption properties. In the next stage, PNCs are tested to determine their arc interruption performance and impact on the electrical arcs of current 1.6 kA generated using a specially designed test set-up. When PNCs interact with the electrical arcs, they generate ablation of chemical species towards core of the electrical arc, resulting in cooling-down the arc due to strong temperature and pressure gradient in the arc quenching domain. This thesis demonstrates for the first time that these engineered PNCs are easily processed, reproducible, and can be used to improve the arc interruption process in electrical switching applications.
Ny forskning har visat att polymerbaserade nanokompositer (PNCs) har utformats för att förbättra strömbrytares förmåga att undvika ljusbågar vid överslag. PNCs är en kombination av nanostora oorganiska nanopartiklar (NP) och polymerer, som har öppnat upp för ny utveckling inom materialvetenskap och tekniska tillämpningar. Oorganiska NP väljs baserat på deras fysikaliska och kemiska egenskaper som kan hjälpa PNCs att motverka elektriska ljusbågar effektivt. I synnerhet, presenterade vi PNCs tillverkade genom användning av CuO, Fe3O4, ZnO och Au NP i en poly (metylmetakrylat) (PMMA)-matris via in situ-polymerisationsmetod, nyligen utvecklad för att undvika NP-agglomerering, vilket leder till god rumslig fördelning i polymermatrisen. Därför har flera prover med olika vikt% av NP i PMMA-matris tillverkats. Dessa PNCs har utvärderats i detalj för NP-morfologi, interaktion mellan NP och polymermatris, och strålnings- och värmeenergiabsorption. I nästa skede testas PNCs för att bestämma deras förmåga att undvika ljusbågar och påverkan på de elektriska ljusbågarna av 1,6 kA strömstyrka, genererade med hjälp av en specialdesignad test-set-up. När PNCs interagerar med de elektriska ljusbågarna, genererar de ablation av kemiska ämnen mot kärnan i den elektriska ljusbågen, vilket resulterar i nedkylning av ljusbågen på grund av starka temperatur- och tryckgradienter i området. Denna avhandling visar för första gången att dessa konstruerade PNCs är lätta att framställa, reproducerbara, och kan användas för att förbättra avbrottsprocessen för ljusbågen i elektriska kopplingstillämpningar.

QC 20170303

APA, Harvard, Vancouver, ISO, and other styles
3

Jiao, Mingzhi. "Microfabricated Gas Sensors Based on Hydrothermally Grown 1-D ZnO Nanostructures." Doctoral thesis, Uppsala universitet, Mikrosystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320183.

Full text
Abstract:
In this thesis, gas sensors based on on-chip hydrothermally grown 1-D zinc oxide (ZnO) nanostructures are presented, to improve the sensitivity, selectivity, and stability of the gas sensors. Metal-oxide-semiconductor (MOS) gas sensors are well-established tools for the monitoring of air quality indoors and outdoors. In recent years, the use of 1-D metal oxide nanostructures for sensing toxic gases, such as nitrogen dioxide, ammonia, and hydrogen, has gained significant attention. However, low-dimensional nanorod (NR) gas sensors can be enhanced further. Most works synthesize the NRs first and then transfer them onto electrodes to produce gas sensors, thereby resulting in large batch-to-batch difference. Therefore, in this thesis six studies on 1-D ZnO NR gas sensors were carried out. First, ultrathin secondary ZnO nanowires (NWs) were successfully grown on a silicon substrate. Second, an on-chip hydrothermally grown ZnO NR gas sensor was developed on a glass substrate. Its performance with regard to sensing nitrogen dioxide and three reductive gases, namely, ethanol, hydrogen, and ammonia, was tested. Third, three 1-D ZnO nanostructures, namely, ZnO NRs, dense ZnO NWs, and sparse ZnO NWs, were synthesized and tested toward nitrogen dioxide. Fourth, hydrothermally grown ZnO NRs, chemical vapor deposited ZnO NWs, and thermal deposited ZnO nanoparticles (NPs) were tested toward ethanol. Fifth, the effect of annealing on the sensitivity and stability of ZnO NR gas sensors was examined. Sixth, ZnO NRs were decorated with palladium oxide NPs and tested toward hydrogen at high temperature. The following conclusions can be drawn from the work in this thesis: 1) ZnO NWs can be obtained by using a precursor at low concentration, temperature of 90 °C, and long reaction time. 2) ZnO NR gas sensors have better selectivity to nitrogen dioxide compared with ethanol, ammonia, and hydrogen. 3) Sparse ZnO NWs are highly sensitive to nitrogen dioxide compared with dense ZnO NWs and ZnO NRs. 4) ZnO NPs have the highest sensitivity to ethanol compared with dense ZnO NWs and ZnO NRs. The sensitivity of the NPs is due to their small grain sizes and large surface areas. 5) ZnO NRs annealed at 600 °C have lower sensitivity toward nitrogen dioxide but higher long-term stability compared with those annealed at 400 °C. 6) When decorated with palladium oxide, both materials form alloy at a temperature higher than 350 °C and decrease the amount of ZnO, which is the sensing material toward hydrogen. Thus, controlling the amount of palladium oxide on ZnO NRs is necessary.
APA, Harvard, Vancouver, ISO, and other styles
4

Sturm, Chris. "Exciton-Polaritons in ZnO-based Microresonators: Dispersion and Occupation." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-77759.

Full text
Abstract:
Die vorliegende Arbeit behandelt die Dispersion von Exziton-Polaritonen in ZnO-basierten Mikroresonatoren, welche zum einen theoretisch bezüglich der Eigenschaften der reinen Kavitätsmoden und zum anderen experimentell mittels Photolumineszenz-Spektroskopie und Reflektionsmessungen untersucht wurden. Dabei wird besonders auf die Rolle der linearen Polarisation sowie auf die Besetzung der Exziton-Polaritonen-Zustände eingegangen. Dies ist von Interesse, da diese Mikroresonatoren vielversprechende Kandidaten für die Realisierung eines Exziton-Polariton Kondensates sind, welches ähnliche Eigenschaften wie das klassische Bose-Einstein Kondensat besitzt. Die Eigenschaften der Exzitonen-Polaritonen werden durch die der beteiligten ungekoppelten Exzitonen und Photonen bestimmt. Im Falle der Photonen hängen diese stark von der linearen Polarisation ab, da es sich bei der ZnO-Kavität um ein optisch anisotropes Material handelt. Mittels einer entwickelten Näherung für die Berechnung der Kavitätsmoden, welche die optische Anisotropie der Kavität sowie die endliche Ausdehnung der Spiegel berücksichtigt, konnte gezeigt werden, dass im Falle der hier verwendeten ZnO-Kavität die optische Anisotropie zu einer Reduktion der Energieaufspaltung zw. der s- und p-polarisierten Mode im sichtbaren Spektralbereich führt. Der allgemeine Fall einer optisch anisotropen Kavität wird ebenfalls diskutiert. In den untersuchten ZnO-basierten Mikroresonatoren konnte eine starke Wechselwirkung zwischen Exzitonen und Photonen bis zu einer Temperatur von T = 410 K beobachten werden. Dabei wurde eine maximale Kopplungsstärke von 55 meV bei T = 10 K ermittelt. Anhand des beobachteten Verlaufs der Dispersion der Exziton-Polaritonen konnten in einem Mikroresonator Hinweise für eine zusätzliche Kopplung zwischen gebundenen Exzitonen und Photonen gefunden werden. Des Weiteren zeigte die Dispersion der Exziton-Polaritonen eine starke Polarisationsabhängigkeit. Eine maximale Energieaufspaltung des unteren Zweiges für die beiden linearen Polarisationen von 6 meV bei einem starken negativen Detuning von -70 meV wurde beobachtet. Es wird gezeigt, dass diese hohe Energieaufspaltung einen großen Einfluss auf die Besetzung der Zustände der Exziton-Polaritonzweige hat. Unter Verwendung verschiedener Anregungsleistungen und einer keilartigen Kavität wurde der Einfluss des Detunings systematisch auf die Besetzung der Exziton-Polaritonzustände untersucht und diskutiert. Es konnte eine Voraussage für den optimalen Detuning – Temperaturbereich für eine mögliche Kondensation getroffen werden. Erste Beobachtungen eines Kondensates in einem der Resonatoren bestätigen die Ergebnisse der vorliegenden Arbeit.
APA, Harvard, Vancouver, ISO, and other styles
5

Franke, Helena. "PLD-grown ZnO-based Microcavities for Bose–Einstein Condensation of Exciton-Polaritons." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-98174.

Full text
Abstract:
Die vorliegende Arbeit behandelt die Herstellung und optische Untersuchung von Halbleiterheterostrukturen, genauer Mikrokavitäten, in denen ein Bose–Einstein Kondensat (BEK) von sogenannten Exziton-Polaritonen im Festkörper erzeugt und beobachtet werden soll. Diese Strukturen bestehen aus zwei hochreflektierenden Braggspiegeln (BS) und einer ZnO-Kavität als aktivem Material. Zunächst wurde die Abscheidung der BS hinsichtlich genauer Schichtdickenkontrolle und Reproduzierbarkeit verbessert. Um Kavitätsschichten hinreichender Qualität herzustellen, wurden mehrere Ansätze zur Optimierung dieser planaren Schichtabscheidung mittels gepulster Laserdeposition verfolgt. Dabei kamen Techniken, wie das Ausheizen der Proben oder deren Glättung durch Ionenstrahlbeschuß zum Einsatz, um die elektronischen Eigenschaften bzw. die Oberflächen der Kavitätsschichten erheblich zu verbessern. Desweiteren wurde erfolgreich ein Verfahren entwickelt, freistehende, nahezu einkristalline ZnO-Nanodrähte mit Braggspiegeln zu ummanteln. Alle hergestellten Strukturen wurden in ihren strukturellen Eigenschaften, speziell hinsichtlich ihrer Rauhigkeit und Kristallinität, verglichen und mittels orts- und/oder winkelaufgelöster Photolumineszenzspektroskopie sowie Reflexionsmessungen bezüglich ihrer optischen Eigenschaften untersucht. Dabei konnte in fast allen Proben die starke Kopplung, welche die Grundlage für ein BEK darstellt, gezeigt werden. Hinweise für eine höhere Kopplungsstärke in den Nanodraht-basierten Mikrokavitäten wurden gefunden. Der Nachweis von BEK bis nahe Raumtemperatur gelang an der vielversprechendsten planaren Probe, die einen Qualitätsfaktor von ca. 1000 aufweist. Die Eigenschaften des BEK wurden für verschiedene Temperaturen und Detunings untersucht. Es hat sich gezeigt, daß ein negatives Detuning unerläßlich für die Bildung eines BEK in ZnO-basierten Mikrokavitäten ist. Die Impulsraumverteilung der Kondensat-Polaritonen läßt auf ausgeprägte dynamische Eigenschaften dieser Teilchen bei tiefen Temperaturen schließen
The present work covers the fabrication and optical investigation of semiconductor microcavities for Bose–Einstein condensation (BEC) of exciton-polaritons. These microcavities consist of highly reflective distributed Bragg reflectors (DBR) surrounding a ZnO-cavity as active medium. In the first step, the growth of DBRs was optimised with respect to exact thickness control and high reproducibility. For the active material, several growth strategies have been pursued, in order to optimise the conditions for the growth of planar thin films by pulsed laser deposition. Techniques like annealing or ion beam smoothing were successfuly applied in order to either improve the electronic properties or decrease the roughness of the ZnO-cavity layer. Furthermmore, a successful technology was developed in order to coat highly-crstalline free-standing ZnO nanowires with concentrical DBR shells. All samples have been investigated regarding their roughness and crystallinity as well as their optical properties. For the latter spatially and/or angular-resolved photoluminescence spectroscopy and reflection measurements have been carried out. Thereby, the strong coupling regime – being prerequisite for BEC – could be demonstrated in almost all of the synthesized structures. For the nanowire-based microcavities hints for an enhanced coupling strength have been found. In one of the planar samples, showing the high quality factor of 1000, the formation of BEC almost up to room temperature was observed and was studied as a function of temperature and detuning. Negative detuning was found to be mandatory for the formation of a BEC in ZnO-based microcavities. The distinct momentum- respective in-plane wavevector distribution of the condensate polaritons revealed a strong dynamic character of these particles at low temperatures
APA, Harvard, Vancouver, ISO, and other styles
6

Shen, Xiu-Ru, and 沈秀如. "Light-Emitting Diodes Based On p-GaN/n-ZnO Nanorods-Carbon Dots Nanocomposites Prepared by the Hydrothermal Method." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/ft5m53.

Full text
Abstract:
碩士
國立臺灣海洋大學
光電科學研究所
105
The p-GaN/n-ZnO nanorods light-emitting diodes (LEDs) with near-ultraviolet electroluminesce (EL) based on ZnO:carbon dots composites were realized. The emission intensity can be tuned by adjusting the concentrations of carbon dots in the precursors of ZnO NRs. The enhanced light output power of energy efficient p-GaN/n-ZnO composite nanorods LEDs reported here can be possibly attributed to the important role of carbon dots in ZnO/carbon dots composite nanorods acting as a conducting network in the ZnO active matrix that leads to the surface plasmon(SP) enhanced light emission and the improved electrical conductivity. Our work proposed a simple route to fabricate efficient near-ultraviolet LEDs assisted by additions of carbon dots.
APA, Harvard, Vancouver, ISO, and other styles
7

Islam, Sk Emdadul, and 安柏卓. "Wet chemical synthesis of ZnO and transition metal dichalcogenide based low-dimensional nanocomposites for highly efficient photocatalytic activity." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8gf9s3.

Full text
Abstract:
博士
國立中山大學
材料與光電科學學系研究所
107
This dissertation describes the synthesis of low-dimensional nanostructures via a series of facile aqueous solution methods at low temperature (<2000C). We started with the fabrication of vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates by a single-step aqueous solution method. In order to strengthen photoluminescence (PL) property, ZnO nanorod arrays were annealed at various temperature. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions, this eventually leads to the understanding of the optimum annealing condition to achieve enhanced optical properties. Some important findings were found from the PL study, for example, the enhancement of NBE is due to the activation of radiative recombinations associated to hydrogen donors (Ho), and the reduction of visible emission is mainly because of the annihilation of OH groups from the ZnO surface. This interesting finding motivated us to synthesis ZnO hybrids so that we can exploit its promising optical properties in the photocatalysis application under UV or visible light illumination. Next, the plasmonic Au nanoparticles were deposited on the ZnO nanorod arrays to fabricate a noble metal/semiconductor hybrid structures. Interestingly, this Au/ZnO platform exhibits amazing UV-Vis photocatalytic activity alongside the strong luminescent properties. The visible-light active photocatalysis is assisted by localized surface plasmon resonance (LSPR) excitations while the strong absorption and charge separation under UV irradiation is responsible for enhanced catalytic performance. Besides, the enhancement in optical properties is mainly due to local field enhancement effect and the coupling between exciton and LSPR. For the first time, we showed that the plasmonic enhancement of photocatalytic performance is not necessarily a trade-off for enhanced near-band-edge emission in Au/ZnO. The excellent emission property and photocatalytic activity results motivated us to combine low-dimensional ZnO nanostructures with some earth-abundant two-dimensional (2D) materials as a replacement of expensive noble metals. Thus, we prepared heterodimensional nanostructures of 2D ultrathin MoS2 nanosheets interspersed with ZnO nanoparticles by using a facile two-step method. Foremost sonication-aided liquid phase exfoliation technique (LPE) was used to exfoliate ultrathin MoS2 nanosheets in ethanol/water solvent, subsequently a wet chemical process was employed to realize interspersion of ZnO nanoparticles onto the MoS2 surface. In this case, ultra-thin MoS2 nanosheets acted as the support for the nucleation of various concentrated small ZnO dots. The photocatalytic activity of the ZnO/MoS2 nanocomposites was performed with organic dye pollutants and tetracycline, a common antibiotic, as a model compound under visible-light irradiation. We found extremely high catalytic efficiency with these composites under visible light, where the reaction rate of pollutant degradation is about eight times higher than those of commercial P25-TiO2 photocatalysts. This outstanding photocatalytic activity of the heterodimensional hybrids results from the synergetic effects of ZnO and MoS2. Most importantly, the heterojunction formation between ZnO and MoS2 facilitates the separation of photogenerated active charge carriers, leading to the enhancement of photocatalytic performance. Moreover, a tentative mechanism for photocatalytic degradation was proposed in this report, which can provide valuable insights for the exploration of cost-effective nanoscale hybrids constructed from atomically thin layered materials. Finally, we have synthesized mesoporous C-ZnO nanostructured via a facile one-step hydrothermal process, and then liquid-exfoliated 2D MoS2 nanosheets were integrated with the C-ZnO through simple thermal treatment to obtain C-ZnO@MoS2 composites. The photocatalytic activity was evaluated under visible light irradiation and we found the significant enhancement in photodegradation of organic dye molecules by the introduction of MoS2 nanosheet on C-ZnO. Such a significant photoactivity could be attributed to the MoS2 nanosheets that strengthen the visible-light absorption to create the electrons and holes in the system and their favourable separation occur by the electron transaction between ZnO, and MoS2. The synergistic effect between carbon, MoS2 and ZnO makes C-ZnO@MoS2 composites a suitable visible-light driven photocatalyst.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photoluminescence - ZnO based Nanocomposites"

1

Zahmouli, N., S. G. Leonardi, A. Bonavita, M. Hjiri, L. El Mir, Nicola Donato, and G. Neri. "High Performance VOCs Sensor Based on ɣ-Fe2O3/Al-ZnO Nanocomposites." In Lecture Notes in Electrical Engineering, 25–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04324-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pyrz, Ryszard. "Optical and Piezoelectric Properties of ZnO Nanowires and Functional Polymer-Based Nanocomposites." In Frontiers in Materials Science and Technology, 107–10. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-475-8.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Halder, Nripendra N., Sanjay Kumar Jana, Pranab Biswas, D. Biswas, and P. Banerji. "Fabrication of n-ZnO/p-GaAs Heterojunction and Prediction of Its Luminescence Based on Photoluminescence Study." In Physics of Semiconductor Devices, 815–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Jung Hwan, Young-Don Ko, Min-Chang Jeong, Jae-Min Myoung, and Ilgu Yun. "PCA-Based Neural Network Modeling Using the Photoluminescence Data for Growth Rate of ZnO Thin Films Fabricated by Pulsed Laser Deposition." In Advances in Neural Networks - ISNN 2006, 1099–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11760191_160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goswami, Lalit, Anamika Kushwaha, Shivani Goswami, Yogesh Chandra Sharma, TaeYoung Kim, and Kumud Malika Tripathi. "Nanocarbon-based-ZnO nanocomposites for supercapacitor application." In Nanostructured Zinc Oxide, 553–73. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-818900-9.00008-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Graphene-Based ZnO Nanocomposites for Supercapacitor Applications." In Graphene as Energy Storage Material for Supercapacitors, 181–208. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900550-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saraswat, Vibhav K. "ZnO nanofillers–based polymer and polymer blend nanocomposites." In Nanostructured Zinc Oxide, 157–86. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-818900-9.00023-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Díez-Pascual, Ana M. "Biodegradable food packaging nanocomposites based on ZnO-reinforced polyhydroxyalkanoates." In Food Packaging, 185–221. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-804302-8.00006-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Basnet, Parita, and Somenath Chatterjee. "Biogenic synthesis of Ag-ZnO nanocomposites: Characterization, mechanisms, and applications." In Zinc-Based Nanostructures for Environmental and Agricultural Applications, 13–36. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822836-4.00017-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ge, Hui, Weixing Wang, Lichun Huang, Mingxing Tang, and Zhenyu Ge. "The Relation of Ni/ZnO Nano Structures With Properties of Reactive Adsorption Desulfurization." In Nanocomposites for the Desulfurization of Fuels, 134–67. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2146-5.ch005.

Full text
Abstract:
Ni/ZnO nano-sorbent systems have been extensively used in the reactive adsorption desulfurization (RADS) of gasoline steams, especially in China, to meet the more rigorous regulation on the sulfur content. The apparent advantage of RADS is that most of the olefins are kept in the product with low consumption of hydrogen and little loss of octane. The authors discussed in this chapter the relation of catalytic properties with components and structures of Ni/ZnO sorbent. Based on detailed characterization and reaction results, they revealed the dynamic change of Ni/ZnO sorbents during RADS, the mechanisms of desulfurization, and the sulfur transfer and sulfur adsorption. Apart from the RADS of Ni/ZnO nano-sorbent for cleaner gasoline production, they also presented other potential applications.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photoluminescence - ZnO based Nanocomposites"

1

Ruban, Y., N. Shpyrka, O. Pareniuk, M. Galat, M. Savchuk Taran, L. Ishchenko, V. Malienko, et al. "BLV leucosis biosensor based on ZnO nanorods photoluminescence." In 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2017. http://dx.doi.org/10.1109/elnano.2017.7939779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Yingjun, Kenneth J. Loh, and Donghee Chang. "Piezoelectric and Mechanical Performance Characterization of ZnO-Based Nanocomposites." In 19th Analysis and Computation Specialty Conference. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41131(370)11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nair, Manjula G., Meenakshi Malakar, Saumya R. Mohapatra, and Avijit Chowdhury. "Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Halder, Nripendra N., Sanjay K. Jana, Pranab Biswas, P. Banerji, and D. Biswas. "Photoluminescence study based prediction on visible luminescence from n-Zno/p-GaAs heterojunction." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Jubimol, Deepu D.R, Rajesh C S, aswathy g, C. S. Kartha, GODFREY LOUIS, and Vijayakumar K P. "Photoluminescence Based Investigations Of Precursor Related Impacts On Silver Doped ZnO Thin Films." In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/photonics.2016.w3a.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klini, Argyro, Emmanouella Christaki, Evangelia Vasilaki, Vassilios Binas, Emmanouil Gagaoudakis, and Maria Vamvakaki. "Room temperature sensing of ozone in ppb level, based on the Photoluminescence of ZnO." In Optical Sensing and Detection VII, edited by Francis Berghmans and Ioanna Zergioti. SPIE, 2022. http://dx.doi.org/10.1117/12.2624420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Youssef, Ahmed, and Islam EL-Nagar. "Preparation and Characterization of PMMA Nanocomposites Based On Zno-Nps for Antibacterial Packaging Applications." In The 5th World Congress on New Technologies. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icnfa19.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guan, Huanan, Jialiang Jiang, Dandan Chen, Wei Wang, Yan Wang, and Jiaying Xin. "Acetylcholinesterase biosensor based on chitosan/ZnO nanocomposites modified electrode for amperometric detection of pesticides." In 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abdul-kareem, Asma Abdulgader, Noura AlSanari, Amal Daifallah, Radwa Mohamed, Jolly Bhadra, Deepalekshmi Ponnamma, and Noora Al-Thani. "Piezoelectric Nanogenerators based on Pvdf-Hfp/Zno Mesoporous Silica Nanocomposites for Self-Powering Devices." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0054.

Full text
Abstract:
Due to the rising global concern over energy catastrophe and environmental issues, attention has been diverted towards future energy. In recent times, rechargeable power and renewable energy sources have been considered as an attractive substitute for resolving the future environmental problems. Among them, mechanical energy is one of the most abundant energy sources, and easily transformable to other useful energy forms, such as electrical energy. For such purposes, piezoelectric materials with ability to convert the mechanical energy generated by various activities into electrical energy. In this research work, we have investigated the morphology, structure and piezoelectric performances of neat polyvinylidene fluoride hexafluoropropylene (PVDF-HFP), PVDF-HFP/ZnO, PVDFHFP/ Mesoporous silica, PVDF-HFP 1% and PVDF-HFP 3% ZnO-Mesoporous silica nanofibers, fabricated by electrospinning. Both SEM and TEM images of ZnO nanoparticles shows formation of uniform flake of about 5nm diameter and Mesoporous silica shows uniform spherical morphology with average diameter of 5 μm. EDX plot justifies the presences of Zn, O and Si. An increase in the amount of crystalline β-phase of PVDF-HFP has been observed with the introduction of ZnO and mesoporous silica in the PVDF-HFP matrix are observed in FTIR spectra. All the XRD peaks observed in neat PVDF has the strongest intensity compared to rest of the other XRD peaks of polymer nanocomposite. The XRD spectra of all the nanocomposites have peaks at 17.8°, 18.6° correspond to α- crystalline phase, the peaks observed at 19°, 20.1° correspond to the γ- crystalline phase, and the peak at 20.6° corresponds to the β- crystalline phase. The flexible nanogenerator manipulated from the polymer nanocomposite with 1% ZnO-Mesoporous silica exhibits an output voltage as high as 2 V compared with the neat PVDF-HFP sample (~120 mV). These results indicate that the investigated nanocomposite is appropriate for fabricating various flexible and wearable self-powered electrical devices and systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Dalapati, Pradip, Eric Weikum, Georges Beainy, Enrico Di Russo, Jonathan Houard, Simona Moldovan, Angela Vella, et al. "Polarization-resolved photoluminescence study of an atom probe tip containing a ZnO-(Mg,Zn)O heterostructure." In Oxide-based Materials and Devices XIII, edited by Ferechteh H. Teherani and David J. Rogers. SPIE, 2022. http://dx.doi.org/10.1117/12.2614670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography