Academic literature on the topic 'Photolithography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photolithography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photolithography"

1

Fang, Yuanxuan, and Yunfei He. "Resolution technology of lithography machine." Journal of Physics: Conference Series 2221, no. 1 (May 1, 2022): 012041. http://dx.doi.org/10.1088/1742-6596/2221/1/012041.

Full text
Abstract:
Abstract Photolithography is one of the core methods in the semiconductor industry for the mass production of integrated circuits (IC). It is also the driving force behind Moore’s Law, which predicts the number of transistors in an integrated circuit to double every two years. This paper aims to overview the photolithography process and its current situations, starting with the rationale behind it and its advantages. We review the photolithography process in individual steps and gave typical process parameters when applicable. Then we introduce the major photolithography system manufacturers of interest, followed by an overview of techniques used to improve the resolution of photolithographic systems, namely immersion lithography, Extreme-Ultraviolet (EUV) lithography, and Resolution Enhancement Techniques (RETs). Finally we discuss the challenges encountered in lithography technology.
APA, Harvard, Vancouver, ISO, and other styles
2

Zeng, Ailin. "The Development of Photolithographic Technology and Machines." SHS Web of Conferences 163 (2023): 03021. http://dx.doi.org/10.1051/shsconf/202316303021.

Full text
Abstract:
Photolithography is the most complicated, accurate, expensive process in the manufacture of integrated circuits. The lithography machine is one of the most critical equipment in photolithographic process, which is used to duplicate the circuit construction onto the wafer. DUVL is the dominant photolithography technology at present for technology node among 714nm, while EUVL has been applied in the manufacture of semiconductor devices for the technology node beyond 7nm. The main components of EUVL are light source, objective lens system and countertop. This paper will introduce the function, main components, exposure method, light source and the future development of lithographic technology.
APA, Harvard, Vancouver, ISO, and other styles
3

Ouyang, Shihong, Yingtao Xie, Dongping Wang, Dalong Zhu, Xin Xu, Te Tan, and Hon Hang Fong. "Surface Patterning of PEDOT:PSS by Photolithography for Organic Electronic Devices." Journal of Nanomaterials 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/603148.

Full text
Abstract:
Along with the development of organic electronics, conductive polymer of PEDOT:PSS has been attracting more and more attention because they possess various novel electrical, optical, and mechanical properties, which render them useful in modern organic optoelectronic devices. Due to its organic nature, it is lightweight and can be fabricated into flexible devices. For better device processing and integrating, it is essential to tune their surface morphologies, and photolithography is the best choice at present. In this paper, current PEDOT:PSS patterning approaches using photolithography are reviewed, and some of our works are also briefly introduced. Appropriate photolithographic patterning process for PEDOT:PSS will enable its application in future organic electronics.
APA, Harvard, Vancouver, ISO, and other styles
4

Nam, Jiyoon, Youngjoo Lee, Chang Su Kim, Hogyoung Kim, Dong-Ho Kim, and Sungjin Jo. "Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources." Journal of Nanomaterials 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/3613928.

Full text
Abstract:
We demonstrate a compact amorphous silicon (a-Si) solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.
APA, Harvard, Vancouver, ISO, and other styles
5

MANSURIPUR, MASUD, and RONGGUANG LIANG. "Projection Photolithography." Optics and Photonics News 11, no. 2 (February 1, 2000): 36. http://dx.doi.org/10.1364/opn.11.2.000036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suwandi, Dedi, Yudan Whulanza, and Jos Istiyanto. "Visible Light Maskless Photolithography for Biomachining Application." Applied Mechanics and Materials 493 (January 2014): 552–57. http://dx.doi.org/10.4028/www.scientific.net/amm.493.552.

Full text
Abstract:
Maskless photolithograpy is an alternative method of conventional UV photolithograpy for microfabrication since its advantages of time and cost saving. For this reason, a visible-light based maskless photolithograpy is proposed as a part of biomachining process. Modification of the method is done by replacing light source of UV light to visible light, utilizing commercial DLP projector and changing the material removal process that generally uses echant with biomachining process. The process was done by using the profile generated by computer then displayed through a commercial DLP projector shining speciment test. Focusing lens placed under the projector to draw the focal point and reduces the size of the profile. The best parameter was determined by setring exposure time, developing time, variation profiles, focusing, colors combination and optical aspect. Using a commercial projector maskless photolithography on a negative resist tone successfully performed. The best characteristic was obtained by placing the focusing lens 3X magnification within 3 cm below the projector and 14 cm above speciment test, color combination of black-light blue (R = 0, G = 176, B = 240), with the timing of prebake 1 minute, exposure 7 minutes, postbake 5 minutes, developing 5 minutes produces the smallest profile 166 μm with 13,7 μm deviation. Biomachining process with bacteria Acidithiobacillus ferrooxidans NBRC 14262 on copper was also successfully performed with the smallest profile of 180 μm with 26 μm deviation.
APA, Harvard, Vancouver, ISO, and other styles
7

Md Nor, Mohammad Nuzaihan, Uda Hashim, Taib Nazwa, and A. Rahim Ruslinda. "Fabrication of Poly-Si Nanowire Using Conventional Photolithography Technique." Advanced Materials Research 925 (April 2014): 460–63. http://dx.doi.org/10.4028/www.scientific.net/amr.925.460.

Full text
Abstract:
A simple method for the fabrication of polycrystalline silicon (poly-si) nanowires using conventional photolithography combined with thermal oxidation-size reduction method is presented. In our process, a polysilicon layer is deposited by low pressure chemical vapour deposition technique on SiO2 layer. Conventional photolithograpy is used to define the initial poly-si of dimensions 1 um. In order to miniaturize microwire to nanowire, size reduction method is employed using several time of dry thermal oxidation process. The characterization that is applied to measure the profile of poly-si nanowires using optical microscopy.
APA, Harvard, Vancouver, ISO, and other styles
8

SHR, ARTHUR, ALAN LIU, and PETER CHEN. "A HEURISTIC SCHEDULING APPROACH TO THE DEDICATED MACHINE CONSTRAINT." International Journal on Artificial Intelligence Tools 17, no. 02 (April 2008): 339–53. http://dx.doi.org/10.1142/s0218213008003923.

Full text
Abstract:
The constraint of having a dedicated machine for the photolithography process in semiconductor manufacturing is a new challenge introduced in photolithography machinery due to natural bias. With dedicated machine constraint, the wafer lots passing through each photolithography process have to be processed by the same machine. The purpose of the limitation is to prevent the natural bias of the photolithography machine. However, much research proposed by previous researchers did not discuss the dedicated photolithography machine constraint. In this paper, we propose the Load Balancing (LB) scheduling approach based on a Resource Schedule and Execution Matrix (RSEM) framework to tackle the constraint. The proposed LB approach schedules each wafer lot at the first photolithography stage to a suitable machine according to the load factor of these photolithography machines. We describe the LB approach and the construction process of the RSEM framework. We also present an example to demonstrate our approach and simulation results to validate our approach.
APA, Harvard, Vancouver, ISO, and other styles
9

Fourkas, John T., and John S. Petersen. "2-Colour photolithography." Physical Chemistry Chemical Physics 16, no. 19 (2014): 8731. http://dx.doi.org/10.1039/c3cp52957f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goodman, Douglas S., and Janusz Wilczynski. "Photolithography illumination needs." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 239, no. 3 (September 1985): 403–5. http://dx.doi.org/10.1016/0168-9002(85)90012-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Photolithography"

1

Mosher, Lance Adams. "Double-exposure gray-scale photolithography." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8592.

Full text
Abstract:
Thesis (M.S.) -- University of Maryland, College Park, 2008.
Thesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
2

Cothrel, Helen M. "Photolithography for the Investigation of Nanostructures." Ohio University Honors Tutorial College / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1429719171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jeffries, James R. "Construction implications of photolithography equipment design /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Comeau, Benita M. "Fabrication of tissue engineering scaffolds using stereolithography." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/26564.

Full text
Abstract:
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Henderson, Clilfford; Committee Member: Ludovice, Peter; Committee Member: Meredith, Carson; Committee Member: Prausnitz, Mark; Committee Member: Rosen, David; Committee Member: Wang, Yadong. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
5

Lowe, Jimmy K. L. "Synthesis, properties, and photolithography of polythiophene derivatives." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0019/NQ37728.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wong, Sean Hang Edmond. "Arsenic Trisulfide Inorganic Photoresist for Three-Dimensional Photolithography." [S.l. : s.n.], 2008. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000009084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Salik, Boaz Yariv Amnon. "Spatio-temporal beam synthesis and applications to photolithography /." Diss., Pasadena, Calif. : California Institute of Technology, 1997. http://resolver.caltech.edu/CaltechETD:etd-01172008-101729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leibovici, Matthieu. "Pattern-integrated interference lithography for two-dimensional and three-dimensional periodic-lattice-based microstructures." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54410.

Full text
Abstract:
Two-dimensional (2D) and three-dimensional (3D) periodic-lattice-based microstructures have found multifaceted applications in photonics, microfluidics, tissue engineering, biomedical engineering, and mechanical metamaterials. To fabricate functional periodic microstructures, in particular in 3D, current available technologies have proven to be slow and thus, unsuitable for rapid prototyping or large-volume manufacturing. To address this shortcoming, the new innovative field of pattern-integrated interference lithography (PIIL) was introduced. PIIL enables the rapid, single-exposure fabrication of 2D and 3D custom-modified periodic microstructures through the non-intuitive combination of multi-beam interference lithography and photomask imaging. The research in this thesis aims at quantifying PIIL’s fundamental capabilities and limitations through modeling, simulations, prototype implementation, and experimental demonstrations. PIIL is first conceptualized as a progression from optical interference and holography. Then, a comprehensive PIIL vector model is derived to simulate the optical intensity distribution produced within a photoresist film during a PIIL exposure. Using this model, the fabrication of representative photonic-crystal devices by PIIL is simulated and the performance of the PIIL-produced devices is studied. Photomask optimization strategies for PIIL are also studied to mitigate distortions within the periodic lattice. The innovative field of 3D-PIIL is also introduced. Exposures of photomask-integrated, photomask-shaped, and microcavity-integrated 3D interference patterns are simulated to illustrate the richness and potential of 3D-PIIL. To demonstrate PIIL experimentally, a prototype pattern-integrated interference exposure system is designed, analyzed with the optical design program ZEMAX, and used to fabricate pattern-integrated 2D square- and hexagonal-lattice periodic microstructures. To validate the PIIL vector model, the proof-of-concept results are characterized by scanning-electron microscopy and atomic force microscopy and compared to simulated PIIL exposures. As numerous PIIL underpinnings remain unexplored, research avenues are finally proposed. Future research paths include the design of new PIIL systems, the development of photomask optimization strategies, the fabrication of functional devices, and the experimental demonstration of 3D-PIIL.
APA, Harvard, Vancouver, ISO, and other styles
9

Mack, Chris Alan. "Modeling solvent effects in optical lithography /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kallitsis, Konstantinos. "Chemical modification of fluorinated electroactive polymers." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0094.

Full text
Abstract:
L'électronique organique est une alternative peu coûteuse à l'électronique classique (à base de silicium) qui permet la fabrication de dispositifs flexibles, élargissant le champ d'application de l'électronique au-delà des limites imposées par le silicium. Pour que l'électronique organique trouve des applications plus larges dans le monde réel, trois classes de matériaux doivent être optimisées. Il s’agit des conducteurs, des semi-conducteurs et des diélectriques, qui constituent les trois éléments de tout appareil électronique. Alors que les conducteurs et les semiconducteurs organiques ont attiré une attention particulière au cours des 40 dernières années, la recherche sur des isolants à constante diélectrique élevée et donc de haute performance est en retard. La famille de matériaux isolants organiques ayant la constante diélectrique la plus élevée sont les polymères électroactifs fluorés (FEPS). Les FEPS peuvent être classés en deux groupes différents avec des propriétés électroniques très différentes. Ces groupes sont les ferroélectriques et les férroélectriques relaxeurs. Les polymères ferroélectriques, dont le plus connu est le copolymère P(VDF-TrFE), trouvent des applications dans des dispositifs électroniques tels que les capteurs, les actionneurs, les mémoires non volatiles et les générateurs d'énergie. D'autre part, les polymères relaxeurs-ferroélectriques, dont le système le plus connu est le terpolymère P(VDFTrFE- CTFE), sont des matériaux isolants à haute performance et trouvent, entre autres, une application dans l'électronique comme couches diélectriques, dans des dispositifs tels que les condensateurs, les transistors organiques à effet de champ, les écrans souples et dans des dispositifs de refroidissement électrocaloriques. Bien que les polymères mentionnés ci-dessus soient compatibles avec une grande variété de techniques d’impression, leur compatibilité limitée avec la photolithographie, qui est la méthode de choix pour la production d’électronique à grande échelle, limite leur potentiel de réalisation. L'un des principaux objectifs de cette thèse était de modifier la chimie de ces polymères, de manière à les rendre directement compatibles avec la photolithographie, tout en maintenant leurs propriétés électroniques. Pour ce faire, il a fallu mettre au point une méthode permettant d’introduire des groupes fonctionnels supplémentaires sur les FEP. Cependant, en raison de l’excellente stabilité chimique des polymères fluorés, la mise au point d’un tel procédé était une tâche ardue. Pour contourner cette difficulté, l’idée est d’exploiter l’existence de groupes susceptibles de réagir lors d’une substitution nucléophile sur le squelette du polymère, tout en utilisant des FEPS disponibles dans le commerce. Tout d'abord, des fonctions azotures, connues pour réticuler lors d'une irradiation UV, ont été fixés sur des terpolymères de relaxeur ferroélectrique P(VDF-TrFE-CTFE). Les terpolymères portant ces fonctions ont pu être directement utilisés comme résine photosensible négative dans les procédés de photolithographie classiques et ont conservé une constante diélectrique très élevée. Dans un second temps, pour des raisons de sécurité et de stabilité, une approche plus générale a été développée. Cette approche consiste à greffer des photo-amorceurs de type II (basés sur des arylcétones) sur le relaxeur-ferroélectrique P(VDF-TrFE-CTFE) et le ferroélectrique P(VDF-TrFE). Des polymères exceptionnellement stables ont été obtenus, avec dans certains cas, des propriétés électro-actives bien meilleures que celles des matériaux purs. Ces modifications chimiques nous ont conduits à une étude de cas particulière où des FEP comportant des doubles liaisons (réaction secondaire de la modification chimique) ont montrés une amélioration remarquable des propriétés électro-actives. Cette méthode très simple de fonctionnalisation de FEPs ouvre la voie à de nombreuses avancées dans le domaine
Organic electronics are a low cost alternative to silicon based electronics that nable the fabrication of flexible devices, broadening the scope of electronics beyond the limitations imposed by silicon. For organic electronics to find wider real world applications, three classes of materials have to be optimized. Those classes are conductors, semiconductors and insulators, which are the three building blocks for any electronic device. While organic conductors and semiconductors have attracted significant attention during the past 40 years, research in high dielectric constant and thus high performance insulators is lagging far behind. The class of organic insulating materials with the highest dielectric constant are the Fluorinated Electroactive Polymers (FEPs). FEPs can be categorized in two different groups with vastly different electronic properties. Those groups are the ferroelectrics and the relaxor-ferroelectrics. The ferroelectric polymers, with main representative the copolymer P(VDF-TrFE) find application in electronic devices such as sensors, actuators, non volatile memories and energy generators. On the other hand, relaxorferroelectric polymers, with main representative the P(VDF-TrFE-CTFE) terpolymer are high performance insulating materials and find application in electronics as dielectric layers, in devices such as capacitors, organic field effect transistors, flexible displays and electrocaloric cooling devices amongst others. Although the polymers mentioned above are compatible with a large variety of printing techniques, their limited compatibility with photolithography, which is the method of choice for large throughput electronics production limits their potential of realization. One of the main aims of this thesis was to alter the chemistry of such polymers, in a way that would make them directly compatible with photolithography, while maintaining their desirable electronic properties. To do so, a method allowing the introduction of additional functional groups on FEPs had to be developed. However, due to the excellent chemical stability of fluorinated polymers, developing such a method was a challenging task. The methods developed, use nucleophilic substitution to attach different functional groups on commercially available FEPs by leveraging the existence of groups prone to substitution on the polymer backbone, bypassing the innate chemical stability of such polymers. First, azido groups, known to cross-link upon irradiation with UV light were attached on relaxor ferroelectric P(VDF-TrFE-CTFE) terpolymers. The terpolymers bearing azido groups were directly used as negative photoresists in conventional photolithography process while maintaining a very high dielectric constant. Second, due to safety and stability issues, a more general approach was followed, consisting in grafting type II photoinitiators (based on aryl ketones) on the relaxorferroelectric P(VDF-TrFE-CTFE) and the ferroelectric P(VDF-TrFE) polymers. In those cases exceptionally stable polymers were obtained, with in some cases improved electroactive properties as compared to the pristine materials. These chemistries led us to an extraordinary case study, where FEPs bearing unsaturation were showing remarkable enchancement in electroactive properties. his very simple method of functionalizing FEPS paves the way to many more advances in the field
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Photolithography"

1

Golpon, Roland. Reproduktionsfotografie: Grundlagen und verfahrenstechniken der fotomechanischen und elektronischen reproduktion : lösungsheft. Frankfurt: Polygraph, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peck, Harold L. Stripping: The assembly of film images. 2nd ed. Pittsburgh, Pa., U.S.A: Graphic Arts Technical Foundation, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Golpon, Roland. Reproduktionsfotografie: Grundlagen und verfahrenstechniken der fotomechanischen und elektronischen reproduktion. Frankfurt: Polygraph, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stewart, Howe Kathleen, ed. Intersections: Lithography, photography, and the traditions of printmaking. Albuquerque: University of New Mexico Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Flemming, Alex. Estação Sumaré. São Paulo: Imprensa Oficial SP, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

C, Watts Michael P., and Society of Photo-optical Instrumentation Engineers., eds. Advances in resist technology and processing VII: 5-6 March 1990, San Jose, California. Bellingham, Wash., USA: SPIE, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

C, Watts Michael P., and Society of Photo-optical Instrumentation Engineers., eds. Advances in resist technology and processing VII: 5-6 March 1990, San Jose, California. Bellingham, Wash., USA: SPIE, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hiroshi, Ito, and Society of Photo-optical Instrumentation Engineers., eds. Advances in resist technology and processing VIII: 4-5 March, 1991, San Jose, California. Bellingham, Wash., USA: SPIE, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

N, Blair Raymond, Destree Tom, and Graphic Arts Technical Foundation, eds. The Lithographers manual. 8th ed. Pittsburgh, Pa: Graphic Arts Technical Foundation, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

S, Allen Norman, ed. Photopolymerisation and photoimaging science and technology. London: Elsevier Applied Science, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photolithography"

1

DeSilva, Mauris. "Photolithography." In Encyclopedia of Microfluidics and Nanofluidics, 2711–13. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Madou, Marc, and Chunlei Wang. "Photolithography." In Encyclopedia of Nanotechnology, 1–11. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6178-0_342-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Madou, Marc, and Chunlei Wang. "Photolithography." In Encyclopedia of Nanotechnology, 3157–66. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bandelier, Philippe, Anne-Laure Charley, and Alexandre Lagrange. "Photolithography." In Lithography, 1–40. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557662.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nishimura, Yasunori, Kozo Yano, Masataka Itoh, and Masahiro Ito. "Photolithography." In Flat Panel Display Manufacturing, 287–310. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119161387.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DeSilva, Mauris. "Photolithography." In Encyclopedia of Microfluidics and Nanofluidics, 1–3. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1217-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Winter, Patrick M., Gregory M. Lanza, Samuel A. Wickline, Marc Madou, Chunlei Wang, Parag B. Deotare, Marko Loncar, et al. "Photolithography." In Encyclopedia of Nanotechnology, 2051–60. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gooch, Jan W. "Photolithography." In Encyclopedic Dictionary of Polymers, 534. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kondoh, Eiichi. "Photolithography." In Micro- and Nanofabrication for Beginners, 189–210. Boca Raton: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003119937-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okazaki, Shinji. "Photolithography." In Handbook of Laser Technology and Applications, 105–10. 2nd ed. 2nd edition. | Boca Raton: CRC Press, 2021– |: CRC Press, 2021. http://dx.doi.org/10.1201/9781315310855-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photolithography"

1

Rajagopalan, Smriti, Lei Yang, Robert M. DeMarco, Rafael Gomez Brule, and Raquel Perez-Castillejos. "Smart Photolithography." In 2013 39th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2013. http://dx.doi.org/10.1109/nebec.2013.138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kameyama, Masaomi, and Martin McCallum. "Extension of photolithography." In Photomask and Next Generation Lithography Mask Technology XI, edited by Hiroyoshi Tanabe. SPIE, 2004. http://dx.doi.org/10.1117/12.557793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Ting, Changtao Wang, and Xiangang Luo. "Interference photolithography with metamaterials." In 2008 IEEE PhotonicsGlobal@Singapore (IPGC). IEEE, 2008. http://dx.doi.org/10.1109/ipgc.2008.4781509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ebert, Chris, Sig Stout, Karl Heimerl, and Matt Adams. "Neon recovery for photolithography." In 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2017. http://dx.doi.org/10.1109/asmc.2017.7969265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Petrusis, Audrius, Jan H. Rector, Kristen Smith, Sven de Man, and Davide Iannuzzi. "Align-and-shine photolithography." In 20th International Conference on Optical Fibre Sensors, edited by Julian D. C. Jones. SPIE, 2009. http://dx.doi.org/10.1117/12.834240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crisalle, Oscar D., Robert A. Soper, Duncan A. Mellichamp, and Dale E. Seborg. "Adaptive control of photolithography." In Micro - DL tentative, edited by William H. Arnold. SPIE, 1991. http://dx.doi.org/10.1117/12.44462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Katsuhara, Takashi, Yasushi Ueda, Daisuke Miyazaki, Kenji Matsushita, Kenji Yamada, and Tsutomu Yotsuya. "Microrotators fabricated by photolithography." In International Symposium on Optical Science and Technology, edited by Ernst-Bernhard Kley and Hans Peter Herzig. SPIE, 2001. http://dx.doi.org/10.1117/12.448049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mack, Chris A., Sven Jug, and Dale A. Legband. "Data analysis for photolithography." In Microlithography '99, edited by Bhanwar Singh. SPIE, 1999. http://dx.doi.org/10.1117/12.350829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ebert, Chris, Sig Stout, Karl Heimerl, and Matt Adams. "Neon recovery for photolithography." In 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2017. http://dx.doi.org/10.23919/mipro.2017.7966612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qu, Chuang, and Edward C. Kinzel. "Mask-Based Microsphere Photolithography." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6687.

Full text
Abstract:
Microsphere Photolithography (MPL) uses a self-assembled array of transparent microspheres to focus incident ultraviolet radiation and produce an array of photonic jets in photoresist. Typically, the microspheres are self-assembled directly on the photoresist layer and are removed after exposure during development. Reusing the microsphere array reduces the expense of the process. A mask is formed by transferring the self-assembled microsphere array to a transparent tape. This can be used for multiple exposures when pressed into contact with the photoresist. This paper demonstrates the use of this process to pattern infrared metasurface absorbers and discusses the effects of the mask-based MPL process on the metasurface performance.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Photolithography"

1

Hale, L., J. Klingmann, and D. Markle. New photolithography stepping machine. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/97300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kabikov, Pavel. Device for capturing and moving flat disks in photolithography. Intellectual Archive, May 2020. http://dx.doi.org/10.32370/iaj.2321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Helmsen, J., P. Colella, M. Dorr, and E. G. Puckett. Two new methods for simulating photolithography development in 3D. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/514411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Riley, Brian J., S. K. Sundaram, Bradley R. Johnson, and Laxmikant V. Saraf. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/1031443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Redmond, J., and S. Tucker. Time-optimal control of the magnetically levitated photolithography platen. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/10111083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mike Ferguson, Mike Ferguson. Frugal DIY Mask Aligner Kit for High Resolution Photolithography. Experiment, March 2024. http://dx.doi.org/10.18258/67502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kabikov, Pavel. Aerodynamic noise silencers - as part of robotic systems in photolithography manufacturing complexes. Intellectual Archive, May 2020. http://dx.doi.org/10.32370/iaj.2322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hale, Layton, and David Markle. New Photolithography Stepping Machine Close Out Report CRADA No. TSB-842-94. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1432975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Author, Not Given. Analysis of vapors produced during ultraviolet light exposure of photolithography resist-coated silicon wafers by gas chromatography/mass spectrometry: Final report. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/10129737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mowry, C. D. Demonstration of real-time monitoring of a photolithographic exposure process using chemical ionization mass spectrometry. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/573307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography