To see the other types of publications on this topic, follow the link: Photoionization of gases Measurement.

Journal articles on the topic 'Photoionization of gases Measurement'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photoionization of gases Measurement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Strelkov, V. V., E. Mével, and E. Constant. "Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam." Optics Express 22, no. 6 (March 10, 2014): 6239. http://dx.doi.org/10.1364/oe.22.006239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wannberg, Veronica E., Gustavious Williams, Patrick Sawyer, and Richard Venedam. "An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low–Wind Speed (Diffusion) Conditions." Journal of Applied Meteorology and Climatology 49, no. 9 (September 1, 2010): 1805–17. http://dx.doi.org/10.1175/2010jamc2383.1.

Full text
Abstract:
Abstract A unique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h−1. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current state-of-the-practice models, Aerial Locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.
APA, Harvard, Vancouver, ISO, and other styles
3

Joshi, Satya Prakash, Prasenjit Seal, Timo Theodor Pekkanen, Raimo Sakari Timonen, and Arrke J. Eskola. "Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH2CHCHC(O)OCH3 Radical and an Upper Limit Determination for CH2CHCHC(O)OCH3 + O2 Reaction." Zeitschrift für Physikalische Chemie 234, no. 7-9 (August 27, 2020): 1251–68. http://dx.doi.org/10.1515/zpch-2020-1612.

Full text
Abstract:
AbstractMethyl-Crotonate (MC, (E)-methylbut-2-enoate, CH3CHCHC(O)OCH3) is a potential component of surrogate fuels that aim to emulate the combustion of fatty acid methyl ester (FAME) biodiesels with significant unsaturated FAME content. MC has three allylic hydrogens that can be readily abstracted under autoignition and combustion conditions to form a resonantly-stabilized CH2CHCHC(O)OCH3 radical. In this study we have utilized photoionization mass spectrometry to investigate the O2 addition kinetics and thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical. First we determined an upper limit for the bimolecular rate coefficient of CH2CHCHC(O)OCH3 + O2 reaction at 600 K (k ≤ 7.5 × 10−17 cm3 molecule−1 s−1). Such a small rate coefficient suggest this reaction is unlikely to be important under combustion conditions and subsequent efforts were directed towards measuring thermal unimolecular decomposition kinetics of CH2CHCHC(O)OCH3 radical. These measurements were performed between 750 and 869 K temperatures at low pressures (<9 Torr) using both helium and nitrogen bath gases. The potential energy surface of the unimolecular decomposition reaction was probed at density functional (MN15/cc-pVTZ) level of theory and the electronic energies of the stationary points obtained were then refined using the DLPNO-CCSD(T) method with the cc-pVTZ and cc-pVQZ basis sets. Master equation simulations were subsequently carried out using MESMER code along the kinetically important reaction pathway. The master equation model was first optimized by fitting the zero-point energy corrected reaction barriers and the collisional energy transfer parameters $\Delta{E_{{\text{down}},\;{\text{ref}}}}$ and n to the measured rate coefficients data and then utilize the constrained model to extrapolate the decomposition kinetics to higher pressures and temperatures. Both the experimental results and the MESMER simulations show that the current experiments for the thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical are in the fall-off region. The experiments did not provide definite evidence about the primary decomposition products.
APA, Harvard, Vancouver, ISO, and other styles
4

Aseyev, S. A., V. G. Minogin, and B. N. Mironov. "Projection microscopy of photoionization processes in gases." Applied Physics B 108, no. 4 (September 2012): 755–59. http://dx.doi.org/10.1007/s00340-012-5136-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huetz, A., P. Selles, D. Waymel, and J. Mazeau. "Wannier theory for double photoionization of noble gases." Journal of Physics B: Atomic, Molecular and Optical Physics 24, no. 8 (April 28, 1991): 1917–33. http://dx.doi.org/10.1088/0953-4075/24/8/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Miyahara, Yoshikazu. "Photoionization of Residual Gases in Electron Storage Rings." Japanese Journal of Applied Physics 26, Part 1, No. 9 (September 20, 1987): 1544–46. http://dx.doi.org/10.1143/jjap.26.1544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mics, Zoltan, Petr Kužel, Pavel Jungwirth, and Stephen E. Bradforth. "Photoionization of atmospheric gases studied by time-resolved terahertz spectroscopy." Chemical Physics Letters 465, no. 1-3 (November 2008): 20–24. http://dx.doi.org/10.1016/j.cplett.2008.09.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Babushkin, I., S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé, and J. Herrmann. "Tailoring terahertz radiation by controlling tunnel photoionization events in gases." New Journal of Physics 13, no. 12 (December 21, 2011): 123029. http://dx.doi.org/10.1088/1367-2630/13/12/123029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Short, R. T., C. S. O, J. C. Levin, I. A. Sellin, B. M. Johnson, M. Meron, K. W. Jones, and D. A. Church. "Synchrotron radiation inner-shell photoionization of atomic and molecular gases." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 24-25 (April 1987): 417–19. http://dx.doi.org/10.1016/0168-583x(87)90673-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Ki-Yong, James H. Glownia, Antoinette J. Taylor, and George Rodriguez. "High-Power Broadband Terahertz Generation via Two-Color Photoionization in Gases." IEEE Journal of Quantum Electronics 48, no. 6 (June 2012): 797–805. http://dx.doi.org/10.1109/jqe.2012.2190586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Verdun, F., J. F. Muller, and G. Krier. "Study of Photoionization of Solids—Resonance Ionization." Laser Chemistry 5, no. 5 (January 1, 1985): 297–307. http://dx.doi.org/10.1155/lc.5.297.

Full text
Abstract:
Multiphoton ionization (MPI) mechanism in the solid state being still controversial we coupled a tunable laser to the LAMMA 500 microprobe to reinvestigate, using different UV irradiations, the ionization of some organic and organometallic solid compounds. Two polycyclic aromatic hydrocarbons (PAH) anthracene and pyrene and metallic derivatives of copper and cadmium were tested. Preliminary results are consistent with thermal desorption of neutral molecules as the first step followed by photoionization in the vapor phase.Thus the ionization mechanisms described for gases or vapors, and in particular some REMPI or RIS processes appear to apply to our experimental conditions.
APA, Harvard, Vancouver, ISO, and other styles
12

Jannitti, E., P. Nicolosi, and G. Tondello. "Photoionization cross-section measurement of the CV ion." Physics Letters A 131, no. 3 (August 1988): 186–89. http://dx.doi.org/10.1016/0375-9601(88)90066-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lee, Yin-Yu, Tzan-Yi Dung, Jih-Young Yu, Yen-Fang Song, Kuo-Tung Hsu, and Ke-Kang Lin. "Two-color photoionization of noble gases using laser and VUV synchrotron radiation." Journal of Electron Spectroscopy and Related Phenomena 144-147 (June 2005): 29–33. http://dx.doi.org/10.1016/j.elspec.2005.01.278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

FUKUDA, Atsuhisa, Hiromi ISHIDA, Meri KUBOTA, and Yoshitada KOJIMA. "Measurement of Carboxyhemoglobin by Breath Gases." Journal of Japan Association on Odor Environment 37, no. 2 (2006): 89–93. http://dx.doi.org/10.2171/jao.37.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kijima, T., A. Makihara, H. Asa, and E. F. Ezell. "Trace moisture measurement in semiconductor gases." Sensors and Actuators B: Chemical 36, no. 1-3 (October 1996): 388–91. http://dx.doi.org/10.1016/s0925-4005(97)80102-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kraftmakher, Yaakov. "Measurement of dielectric constant of gases." American Journal of Physics 64, no. 9 (September 1996): 1209–10. http://dx.doi.org/10.1119/1.18348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Werner, C., J. C. Wyngaard, and S. L. Brantley. "Eddy-correlation measurement of hydrothermal gases." Geophysical Research Letters 27, no. 18 (September 15, 2000): 2925–28. http://dx.doi.org/10.1029/2000gl011765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Grant, William B., Robert H. Kagann, and William A. McClenny. "Optical Remote Measurement of Toxic Gases." Journal of the Air & Waste Management Association 42, no. 1 (January 1992): 18–30. http://dx.doi.org/10.1080/10473289.1992.10466965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Balcou, Ph, P. Sali�res, K. S. Budil, T. Ditmire, M. D. Perry, and A. L'Huillier. "High-order harmonic generation in rare gases: a new source in photoionization spectroscopy." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 34, no. 2 (June 1995): 107–10. http://dx.doi.org/10.1007/bf01439384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gabbanini, C., S. Gozzini, and A. Lucchesini. "Photoionization cross section measurement in a Rb vapor cell trap." Optics Communications 141, no. 1-2 (August 1997): 25–28. http://dx.doi.org/10.1016/s0030-4018(97)00214-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jana, B., P. T. Kathar, A. Majumder, K. B. Thakur, and A. K. Das. "Measurement of photoionization yield in low-density barium photoplasma study." Measurement Science and Technology 25, no. 1 (November 26, 2013): 015003. http://dx.doi.org/10.1088/0957-0233/25/1/015003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Valley, George C., Stephen W. McCahon, and Marvin B. Klein. "Photorefractive measurement of photoionization and recombination cross sections in InP:Fe." Journal of Applied Physics 64, no. 12 (December 15, 1988): 6684–89. http://dx.doi.org/10.1063/1.342024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wolf, Steffen, and Hanspeter Helm. "Ion-recoil energy measurement in photoionization of laser-cooled rubidium." Physical Review A 56, no. 6 (December 1, 1997): R4385—R4388. http://dx.doi.org/10.1103/physreva.56.r4385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lau, Yan K. "Measurement of sulphur gases in ambient air." Environmental Monitoring and Assessment 13, no. 1 (August 1989): 69–74. http://dx.doi.org/10.1007/bf00398736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

He, Jing, and David C. Joy. "Measurement of Elastic Cross-Sections for Gases." Microscopy and Microanalysis 8, S02 (August 2002): 1542–43. http://dx.doi.org/10.1017/s1431927602104399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Detjens, M., T. Hübert, C. Tiebe, and U. Banach. "Coulometric trace humidity measurement in technical gases." Review of Scientific Instruments 89, no. 8 (August 2018): 085004. http://dx.doi.org/10.1063/1.5008463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mandal, Nanda Gopal. "Measurement of volume and flow in gases." Anaesthesia & Intensive Care Medicine 10, no. 1 (January 2009): 52–56. http://dx.doi.org/10.1016/j.mpaic.2008.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jewitt, Helen, and Gary Thomas. "Measurement of flow and volume of gases." Anaesthesia & Intensive Care Medicine 13, no. 3 (March 2012): 106–10. http://dx.doi.org/10.1016/j.mpaic.2011.12.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kawashima, Kenji, Toshiharu Kagawa, and Toshinori Fujita. "Instantaneous Flow Rate Measurement of Ideal Gases." Journal of Dynamic Systems, Measurement, and Control 122, no. 1 (May 6, 1996): 174–78. http://dx.doi.org/10.1115/1.482439.

Full text
Abstract:
In this paper, a chamber called an “Isothermal Chamber” was developed. The isothermal chamber can almost realize isothermal condition due to larger heat transfer area and heat transfer coefficient by stuffing steel wool in it. Using this chamber, a simple method to measure flow rates of ideal gases was developed. As the process during charge or discharge is almost isothermal, instantaneous flow rates charged into or discharged from the chamber can be obtained measuring only pressure in the chamber. The steady and the unsteady flow rate of air were measured by the proposed method, and the effectiveness of the method was demonstrated. [S0022-0434(00)00301-4]
APA, Harvard, Vancouver, ISO, and other styles
30

Roberts, Fred. "Measurement of volume and flow in gases." Anaesthesia & Intensive Care Medicine 7, no. 3 (March 2006): 100–104. http://dx.doi.org/10.1383/anes.2006.7.3.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Howard, A. J., and W. P. Strange. "Measurement of 21884Po+ neutralization rates in gases." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 311, no. 1-2 (January 1992): 378–85. http://dx.doi.org/10.1016/0168-9002(92)90885-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Begunov, A. A. "Precision Measurement of the Mass of Gases." Measurement Techniques 57, no. 1 (April 2014): 47–53. http://dx.doi.org/10.1007/s11018-014-0405-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lohmann, B., U. Hergenhahn, and N. M. Kabachnik. "Spin polarization of Auger electrons from noble gases after photoionization with circularly polarized light." Journal of Physics B: Atomic, Molecular and Optical Physics 26, no. 19 (October 14, 1993): 3327–38. http://dx.doi.org/10.1088/0953-4075/26/19/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shah, Mukesh Lal, Gomati Prasad Gupta, Vas Dev, Bishwaranjan Dikshit, Manmohan Singh Bhatia, and Brij Mohan Suri. "Measurement of photoionization cross section in atomic uranium using simultaneous observation of laser-induced photoionization and fluorescence signals." Journal of the Optical Society of America B 29, no. 4 (March 16, 2012): 600. http://dx.doi.org/10.1364/josab.29.000600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Van Bramer, S. E., and M. V. Johnston. "Tunable, Coherent Vacuum Ultraviolet Radiation for Photoionization Mass Spectrometry." Applied Spectroscopy 46, no. 2 (February 1992): 255–61. http://dx.doi.org/10.1366/0003702924125564.

Full text
Abstract:
Coherent vacuum ultraviolet radiation between 118 and 129 nm (10.5 and 9.6 eV) is generated by third-harmonic conversion of radiation between 355 and 390 nm. The conversion efficiency of a single negatively dispersive rare gas (xenon or krypton) is compared to the efficiency of a mixture of a negatively dispersive gas with a positively dispersive gas (argon). The rare-gas mixtures are found to give significantly higher third-harmonic conversion efficiencies. They also have much narrower wavelength tuning ranges than the single gases. Optimum gas pressures, mixing ratios, and conversion efficiencies are tabulated at selected wavelengths. The photoionization characteristics of compounds that exhibit little or no parent ion abundance with conventional 70-eV electron impact ionization are evaluated with tunable vacuum ultraviolet radiation. n-Alkanes, alkenes, aldehydes, amines, carboxylic acids, ethers, and ketones are ionized without significant fragmentation by using wavelengths close to the ionization thresholds. Alcohols and esters, however, fragment extensively, even at the ionization threshold.
APA, Harvard, Vancouver, ISO, and other styles
36

Hochlaf, M., H. Kjeldsen, F. Penent, R. I. Hall, P. Lablanquie, M. Lavollée, and J. H. D. Eland. "Two spectrometers for threshold photoelectron coincidence studies of double photoionization." Canadian Journal of Physics 74, no. 11-12 (November 1, 1996): 856–60. http://dx.doi.org/10.1139/p96-800.

Full text
Abstract:
We present here two simple instruments for the study of double photoionization processes at threshold. They rely on the coincidence measurement of two near-zero energy electrons, which are collected by a penetrating field technique, and energy selected either by time-of-flight analysis (1st setup) or by electrostatic filtering in a hemispherical analyzer (2nd setup). Performance of the apparatus is demonstrated on Ar threshold double photoionization, and used to show the importance of two step double photoionization routes at Ar and Kr double ionization threshold.
APA, Harvard, Vancouver, ISO, and other styles
37

Mandal, P. K., A. C. Sahoo, R. C. Das, M. L. Shah, A. K. Pulhani, K. G. Manohar, and Vas Dev. "Understanding photoexcitation dynamics in a three-step photoionization of atomic uranium and measurement of photoexcitation and photoionization cross sections." Applied Physics B 120, no. 4 (August 4, 2015): 751–58. http://dx.doi.org/10.1007/s00340-015-6192-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Li, Zhonghao, Jinpeng Yuan, Zhonghua Ji, Yanting Zhao, Tengfei Meng, Liantuan Xiao, and Suotang Jia. "Temperature measurement of ultracold molecules by time evolution of photoionization signal." Applied Physics Express 7, no. 9 (September 1, 2014): 096602. http://dx.doi.org/10.7567/apex.7.096602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yang, Jia-jun, Xing-yong Hu, Hong-xia Wu, Jian-mei Fan, Ran Cong, Yi Cheng, Xue-han Ji, Guan-xin Yao, Xian-feng Zheng, and Zhi-feng Cui. "Measurement of Photoionization Cross Sections of the Excited States of Titanium." Chinese Journal of Chemical Physics 22, no. 6 (December 2009): 615–20. http://dx.doi.org/10.1088/1674-0068/22/06/615-620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rafiq, M., Shahid Hussain, M. Saleem, M. A. Kalyar, and M. A. Baig. "Measurement of photoionization cross section from the 3s3p1P1excited state of magnesium." Journal of Physics B: Atomic, Molecular and Optical Physics 40, no. 12 (June 5, 2007): 2291–305. http://dx.doi.org/10.1088/0953-4075/40/12/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ogura, Koichi, and Takemasa Shibata. "Measurement of Metastable Population in Gadolinium Atomic Beam by Resonance Photoionization." Journal of the Physical Society of Japan 63, no. 3 (March 15, 1994): 834–38. http://dx.doi.org/10.1143/jpsj.63.834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

SAMSON, J. A. R., L. LYN, G. N. HADDAD, and G. C. ANGEL. "RECENT PROGRESS ON THE MEASUREMENT OF ABSOLUTE ATOMIC PHOTOIONIZATION CROSS SECTIONS." Le Journal de Physique IV 01, no. C1 (March 1991): C1–99—C1–107. http://dx.doi.org/10.1051/jp4:1991113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Patterson, B. M., T. Takekoshi, and R. J. Knize. "Measurement of the photoionization cross section of the6P3/2state of cesium." Physical Review A 59, no. 3 (March 1, 1999): 2508–10. http://dx.doi.org/10.1103/physreva.59.2508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gabbanini, C., F. Ceccherini, S. Gozzini, and A. Lucchesini. "Partial photoionization cross section measurement in a Rb magneto-optical trap." Journal of Physics B: Atomic, Molecular and Optical Physics 31, no. 18 (September 28, 1998): 4143–48. http://dx.doi.org/10.1088/0953-4075/31/18/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fendt, Alois, Thorsten Streibel, Martin Sklorz, Daniel Richter, Nicolaus Dahmen, and Ralf Zimmermann. "On-Line Process Analysis of Biomass Flash Pyrolysis Gases Enabled by Soft Photoionization Mass Spectrometry." Energy & Fuels 26, no. 1 (December 27, 2011): 701–11. http://dx.doi.org/10.1021/ef2012613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Evans, C. M., E. Morikawa, and G. L. Findley. "Photoionization spectra of CH3I and C2H5I perturbed by CF4andc-C4F8: electron scattering in halocarbon gases." Journal of Physics B: Atomic, Molecular and Optical Physics 34, no. 17 (August 24, 2001): 3607–15. http://dx.doi.org/10.1088/0953-4075/34/17/320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Schmidt, V. "Photoionization in rare gases with synchrotron radiation: Some basic aspects for critical tests with theory." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 2, no. 4 (December 1986): 275–83. http://dx.doi.org/10.1007/bf01426232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Schell, W. R., M. J. Tobin, D. J. Marsan, C. W. Schell, J. Vives-Batlle, and S. R. Yoon. "Measurement of fission product gases in the atmosphere." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 385, no. 2 (January 1997): 277–84. http://dx.doi.org/10.1016/s0168-9002(96)00787-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rodrigues, C. F., and M. J. Lemos de Sousa. "The measurement of coal porosity with different gases." International Journal of Coal Geology 48, no. 3-4 (January 2002): 245–51. http://dx.doi.org/10.1016/s0166-5162(01)00061-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Turcu, I. C. E., M. C. Gower, and P. Huntington. "Measurement of KrF laser breakdown threshold in gases." Optics Communications 134, no. 1-6 (January 1997): 66–68. http://dx.doi.org/10.1016/s0030-4018(96)00543-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography