Journal articles on the topic 'Photogating'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Photogating.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shin, Jihyun, and Hocheon Yoo. "Photogating Effect-Driven Photodetectors and Their Emerging Applications." Nanomaterials 13, no. 5 (February 26, 2023): 882. http://dx.doi.org/10.3390/nano13050882.
Full textMarcus, Matthew S., J. M. Simmons, O. M. Castellini, R. J. Hamers, and M. A. Eriksson. "Photogating carbon nanotube transistors." Journal of Applied Physics 100, no. 8 (October 15, 2006): 084306. http://dx.doi.org/10.1063/1.2357413.
Full textBae, Sanghoon, and Stephen J. Fonash. "Impact of structure on photogating." Journal of Applied Physics 79, no. 5 (March 1996): 2213–20. http://dx.doi.org/10.1063/1.361185.
Full textFang, Hehai, and Weida Hu. "Photogating in Low Dimensional Photodetectors." Advanced Science 4, no. 12 (October 4, 2017): 1700323. http://dx.doi.org/10.1002/advs.201700323.
Full textQi, Zhaoyang, Tiefeng Yang, Dong Li, Honglai Li, Xiao Wang, Xuehong Zhang, Fang Li, et al. "High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect." Materials Horizons 6, no. 7 (2019): 1474–80. http://dx.doi.org/10.1039/c9mh00335e.
Full textZhang, Ke, Mingzeng Peng, Aifang Yu, Youjun Fan, Junyi Zhai, and Zhong Lin Wang. "A substrate-enhanced MoS2 photodetector through a dual-photogating effect." Materials Horizons 6, no. 4 (2019): 826–33. http://dx.doi.org/10.1039/c8mh01429a.
Full textTing, Lei, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, and Zeng Zhong-Ming. "Photogating effect in two-dimensional photodetectors." Acta Physica Sinica 70, no. 2 (2021): 027801. http://dx.doi.org/10.7498/aps.70.20201325.
Full textTing, Lei, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, and Zeng Zhong-Ming. "Photogating effect in two-dimensional photodetectors." Acta Physica Sinica 70, no. 2 (2021): 027801. http://dx.doi.org/10.7498/aps.70.20201325.
Full textHan, Yuxiang, Xiao Zheng, Mengqi Fu, Dong Pan, Xing Li, Yao Guo, Jianhua Zhao, and Qing Chen. "Negative photoconductivity of InAs nanowires." Physical Chemistry Chemical Physics 18, no. 2 (2016): 818–26. http://dx.doi.org/10.1039/c5cp06139c.
Full textJeddi, Hossein, Mohammad Karimi, Bernd Witzigmann, Xulu Zeng, Lukas Hrachowina, Magnus T. Borgström, and Håkan Pettersson. "Gain and bandwidth of InP nanowire array photodetectors with embedded photogated InAsP quantum discs." Nanoscale 13, no. 12 (2021): 6227–33. http://dx.doi.org/10.1039/d1nr00846c.
Full textMiller, Bastian, Eric Parzinger, Anna Vernickel, Alexander W. Holleitner, and Ursula Wurstbauer. "Photogating of mono- and few-layer MoS2." Applied Physics Letters 106, no. 12 (March 23, 2015): 122103. http://dx.doi.org/10.1063/1.4916517.
Full textHan, Peize, Eli R. Adler, Yijing Liu, Luke St Marie, Abdel El Fatimy, Scott Melis, Edward Van Keuren, and Paola Barbara. "Ambient effects on photogating in MoS2 photodetectors." Nanotechnology 30, no. 28 (April 24, 2019): 284004. http://dx.doi.org/10.1088/1361-6528/ab149e.
Full textJiang, Hao, Changbin Nie, Jintao Fu, Linlong Tang, Jun Shen, Feiying Sun, Jiuxun Sun, et al. "Ultrasensitive and fast photoresponse in graphene/silicon-on-insulator hybrid structure by manipulating the photogating effect." Nanophotonics 9, no. 11 (June 29, 2020): 3663–72. http://dx.doi.org/10.1515/nanoph-2020-0261.
Full textWang, Yifei, Vinh X. Ho, Prashant Pradhan, Michael P. Cooney, and Nguyen Q. Vinh. "Interfacial Photogating Effect for Hybrid Graphene-Based Photodetectors." ACS Applied Nano Materials 4, no. 8 (August 11, 2021): 8539–45. http://dx.doi.org/10.1021/acsanm.1c01931.
Full textYang, Yajie, Jinshu Li, Seunghyuk Choi, Sumin Jeon, Jeong Ho Cho, Byoung Hun Lee, and Sungjoo Lee. "High-responsivity PtSe2 photodetector enhanced by photogating effect." Applied Physics Letters 118, no. 1 (January 4, 2021): 013103. http://dx.doi.org/10.1063/5.0025884.
Full textTsai, Tsung-Han, Zheng-Yong Liang, Yung-Chang Lin, Cheng-Chieh Wang, Kuang-I. Lin, Kazu Suenaga, and Po-Wen Chiu. "Photogating WS2 Photodetectors Using Embedded WSe2 Charge Puddles." ACS Nano 14, no. 4 (April 9, 2020): 4559–66. http://dx.doi.org/10.1021/acsnano.0c00098.
Full textLee, Youngbin, Hyunmin Kim, Soo Kim, Dongmok Whang, and Jeong Ho Cho. "Photogating in the Graphene–Dye–Graphene Sandwich Heterostructure." ACS Applied Materials & Interfaces 11, no. 26 (May 28, 2019): 23474–81. http://dx.doi.org/10.1021/acsami.9b05280.
Full textDrain, C. M., B. Christensen, and D. Mauzerall. "Photogating of ionic currents across a lipid bilayer." Proceedings of the National Academy of Sciences 86, no. 18 (September 1, 1989): 6959–62. http://dx.doi.org/10.1073/pnas.86.18.6959.
Full textShimatani, Masaaki, Naoki Yamada, Shoichiro Fukushima, Satoshi Okuda, Shinpei Ogawa, Takashi Ikuta, and Kenzo Maehashi. "High-responsivity turbostratic stacked graphene photodetectors using enhanced photogating." Applied Physics Express 12, no. 12 (November 12, 2019): 122010. http://dx.doi.org/10.7567/1882-0786/ab5096.
Full textGarcia, C., N. R. Pradhan, D. Rhodes, L. Balicas, and S. A. McGill. "Photogating and high gain in ReS2 field-effect transistors." Journal of Applied Physics 124, no. 20 (November 28, 2018): 204306. http://dx.doi.org/10.1063/1.5050821.
Full textKundu, Anirban, Renu Rani, Mamta Raturi, and Kiran Shankar Hazra. "Photogating-Induced Controlled Electrical Response in 2D Black Phosphorus." ACS Applied Electronic Materials 2, no. 11 (November 14, 2020): 3562–70. http://dx.doi.org/10.1021/acsaelm.0c00592.
Full textG, Harikrishnan, Sesha Vempati, K. N. Prajapati, K. Bandopadhyay, Vijith Kalathingal, and J. Mitra. "Negative photoresponse in ZnO–PEDOT:PSS nanocomposites and photogating effects." Nanoscale Advances 1, no. 6 (2019): 2435–43. http://dx.doi.org/10.1039/c9na00116f.
Full textTang, Xingyu, Yixuan Huang, Keming Cheng, Qi Yuan, Jihua Zou, Chuang Li, Aobo Ren, Kai Shen, and Zhiming Wang. "Ultrasensitive WSe2/MoSe2 heterojunction photodetector enhanced by photogating effect." Microelectronic Engineering 274 (April 2023): 111980. http://dx.doi.org/10.1016/j.mee.2023.111980.
Full textLee, Kuo-Chih, Yu-Hsien Chuang, Chen-Kai Huang, Hui Li, Guo-En Chang, Kuan-Ming Hung, and Hung Hsiang Cheng. "Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors." Photonics 10, no. 5 (May 12, 2023): 568. http://dx.doi.org/10.3390/photonics10050568.
Full textRubinelli, F. A. "Complementary photogating effect in microcrystalline silicon n-i-p structures." Thin Solid Films 619 (November 2016): 102–11. http://dx.doi.org/10.1016/j.tsf.2016.10.038.
Full textFukushima, Shoichiro, Masaaki Shimatani, Satoshi Okuda, Shinpei Ogawa, Yasushi Kanai, Takao Ono, Koichi Inoue, and Kazuhiko Matsumoto. "Photogating for small high-responsivity graphene middle-wavelength infrared photodetectors." Optical Engineering 59, no. 03 (March 18, 2020): 1. http://dx.doi.org/10.1117/1.oe.59.3.037101.
Full textHojun, Seong, Cho Kyoungah, Yun Junggwon, Kwak Kiyeol, Jun Jin Hyung, and Kim Sangsig. "Photogating effects of HgTe nanoparticles on a single ZnO nanowire." Solid State Sciences 12, no. 8 (August 2010): 1328–31. http://dx.doi.org/10.1016/j.solidstatesciences.2010.04.034.
Full textKim, Ho Jin, Khang June Lee, Junghoon Park, Gwang Hyuk Shin, Hamin Park, Kyoungsik Yu, and Sung-Yool Choi. "Photoconductivity Switching in MoTe2/Graphene Heterostructure by Trap-Assisted Photogating." ACS Applied Materials & Interfaces 12, no. 34 (July 28, 2020): 38563–69. http://dx.doi.org/10.1021/acsami.0c09960.
Full textGuan, Xinwei, Zhenwei Wang, Mrinal K. Hota, Husam N. Alshareef, and Tom Wu. "P-Type SnO Thin Film Phototransistor with Perovskite-Mediated Photogating." Advanced Electronic Materials 5, no. 1 (September 27, 2018): 1800538. http://dx.doi.org/10.1002/aelm.201800538.
Full textLi, Xiangyang, Shuangchen Ruan, and Haiou Zhu. "SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse." Nanomaterials 12, no. 16 (August 13, 2022): 2777. http://dx.doi.org/10.3390/nano12162777.
Full textHuang, Hai, Jianlu Wang, Weida Hu, Lei Liao, Peng Wang, Xudong Wang, Fan Gong, et al. "Highly sensitive visible to infrared MoTe2photodetectors enhanced by the photogating effect." Nanotechnology 27, no. 44 (September 27, 2016): 445201. http://dx.doi.org/10.1088/0957-4484/27/44/445201.
Full textWang, Yang, Fang Zhong, Hailu Wang, Hao Huang, Qing Li, Jiafu Ye, Meng Peng, et al. "Photogating-controlled ZnO photodetector response for visible to near-infrared light." Nanotechnology 31, no. 33 (June 8, 2020): 335204. http://dx.doi.org/10.1088/1361-6528/ab8e75.
Full textDi Bartolomeo, Antonio, Francesca Urban, Enver Faella, Alessandro Grillo, Aniello Pelella, Filippo Giubileo, Niall McEvoy, Farzan Gity, and Paul Kennedy Hurley. "Electrical Conduction and Photoconduction in PtSe2 Ultrathin Films." Materials Proceedings 4, no. 1 (November 10, 2020): 28. http://dx.doi.org/10.3390/iocn2020-07814.
Full textTang, Hongyu, Sergey G. Menabde, Tarique Anwar, Junhyung Kim, Min Seok Jang, and Giulia Tagliabue. "Photo-modulated optical and electrical properties of graphene." Nanophotonics 11, no. 5 (January 14, 2022): 917–40. http://dx.doi.org/10.1515/nanoph-2021-0582.
Full textHu, H. J., W. L. Zhen, S. R. Weng, Y. D. Li, R. Niu, Z. L. Yue, F. Xu, L. Pi, C. J. Zhang, and W. K. Zhu. "Enhanced optoelectronic performance and photogating effect in quasi-one-dimensional BiSeI wires." Applied Physics Letters 120, no. 20 (May 16, 2022): 201101. http://dx.doi.org/10.1063/5.0080334.
Full textJiang, Hao, Jingxuan Wei, Feiying Sun, Changbin Nie, Jintao Fu, Haofei Shi, Jiuxun Sun, Xingzhan Wei, and Cheng-Wei Qiu. "Enhanced Photogating Effect in Graphene Photodetectors via Potential Fluctuation Engineering." ACS Nano 16, no. 3 (February 22, 2022): 4458–66. http://dx.doi.org/10.1021/acsnano.1c10795.
Full textGao, Kaicong, Shuling Ran, Qin Han, Qi Yang, Hao Jiang, Jintao Fu, Chongqian Leng, et al. "High zero-bias responsivity induced by photogating effect in asymmetric device structure." Optical Materials 124 (February 2022): 112013. http://dx.doi.org/10.1016/j.optmat.2022.112013.
Full textSchropp, Ruud E. I., and Francisco A. Rubinelli. "Photogating effect as a defect probe in hydrogenated nanocrystalline silicon solar cells." Journal of Applied Physics 108, no. 1 (July 2010): 014509. http://dx.doi.org/10.1063/1.3437393.
Full textGreene, Brandon L., Gregory E. Vansuch, Bryant C. Chica, Michael W. W. Adams, and R. Brian Dyer. "Applications of Photogating and Time Resolved Spectroscopy to Mechanistic Studies of Hydrogenases." Accounts of Chemical Research 50, no. 11 (October 30, 2017): 2718–26. http://dx.doi.org/10.1021/acs.accounts.7b00356.
Full textLuo, Fang, Mengjian Zhu, Yuan tan, Honghui Sun, Wei Luo, Gang Peng, Zhihong Zhu, Xue-Ao Zhang, and Shiqiao Qin. "High responsivity graphene photodetectors from visible to near-infrared by photogating effect." AIP Advances 8, no. 11 (November 2018): 115106. http://dx.doi.org/10.1063/1.5054760.
Full textPark, Do-Hyun, and Hyo Chan Lee. "Photogating Effect of Atomically Thin Graphene/MoS2/MoTe2 van der Waals Heterostructures." Micromachines 14, no. 1 (January 4, 2023): 140. http://dx.doi.org/10.3390/mi14010140.
Full textAbderrahmane, Abdelkader, Pan-Gum Jung, Changlim Woo, and Pil Ju Ko. "Effect of Gate Dielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor." Crystals 12, no. 9 (September 14, 2022): 1301. http://dx.doi.org/10.3390/cryst12091301.
Full textXie, An, Yuxian Jian, Zichao Cheng, Yu Gu, Zhanyang Chen, Xiufeng Song, and Zaixing Yang. "High responsivity of hybrid MoTe2/perovskite heterojunction photodetectors." Journal of Physics: Condensed Matter 34, no. 15 (February 10, 2022): 154007. http://dx.doi.org/10.1088/1361-648x/ac4f1b.
Full textFeng, Guangdi, Jie Jiang, Yanran Li, Dingdong Xie, Bobo Tian, and Qing Wan. "Flexible Vertical Photogating Transistor Network with an Ultrashort Channel for In‐Sensor Visual Nociceptor." Advanced Functional Materials 31, no. 36 (June 24, 2021): 2104327. http://dx.doi.org/10.1002/adfm.202104327.
Full textLee, Hee Sung, Kwang H. Lee, Youn-Gyoung Chang, Syed Raza Ali Raza, Seongil Im, Dong-Ho Kim, Hye-Ri Kim, and Gun-Hwan Lee. "Photogating and electrical-gating of amorphous GaSnZnO-based inverter with light-transmitting gate electrode." Applied Physics Letters 98, no. 22 (May 30, 2011): 223505. http://dx.doi.org/10.1063/1.3598396.
Full textJoshi, Swati, Prabhat Kumar Dubey, and Brajesh Kumar Kaushik. "Photosensor Based on Split Gate TMD TFET Using Photogating Effect for Visible Light Detection." IEEE Sensors Journal 20, no. 12 (June 15, 2020): 6346–53. http://dx.doi.org/10.1109/jsen.2020.2966728.
Full textYamamoto, Mahito, Keiji Ueno, and Kazuhito Tsukagoshi. "Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer." Applied Physics Letters 112, no. 18 (April 30, 2018): 181902. http://dx.doi.org/10.1063/1.5030525.
Full textShen, Tien‐Lin, Yu‐Wei Chu, Yu‐Kuang Liao, Wen‐Ya Lee, Hao‐Chung Kuo, Tai‐Yuan Lin, and Yang‐Fang Chen. "Ultrahigh‐Performance Self‐Powered Flexible Photodetector Driven from Photogating, Piezo‐Phototronic, and Ferroelectric Effects." Advanced Optical Materials 8, no. 1 (November 26, 2019): 1901334. http://dx.doi.org/10.1002/adom.201901334.
Full textGe, Bangtong, Changbin Nie, and Jun Shen. "A hybrid photodetector of graphene/TiO2/inorganic PbS quantum dots for fast response." Japanese Journal of Applied Physics 61, no. 4 (March 17, 2022): 040903. http://dx.doi.org/10.35848/1347-4065/ac56fc.
Full textZhu, Yiyue, Wen Huang, Yifei He, Lei Yin, Yiqiang Zhang, Deren Yang, and Xiaodong Pi. "Perovskite-Enhanced Silicon-Nanocrystal Optoelectronic Synaptic Devices for the Simulation of Biased and Correlated Random-Walk Learning." Research 2020 (September 2, 2020): 1–9. http://dx.doi.org/10.34133/2020/7538450.
Full text