To see the other types of publications on this topic, follow the link: Photoelectrochemistr.

Journal articles on the topic 'Photoelectrochemistr'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photoelectrochemistr.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lewis, Nathan S. "Photoelectrochemistry." Electrochemical Society Interface 5, no. 3 (September 1, 1996): 28–31. http://dx.doi.org/10.1149/2.f04963if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Uosaki, Kohei. "(Invited) Photoelectrochemistry -Looking Back to the Past for the Future." ECS Meeting Abstracts MA2022-02, no. 48 (October 9, 2022): 1813. http://dx.doi.org/10.1149/ma2022-02481813mtgabs.

Full text
Abstract:
Photoelectrochemistry, semiconductor electrochemistry, and/or photocatalysis are of active research fields and thousands of papers are published in these fields annually. Many research groups are attracted in these subjects because of their potential importance in achieving carbon neutral society based on solar energy, a renewable energy. Although semiconductor electrochemistry had been studied systematically since 1950's and many reviews and books were published by early 1970's,1-7 research on photoelectrochemistry became very active in the late 1970's after the 1st oil crisis triggered by the paper by Fujishima and Honda,8 in which they suggested that solar energy may be directly converted to a chemical energy, hydrogen, by using semiconductor/aqueous electrolyte solution/metal cells.8 Research activities were high in 1980's and the ECS has organized symposia on photoelectrochemistry/semiconductor electrochemistry in the annual meetings many times with the publications of proceeding volumes.9-14 Many important developments were made in the 1970's and 1980's. Major target of the photoelectrochemistry/photocatalysis research changed from solar energy conversion to environmental issues12, 13 and activities gradually declined due to the lack of funding, particularly in the US. There must be reasons why photoelectrochemistry lost supports as solar energy conversion process in 1990's and it is a good time to look back what had been achieved, what were the problems, and are these problems solved by now. In this talk, I will try to sum up the results achieved by 1990's and compare them with current activities. References 1. M. Green, in Modem Aspects of Electrochemistry, No. 2. Ed. by J. O'M. Bockris, Butterworths, London, 343-407 (1959). 2. J. F. Dewald. in Semiconductors. ACS Monograph, No. 140, Ed. by N. B. Hannay, Reinhold, New York, 727-752 (1959). 3. H. Gerischer. in Adv. Electrochem. Electrochem. Eng., Vol. 1, Ed. by P. Delahay, lnterscience, New York, 139-232 (1961). 4. P. J. Holmes. Ed., The Electrochemistry of Semiconductors, Academic. London, 1962. 5. V. A. Myamlin and Yu. V. Pleskov, Electrochemistry of Semiconductors. Plenum, New York. 1967. 6. H. Gerischer, in Physical Chemistry: An Advanced Treatise, Vol. IXA. Ed. by H. Eyring. Academic. New York. 1970, Chap. 5. 7. S. R. Morrison, Prog. Surf. Sci., 1(1971) 105. 8. A. Fujishima and K. Honda, Nature, 238 (1972) 37. 9. PV 77-3, "Semiconductor Liquid-Junction Solar Cells", Ed. by A. Heller. 10. PV 82-3, "Photoelectrochemistry: Fundamental Processes and Measurement Techniques. Ed. by W. L. Wallace, A. J. Nojik, and S. K. Deb. 11. PV 88-14, "Photoelectrochemistry and Electrosynthesis on Semiconducting Materials", Ed. by D.S. Ginley, A. Nojik, N. Armstrong, K. Honda, A. Fujishima, T. Sakata, and T. Kawai. 12. PV 93-18, Environmental Aspects of Electrochemistry and Photoelectrochemistry'', Ed. by M. Tomkiewicz, H. Yoneyama, R. Haynes, and Y. Hori. 13. PV 94-19, "Water Purification by Photocatalytic, Photoelectrochemical, and Electrochemical Processes", Ed. by T. L. Rose, E. Rudd, 0. Murphy, and B. E. Conway. 14. PV 97-20, "Photoelectrochemistry", Ed. by K. Rajeshwar, L. M. Peter, A. Fujishima, D. Meissner, and M. Tomkiewicz.
APA, Harvard, Vancouver, ISO, and other styles
3

Deng, Jiao, Yude Su, Dong Liu, Peidong Yang, Bin Liu, and Chong Liu. "Nanowire Photoelectrochemistry." Chemical Reviews 119, no. 15 (July 23, 2019): 9221–59. http://dx.doi.org/10.1021/acs.chemrev.9b00232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Modestov, Alexander D., Jenny Gun, and Ovadia Lev. "Graphite photoelectrochemistry." Journal of Electroanalytical Chemistry 491, no. 1-2 (September 2000): 39–47. http://dx.doi.org/10.1016/s0022-0728(00)00182-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schlichthörl, G., and H. Tributsch. "Microwave photoelectrochemistry." Electrochimica Acta 37, no. 5 (April 1992): 919–31. http://dx.doi.org/10.1016/0013-4686(92)85043-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parsons, Roger. "Semiconductor Photoelectrochemistry." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 246, no. 2 (May 1988): 474. http://dx.doi.org/10.1016/0022-0728(88)80185-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barham, Joshua P., and Burkhard König. "Synthetic Photoelectrochemistry." Angewandte Chemie International Edition 59, no. 29 (April 6, 2020): 11732–47. http://dx.doi.org/10.1002/anie.201913767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khosravi, Mehdi, Hadi Feizi, Behzad Haghighi, Suleyman I. Allakhverdiev, and Mohammad Mahdi Najafpour. "Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction." New Journal of Chemistry 44, no. 8 (2020): 3514–23. http://dx.doi.org/10.1039/c9nj06265c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laskowski, Forrest A. L., Jingjing Qiu, Michael R. Nellist, Sebastian Z. Oener, Adrian M. Gordon, and Shannon W. Boettcher. "Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry." Sustainable Energy & Fuels 2, no. 9 (2018): 1995–2005. http://dx.doi.org/10.1039/c8se00187a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Bing, Gill M. Biesold, Meng Zhang, and Zhiqun Lin. "Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications." Chemical Society Reviews 50, no. 12 (2021): 6914–49. http://dx.doi.org/10.1039/d0cs01134g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wick-Joliat, René, Tiziana Musso, Rajiv Ramanujam Prabhakar, Johannes Löckinger, Sebastian Siol, Wei Cui, Laurent Sévery, et al. "Stable and tunable phosphonic acid dipole layer for band edge engineering of photoelectrochemical and photovoltaic heterojunction devices." Energy & Environmental Science 12, no. 6 (2019): 1901–9. http://dx.doi.org/10.1039/c9ee00748b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Su, Yude, Chong Liu, Sarah Brittman, Jinyao Tang, Anthony Fu, Nikolay Kornienko, Qiao Kong, and Peidong Yang. "Single-nanowire photoelectrochemistry." Nature Nanotechnology 11, no. 7 (March 28, 2016): 609–12. http://dx.doi.org/10.1038/nnano.2016.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Khnayzer, Rony S., Jörg Blumhoff, Jordan A. Harrington, Alexandre Haefele, Fan Deng, and Felix N. Castellano. "Upconversion-powered photoelectrochemistry." Chem. Commun. 48, no. 2 (2012): 209–11. http://dx.doi.org/10.1039/c1cc16015j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nimon, Eugeny S., Alexei V. Churikov, Irina M. Gamayunova, and Arlen L. Lvov. "Photoelectrochemistry of lithium." Journal of Power Sources 43, no. 1-3 (March 1993): 157–68. http://dx.doi.org/10.1016/0378-7753(93)80112-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sedaries, D., C. Levy-Clement, M. Neumann-Spallart, and M. Tomkiewicz. "Photoelectrochemistry of InSe." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 269, no. 2 (September 1989): 283–93. http://dx.doi.org/10.1016/0022-0728(89)85138-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Watanabe, T., K. Machida, H. Suzuki, M. Kobayashi, and K. Honda. "Photoelectrochemistry of metallochlorophylls." Coordination Chemistry Reviews 64 (May 1985): 207–24. http://dx.doi.org/10.1016/0010-8545(85)80051-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lewis, N. S., A. J. Nozik, R. J. D. Miller, S. F. Lindquist, J. E. Moser, A. Hagfeldt, K. Uosaki, et al. "Comment on photoelectrochemistry." Solar Energy Materials and Solar Cells 38, no. 1-4 (January 1995): 321–22. http://dx.doi.org/10.1016/0927-0248(95)80023-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Basavaswaran, K., Y. Ueno, T. Sugiura, and H. Minoura. "Photoelectrochemistry of Culn11S17." Journal of Materials Science 25, no. 8 (August 1990): 3456–60. http://dx.doi.org/10.1007/bf00575370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Qin, Dong-Dong, Yang Li, Xing-Ming Ning, Qiu-Hong Wang, Cai-Hua He, Jing-Jing Quan, Jing Chen, Ying-Tao Li, Xiao-Quan Lu, and Chun-Lan Tao. "A nanostructured hematite film prepared by a facile “top down” method for application in photoelectrochemistry." Dalton Transactions 45, no. 41 (2016): 16221–30. http://dx.doi.org/10.1039/c6dt02809h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gautam, Shreedhar, Vinicius R. Gonçales, Rafael N. P. Colombo, Wenxian Tang, Susana I. Córdoba de Torresi, Peter J. Reece, Richard D. Tilley, and J. Justin Gooding. "High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes." Chemical Communications 56, no. 54 (2020): 7435–38. http://dx.doi.org/10.1039/d0cc02959a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kato, Masaru, Jenny Z. Zhang, Nicholas Paul, and Erwin Reisner. "Protein film photoelectrochemistry of the water oxidation enzyme photosystem II." Chem. Soc. Rev. 43, no. 18 (2014): 6485–97. http://dx.doi.org/10.1039/c4cs00031e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hankin, Anna, and Franky E. Bedoya-Lora. "Reply to the ‘Comment on “Flat band potential determination: avoiding the pitfalls”’ by M. I. Díez-García, D. Monllor-Satoca and R. Gómez, J. Mater. Chem. A, 2022, 10, DOI: 10.1039/D1TA06474F." Journal of Materials Chemistry A 10, no. 15 (2022): 8594–95. http://dx.doi.org/10.1039/d2ta00706a.

Full text
Abstract:
Piecing together parameters characterising a semiconductor|liquid interface often highlights incoherence in the findings. Difficulties of obtaining accurate/reproducible parameters continue to be discussed among the community of photoelectrochemists.
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Huayang, Wenjie Tian, Yunguo Li, Hongqi Sun, Moses O. Tadé, and Shaobin Wang. "Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water." Journal of Materials Chemistry A 6, no. 15 (2018): 6265–72. http://dx.doi.org/10.1039/c8ta00555a.

Full text
Abstract:
Novel WO3@CoWO4 bilayer nanosheets exhibit largely enhanced water oxidation performances compared with WO3 in electrocatalysis, visible-light photocatalysis and photoelectrochemistry.
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Yiran, Laurent Bouffier, Guobao Xu, Gabriel Loget, and Neso Sojic. "Electrochemiluminescence with semiconductor (nano)materials." Chemical Science 13, no. 9 (2022): 2528–50. http://dx.doi.org/10.1039/d1sc06987j.

Full text
Abstract:
The combination of electrochemiluminescence and semiconductor gives rise to a rich field at the interface of photoelectrochemistry, materials and analytical chemistry. It offers interesting possibilities for ultrasensitive (bio)detection, imaging and light conversion.
APA, Harvard, Vancouver, ISO, and other styles
25

FUJISHIMA, Akira. "New Directions in Photoelectrochemistry." Electrochemistry 70, no. 6 (June 5, 2002): 398. http://dx.doi.org/10.5796/electrochemistry.70.398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Agostiano, A., and M. Caselli. "Photoelectrochemistry of thylakoid membranes." Bioelectrochemistry and Bioenergetics 42, no. 2 (May 1997): 255–62. http://dx.doi.org/10.1016/s0302-4598(96)05117-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Massaglia, Giulia, and Marzia Quaglio. "Semiconducting nanofibers in photoelectrochemistry." Materials Science in Semiconductor Processing 73 (January 2018): 13–21. http://dx.doi.org/10.1016/j.mssp.2017.06.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gouda, Abdelaziz, Tao Liu, Joshua C. Byers, Jan Augustynski, and Clara Santato. "Best practices in photoelectrochemistry." Journal of Power Sources 482 (January 2021): 228958. http://dx.doi.org/10.1016/j.jpowsour.2020.228958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Berg, H. "Semiconductor Electrodes and Photoelectrochemistry." Bioelectrochemistry 59, no. 1-2 (April 2003): 135. http://dx.doi.org/10.1016/s1567-5394(03)00013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Richardson, P. E., R. H. Yoon, R. Woods, and A. N. Buckley. "The photoelectrochemistry of galena." International Journal of Mineral Processing 41, no. 1-2 (April 1994): 77–97. http://dx.doi.org/10.1016/0301-7516(94)90007-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Harriman, A. "Photoelectrochemistry, photocatalysis and photoreactors." Solar Energy 38, no. 2 (1987): 139–40. http://dx.doi.org/10.1016/0038-092x(87)90042-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

NAKATO, Yoshihiro, and Hiroshi TSUBOMURA. "Photoelectrochemistry at semiconductor surfaces." Hyomen Kagaku 8, no. 6 (1987): 518–24. http://dx.doi.org/10.1380/jsssj.8.518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Licht, S. "Solution aspects of photoelectrochemistry." Solar Energy Materials and Solar Cells 38, no. 1-4 (January 1995): 353–54. http://dx.doi.org/10.1016/0927-0248(95)00014-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vacca, Annalisa. "Materials and Processes for Photocatalytic and (Photo)Electrocatalytic Removal of Bio-Refractory Pollutants and Emerging Contaminants from Waters." Catalysts 11, no. 6 (May 24, 2021): 666. http://dx.doi.org/10.3390/catal11060666.

Full text
Abstract:
This volume is focused on materials and processes for the electro- and photoelectrochemical removal of biorefractory pollutants and emerging contaminants from waters to show the importance of electrochemistry and photoelectrochemistry in offering solutions to current environmental problems [...]
APA, Harvard, Vancouver, ISO, and other styles
35

Xia, Ling-Ying, Meng-Jie Li, Hai-Jun Wang, Ruo Yuan, and Ya-Qin Chai. "A novel “signal on” photoelectrochemical strategy based on dual functional hemin for microRNA assay." Chemical Communications 55, no. 65 (2019): 9721–24. http://dx.doi.org/10.1039/c9cc04899e.

Full text
Abstract:
Here, a novel “signal on” photoelectrochemistry (PEC) biosensor was constructed by dual functional hemin as signal quencher and electronic mediator for ultrasensitive target microRNA-141 assay with the assistance of T7 exonuclease (Exo)-initiated target amplification technology.
APA, Harvard, Vancouver, ISO, and other styles
36

Suram, Santosh K., Lan Zhou, Aniketa Shinde, Qimin Yan, Jie Yu, Mitsutaro Umehara, Helge S. Stein, Jeffrey B. Neaton, and John M. Gregoire. "Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes." Chemical Communications 54, no. 36 (2018): 4625–28. http://dx.doi.org/10.1039/c7cc08002f.

Full text
Abstract:
Combinatorial photoelectrochemistry combined with first principles calculations demonstrate that NiMnO3 and its mixture with Ni6MnO8 are photoanodes with phenomenal absorptivity and band alignment to the oxygen evolution reaction.
APA, Harvard, Vancouver, ISO, and other styles
37

Guzman, Marcelo I., and Scot T. Martin. "Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry." International Journal of Astrobiology 7, no. 3-4 (October 2008): 271–78. http://dx.doi.org/10.1017/s1473550408004291.

Full text
Abstract:
AbstractThe carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10−3+[OAA])−1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k−2)=11.74–4956/T, where k−2 is in units of s−1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.
APA, Harvard, Vancouver, ISO, and other styles
38

TATSUMA, Tetsu. "Recent activities of Photoelectrochemistry Division." Denki Kagaku 88, no. 4 (December 5, 2020): 364. http://dx.doi.org/10.5796/denkikagaku.20-ot0050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Heli, and John A. Turner. "Photoelectrochemistry of Hematite Thin Films." ECS Transactions 25, no. 42 (December 17, 2019): 49–62. http://dx.doi.org/10.1149/1.3416201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ramsden, Jeremy J., and Rudolph Tóth-Boconádi. "Pulsed photoelectrochemistry of titanium dioxide." J. Chem. Soc., Faraday Trans. 86, no. 9 (1990): 1527–33. http://dx.doi.org/10.1039/ft9908601527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

PETER, Laurie. "Photoelectrochemistry: From Nanomaterials to Devices." Electrochemistry 76, no. 2 (2008): 107. http://dx.doi.org/10.5796/electrochemistry.76.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Messer, B., and H. Tributsch. "Microwave Photoelectrochemistry of n ‐ WSe2." Journal of The Electrochemical Society 133, no. 10 (October 1, 1986): 2212–13. http://dx.doi.org/10.1149/1.2108374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hüsser, O. E., and H. von Känel. "Photoelectrochemistry at (Semi) Insulating Electrodes." Journal of The Electrochemical Society 135, no. 9 (September 1, 1988): 2214–19. http://dx.doi.org/10.1149/1.2096241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Eggins, Brian R., and Peter K. J. Robertson. "Photoelectrochemistry using quinone radical anions." Journal of the Chemical Society, Faraday Transactions 90, no. 15 (1994): 2249. http://dx.doi.org/10.1039/ft9949002249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cattarin, S., and M. Musiani. "Photoelectrochemistry at bipolar semiconductor electrodes." Journal de Chimie Physique 93 (1996): 650–61. http://dx.doi.org/10.1051/jcp/1996930650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Peter, Lawrence M. "Dynamic aspects of semiconductor photoelectrochemistry." Chemical Reviews 90, no. 5 (July 1990): 753–69. http://dx.doi.org/10.1021/cr00103a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Janáky, Csaba, and Krishnan Rajeshwar. "Current Trends in Semiconductor Photoelectrochemistry." ACS Energy Letters 2, no. 6 (May 22, 2017): 1425–28. http://dx.doi.org/10.1021/acsenergylett.7b00413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kalamaras, Evangelos, M. Mercedes Maroto-Valer, Minhua Shao, Jin Xuan, and Huizhi Wang. "Solar carbon fuel via photoelectrochemistry." Catalysis Today 317 (November 2018): 56–75. http://dx.doi.org/10.1016/j.cattod.2018.02.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Becker, Ralph S., Tan Zheng, John Elton, and Masanobu Saeki. "Synthesis and photoelectrochemistry of In2S3." Solar Energy Materials 13, no. 2 (February 1986): 97–107. http://dx.doi.org/10.1016/0165-1633(86)90038-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dusco, C., G. Nagy, and R. Schiller. "Nonlinear phenomena in semiconductor photoelectrochemistry." IEEE Transactions on Electrical Insulation 23, no. 4 (1988): 541–44. http://dx.doi.org/10.1109/14.7323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography