Academic literature on the topic 'Photoelectrochemistr'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photoelectrochemistr.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photoelectrochemistr"

1

Lewis, Nathan S. "Photoelectrochemistry." Electrochemical Society Interface 5, no. 3 (September 1, 1996): 28–31. http://dx.doi.org/10.1149/2.f04963if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Uosaki, Kohei. "(Invited) Photoelectrochemistry -Looking Back to the Past for the Future." ECS Meeting Abstracts MA2022-02, no. 48 (October 9, 2022): 1813. http://dx.doi.org/10.1149/ma2022-02481813mtgabs.

Full text
Abstract:
Photoelectrochemistry, semiconductor electrochemistry, and/or photocatalysis are of active research fields and thousands of papers are published in these fields annually. Many research groups are attracted in these subjects because of their potential importance in achieving carbon neutral society based on solar energy, a renewable energy. Although semiconductor electrochemistry had been studied systematically since 1950's and many reviews and books were published by early 1970's,1-7 research on photoelectrochemistry became very active in the late 1970's after the 1st oil crisis triggered by the paper by Fujishima and Honda,8 in which they suggested that solar energy may be directly converted to a chemical energy, hydrogen, by using semiconductor/aqueous electrolyte solution/metal cells.8 Research activities were high in 1980's and the ECS has organized symposia on photoelectrochemistry/semiconductor electrochemistry in the annual meetings many times with the publications of proceeding volumes.9-14 Many important developments were made in the 1970's and 1980's. Major target of the photoelectrochemistry/photocatalysis research changed from solar energy conversion to environmental issues12, 13 and activities gradually declined due to the lack of funding, particularly in the US. There must be reasons why photoelectrochemistry lost supports as solar energy conversion process in 1990's and it is a good time to look back what had been achieved, what were the problems, and are these problems solved by now. In this talk, I will try to sum up the results achieved by 1990's and compare them with current activities. References 1. M. Green, in Modem Aspects of Electrochemistry, No. 2. Ed. by J. O'M. Bockris, Butterworths, London, 343-407 (1959). 2. J. F. Dewald. in Semiconductors. ACS Monograph, No. 140, Ed. by N. B. Hannay, Reinhold, New York, 727-752 (1959). 3. H. Gerischer. in Adv. Electrochem. Electrochem. Eng., Vol. 1, Ed. by P. Delahay, lnterscience, New York, 139-232 (1961). 4. P. J. Holmes. Ed., The Electrochemistry of Semiconductors, Academic. London, 1962. 5. V. A. Myamlin and Yu. V. Pleskov, Electrochemistry of Semiconductors. Plenum, New York. 1967. 6. H. Gerischer, in Physical Chemistry: An Advanced Treatise, Vol. IXA. Ed. by H. Eyring. Academic. New York. 1970, Chap. 5. 7. S. R. Morrison, Prog. Surf. Sci., 1(1971) 105. 8. A. Fujishima and K. Honda, Nature, 238 (1972) 37. 9. PV 77-3, "Semiconductor Liquid-Junction Solar Cells", Ed. by A. Heller. 10. PV 82-3, "Photoelectrochemistry: Fundamental Processes and Measurement Techniques. Ed. by W. L. Wallace, A. J. Nojik, and S. K. Deb. 11. PV 88-14, "Photoelectrochemistry and Electrosynthesis on Semiconducting Materials", Ed. by D.S. Ginley, A. Nojik, N. Armstrong, K. Honda, A. Fujishima, T. Sakata, and T. Kawai. 12. PV 93-18, Environmental Aspects of Electrochemistry and Photoelectrochemistry'', Ed. by M. Tomkiewicz, H. Yoneyama, R. Haynes, and Y. Hori. 13. PV 94-19, "Water Purification by Photocatalytic, Photoelectrochemical, and Electrochemical Processes", Ed. by T. L. Rose, E. Rudd, 0. Murphy, and B. E. Conway. 14. PV 97-20, "Photoelectrochemistry", Ed. by K. Rajeshwar, L. M. Peter, A. Fujishima, D. Meissner, and M. Tomkiewicz.
APA, Harvard, Vancouver, ISO, and other styles
3

Deng, Jiao, Yude Su, Dong Liu, Peidong Yang, Bin Liu, and Chong Liu. "Nanowire Photoelectrochemistry." Chemical Reviews 119, no. 15 (July 23, 2019): 9221–59. http://dx.doi.org/10.1021/acs.chemrev.9b00232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Modestov, Alexander D., Jenny Gun, and Ovadia Lev. "Graphite photoelectrochemistry." Journal of Electroanalytical Chemistry 491, no. 1-2 (September 2000): 39–47. http://dx.doi.org/10.1016/s0022-0728(00)00182-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schlichthörl, G., and H. Tributsch. "Microwave photoelectrochemistry." Electrochimica Acta 37, no. 5 (April 1992): 919–31. http://dx.doi.org/10.1016/0013-4686(92)85043-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parsons, Roger. "Semiconductor Photoelectrochemistry." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 246, no. 2 (May 1988): 474. http://dx.doi.org/10.1016/0022-0728(88)80185-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barham, Joshua P., and Burkhard König. "Synthetic Photoelectrochemistry." Angewandte Chemie International Edition 59, no. 29 (April 6, 2020): 11732–47. http://dx.doi.org/10.1002/anie.201913767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khosravi, Mehdi, Hadi Feizi, Behzad Haghighi, Suleyman I. Allakhverdiev, and Mohammad Mahdi Najafpour. "Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction." New Journal of Chemistry 44, no. 8 (2020): 3514–23. http://dx.doi.org/10.1039/c9nj06265c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laskowski, Forrest A. L., Jingjing Qiu, Michael R. Nellist, Sebastian Z. Oener, Adrian M. Gordon, and Shannon W. Boettcher. "Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry." Sustainable Energy & Fuels 2, no. 9 (2018): 1995–2005. http://dx.doi.org/10.1039/c8se00187a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Bing, Gill M. Biesold, Meng Zhang, and Zhiqun Lin. "Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications." Chemical Society Reviews 50, no. 12 (2021): 6914–49. http://dx.doi.org/10.1039/d0cs01134g.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Photoelectrochemistr"

1

DECAVOLI, CRISTINA. "Organic dye-based photosystems for the production of solar fuels." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/376409.

Full text
Abstract:
La ricerca di una nuova fonte di energia pulita è l'obiettivo per la comunità scientifica che dovrebbe essere raggiunto nei prossimi decenni. L'idrogeno ha guadagnato molta attenzione nella comunità scientifica come vettore di energia rinnovabile. Tuttavia, ora, l'obiettivo principale in campo energetico è quello di passare dalla produzione di idrogeno grigio (ottenuto da fonti fossili con successiva emissione di anidride carbonica) a quella di idrogeno verde (prodotto con zero carbon footprint). Durante il mio dottorato di ricerca, mi sono concentrata su diverse tematiche riguardanti l'uso dei coloranti organici per migliorare la cattura della radiazione solare in dispositivi per la produzione di combustibili solari. Ho studiato due diverse applicazioni, una fotocatalitica e una fotoelettrochimica. Per queste applicazioni, ho considerato approcci covalenti e non covalenti. In fotocatalisi, ho studiato solo un approccio non covalente tra il colorante e il donatore di elettroni sacrificali (SED). Ho deciso di non indagare su un'interazione covalente, perché, siccome il SED non può essere rigenerato dal sistema, porterebbe alla conseguente perdita di anche il colorante. In ogni caso, l'instaurazione dell'interazione supramolecolare ha favorito l'attività fotocatalitica confermando il successo del nuovo design proposto. Riguardo alle celle fotoelettrochimiche, ho invece investigato entrambi gli approcci. Presento il primo esempio di coloranti a base di calix[4]arene impiegati nei fotoanodi di celle fotoelettrochimiche per sfruttare le loro capacità host-guest. Tuttavia, le prove di una corretta interazione host-guest benefica o infruttuosa tra i coloranti e il catalizzatore sono ancora in fase di studio. Il secondo approccio non covalente investigato è l'interazione π-π tra un colorante funzionalizzato con grafene e un catalizzatore propriamente funzionalizzato. Sono tutt'ora in corso le ulteriori caratterizzazioni e gli studi in applicazioni fotoelettrochimiche. Riguardo all'approccio covalente, questo dovrebbe risultare più stabile e con l'immobilizzazione del catalizzatore a una distanza fissa dalla superficie del semiconduttore, è possibile evitare l'instaurarsi di interazioni dannose con il semiconduttore. Ho presentato il primo esempio di diadi a base di coloranti organici per l'applicazione di fotoanodi. Queste molecole hanno mostrato un'eccellente efficienza nell'evoluzione dell'ossigeno essendo la più alta rispetto allo stato attuale dell'arte per sistemi simili. L'altro disegno covalente proposto è stato ottenuto durante il mio periodo all'estero a Yale University. Questo design innovativo ha fallito nell’uso in celle fotoelettrochimiche, ma questa molecola ha mostrato ottime prestazioni come semplice catalizzatore in celle elettrochimiche. Significa che questo catalizzatore possiede il giusto potenziale per ossidare l'acqua e può essere utilizzato in combinazione con una fonte di energia esterna, come i pannelli solari. Tuttavia, sono necessarie ulteriori indagini nella porzione di colorante per ottenere un migliore trasferimento di carica per le applicazioni PEC.
The pursuit of a clean energy source is a goal for the scientific community that should be achieved in the following decades. In recent years, hydrogen has gained much attention in the scientific community as a renewable energy carrier. However, the main goal in the energetic field is to move from the production of grey hydrogen (obtained using fossil sources with the subsequent emission of carbon dioxide) to the evolution of green hydrogen (produced with zero carbon footprint). During my Ph. D., I have focused on different topics regarding the use of organic dyes as visible light photosensitizers in devices for the production of solar fuels through efficient light harvesting. I investigated both photocatalytic (PC) and photoelectrochemical (PEC) applications. For these applications, I considered both covalent and non-covalent approaches. In the PC application, I investigated only a non-covalent approach between the dye and the sacrificial electron donor (SED). I decided not to investigate a covalent interaction because since the system cannot regenerate the SED, it would have led to the loss of the dye as well. Regardless, the establishment of supramolecular interactions that favored the photocatalytic activity confirmed the success of the new proposed design. In the PEC application, I investigated both approaches. I present the first example of calix[4]arene-based dyes employed in photoanodes of PEC cells to exploit their host-guest capabilities. However, the evidence of the establishment of either beneficial or fruitless host-guest interaction between the dyes and the water oxidation catalyst (WOC) is still under investigation. The second non-covalent approach investigated is the π-π interaction between a graphene-functionalized dye and a suitable modified WOC. All the further characterization and PEC applications are in progress. On the other hand, the covalent approach should be the most stable, and with the immobilization of the WOC at a fixed distance from the semiconductor surface, it is possible to avoid the establishment of a detrimental interaction with the semiconductor. We presented the first example of organic-dye-based dyads for photoanode application. These molecules showed excellent efficiencies in oxygen evolution being the highest concerning the actual state of the art for similar systems. The other covalent design proposed has been obtained during my Ph. D. period abroad at Yale University. This innovative design failed in the PEC application, but this molecule exhibited very good performances as simple WOC in electrochemical cells. This means that this WOC has the right potential to oxidize water and can be used in combination with an external source of energy, such as solar panels. However further investigation in the dye portion is required to achieve a better charge transfer for the PEC applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Dryfe, Robert A. W. "Mechanistic photoelectrochemistry." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dean, Frank. "Chalcopyrite photoelectrochemistry." Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/11994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dias, N. L. "Semiconductor photoelectrochemistry." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cooper, Jonathan A. "Studies in photoelectrochemistry." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rudge, Andrew John. "The photoelectrochemistry of platinum." Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rajapakse, R. M. G. "Photoelectrochemistry of colloidal semiconductors." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ushiroda, Shin. "Microwave photoelectrochemistry of silicon." Thesis, University of Bath, 2002. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bradley, Kieren Adam. "Photoelectrochemistry of nanostructured semiconductors." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687604.

Full text
Abstract:
Semiconductors are vital components in the challenge of harvesting solar power to provide sufficient carbon neutral energy for a growing global population. A trend in semiconductor devices is to nanostructure some of the layers in order to obtain improvements in optical and electrical properties. This work focusses on two materials that have been gaining academic and commercial interest over a number of years. Zinc oxide (ZnO) is a wide bandgap semiconductor that can be grown via a number of physical and chemical deposition methods; the work on ZnO builds upon research on a chemical growth route which can create well aligned hexagonal rods with diameters from ~20 nm to Illm, with lengths of hundreds of nanometres to tens of microns. Changes in the growth solution led to either aligned or disordered rods, but the irreproducibility of the technique is evident. The second material studied is indium gallium nitride (InxGa1-xN), a semiconductor which can have its optoelectronic properties tuned by changing the ratio of In to Ga. Tuneable bandgaps are desirable for absorbing the optimum fraction of solar energy. Photoelectrochemistry is used to probe the optoelectronic characteristics of the semiconductors and theoretical models are used to simulate the combination of the optics and electronics in nanostructured electrodes, with waveguiding effects being shown to alter the expected efficiency of photoelectrochemical reactions in nanorods. A model based on the semiconductor continuity equation and Shockley-Read-Hall recombination is developed to describe the time dependent photoelectrochemical current of semiconductors with mid-band defect states, as functions of applied potential and illumination intensity. From the model a novel technique is provided to calculate the position and density of the defect states; the technique is successfully demonstrated on ZnO nanorods for the first time and evaluated for its effectiveness .
APA, Harvard, Vancouver, ISO, and other styles
10

Hüsser, Oskar E. "Photoelectrochemistry at (semi) insulating electrodes /." Zürich, 1987. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8384.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Photoelectrochemistr"

1

Pleskov, Yu V., and Yu Ya Gurevich. Semiconductor Photoelectrochemistry. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

I͡A, Gurevich I͡U. Semiconductor photoelectrochemistry. Edited by Pleskov I͡U V. New York: Consultants Bureau, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Licht, ed. Semiconductor electrodes and photoelectrochemistry. Weinheim: Wiley-VCH, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schiavello, Mario, ed. Photoelectrochemistry, Photocatalysis and Photoreactors. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7725-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

F, Decker, and Scrosati Bruno, eds. New trends in photoelectrochemistry. Oxford: Pergamon Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aruchamy, A. Photoelectrochemistry and Photovoltaics of Layered Semiconductors. Dordrecht: Springer Netherlands, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aruchamy, A., ed. Photoelectrochemistry and Photovoltaics of Layered Semiconductors. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-1301-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Symposium on Photoelectrochemistry (1997 Paris, France). Proceedings of the Symposium on Photoelectrochemistry. Edited by Rajeshwar Krishnan. Pennington, NJ: Electrochemical Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

A, Aruchamy, ed. Photoelectrochemistry and photovoltaics of layered semiconductors. Dordrecht: Kluwer Academic, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schiavello, Mario. Photoelectrochemistry, Photocatalysis and Photoreactors: Fundamentals and Developments. Dordrecht: Springer Netherlands, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photoelectrochemistr"

1

Bockris, John O’M, and Shahed U. M. Khan. "Photoelectrochemistry." In Surface Electrochemistry, 483–575. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3040-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fox, Marye Anne. "Organic Photoelectrochemistry." In Topics in Organic Electrochemistry, 177–225. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-2034-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pleskov, Yu V., and Yu Ya Gurevich. "The Fundamentals of Semiconductor Physics." In Semiconductor Photoelectrochemistry, 1–41. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pleskov, Yu V., and Yu Ya Gurevich. "Light-Sensitive Etching of Semiconductors." In Semiconductor Photoelectrochemistry, 297–322. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pleskov, Yu V., and Yu Ya Gurevich. "Selected Topics in the Photoelectrochemistry of Semiconductors." In Semiconductor Photoelectrochemistry, 323–54. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pleskov, Yu V., and Yu Ya Gurevich. "Conclusions." In Semiconductor Photoelectrochemistry, 355–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pleskov, Yu V., and Yu Ya Gurevich. "Thermodynamic Properties of the Semiconductor/Electrolyte Solution Interface." In Semiconductor Photoelectrochemistry, 43–62. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pleskov, Yu V., and Yu Ya Gurevich. "The Structure of the Electric Double Layer on Semiconductor Electrodes." In Semiconductor Photoelectrochemistry, 63–114. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pleskov, Yu V., and Yu Ya Gurevich. "The Kinetics of Electrochemical Reactions on Semiconductor Electrodes." In Semiconductor Photoelectrochemistry, 115–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pleskov, Yu V., and Yu Ya Gurevich. "Electrochemical Processes Based on Photoexcitation of Reagents in Solution." In Semiconductor Photoelectrochemistry, 159–77. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9078-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photoelectrochemistr"

1

Neppl, S., Y. S. Liu, C. H. Wu, A. Shavorskiy, I. Zegkinoglou, T. Troy, D. S. Slaughter, et al. "Toward Ultrafast In Situ X-Ray Studies of Interfacial Photoelectrochemistry." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.09.wed.p3.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Irani, Rowshanak, Paul Plate, Peter Bogdanoff, Fatwa Firdaus Abdi, Roel van de Krol, and Karsten Harbauer. "Interface Energetics and Photoelectrochemistry of MnOx-modified Ta-O-N Photoanodes." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Irani, Rowshanak, Paul Plate, Peter Bogdanoff, Fatwa Firdaus Abdi, Roel van de Krol, and Karsten Harbauer. "Interface Energetics and Photoelectrochemistry of MnOx-modified Ta-O-N Photoanodes." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parameshwaran, Vijay, Ryan Enck, Roy Chung, Stephen Kelley, Anand Sampath, Meredith Reed, Xiaoqing Xu, and Bruce Clemens. "Photoelectrochemistry of III-V epitaxial layers and nanowires for solar energy conversion." In SPIE Defense + Security, edited by Thomas George, Achyut K. Dutta, and M. Saif Islam. SPIE, 2017. http://dx.doi.org/10.1117/12.2264950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hiesgen, Renate, and Dieter Meissner. "Scanning tunneling microscopy studies of organic and inorganic materials for photovoltaics and photoelectrochemistry." In Optical Materials Technology for Energy Efficiency and Solar Energy, edited by Anne Hugot-Le Goff, Claes-Goeran Granqvist, and Carl M. Lampert. SPIE, 1992. http://dx.doi.org/10.1117/12.130573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oskam, Gerko, Ingrid Rodríguez-Gutiérrez, Manuel Rodríguez-Pérez, Alberto Vega-Poot, and Geonel Rodríguez-Gattorno. "Photoelectrochemistry of Semiconducting Oxide Materials for Solar Water Splitting: Characterization of Charge Carrier Dynamics Using IMPS." In 11th International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.hopv.2019.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Photoelectrochemistr"

1

Mallouk, Thomas E., and Joan M. Redwing. Photoelectrochemistry of Semiconductor Nanowire Arrays. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/967083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thomas E. Mallouk. PHOTOELECTROCHEMISTRY AND PHOTOCATALYSIS IN NANOSCALE INORGANIC CHEMICAL SYSTEMS. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/907952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maggard, Paul A. Photoelectrochemistry, Electronic Structure, and Bandgap Sizes of Semiconducting Cu(I)-Niobates and Cu(I)-Tantalates. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1105011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ROME UNIV (ITALY). International Symposium on New Trends in Photoelectrochemistry Held in Altavilla Milicia (Pa), Italy on 22-26 September 1991. Extended Abstracts. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada244352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography