Journal articles on the topic 'Photoelectrochemical fuel cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Photoelectrochemical fuel cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhou, Zhaoyu, Zhongyi Wu, Qunjie Xu, and Guohua Zhao. "A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production." Journal of Materials Chemistry A 5, no. 48 (2017): 25450–59. http://dx.doi.org/10.1039/c7ta08112j.
Full textLi, Xinyuan, Guowen Wang, Lin Jing, Wei Ni, Huan Yan, Chao Chen, and Yi-Ming Yan. "A photoelectrochemical methanol fuel cell based on aligned TiO2 nanorods decorated graphene photoanode." Chemical Communications 52, no. 12 (2016): 2533–36. http://dx.doi.org/10.1039/c5cc09929c.
Full textYan, Yiming, Jianmei Fang, Zhiyu Yang, Jinshuo Qiao, Zhenhua Wang, Qiyao Yu, and Kening Sun. "Photoelectrochemical oxidation of glucose for sensing and fuel cell applications." Chemical Communications 49, no. 77 (2013): 8632. http://dx.doi.org/10.1039/c3cc43189d.
Full textHao, Shuai, He Zhang, Xiaoxuan Sun, Junfeng Zhai, and Shaojun Dong. "A Photoelectrochemical Fuel Cell Based on a CuO Photocathode for Sustainable Resources Utilization." ChemElectroChem 7, no. 22 (November 16, 2020): 4649–54. http://dx.doi.org/10.1002/celc.202001309.
Full textWang, Yanhu, Lina Zhang, Kang Cui, Caixia Xu, Hao Li, Hong Liu, and Jinghua Yu. "Solar driven electrochromic photoelectrochemical fuel cells for simultaneous energy conversion, storage and self-powered sensing." Nanoscale 10, no. 7 (2018): 3421–28. http://dx.doi.org/10.1039/c7nr09275j.
Full textShoikhedbrod, Michael. "Use of the Photoelectrolysis of Ordinary Water Powered by the Light Energy for the Non-Stop Operation of the Electric Car Engine." Journal of Electrical Engineering and Electronics Design 1, no. 1 (June 28, 2023): 10–15. http://dx.doi.org/10.48001/joeeed.2023.1110-15.
Full textGai, Panpan, Shuxia Zhang, Wen Yu, Haiyin Li, and Feng Li. "Light-driven self-powered biosensor for ultrasensitive organophosphate pesticide detection via integration of the conjugated polymer-sensitized CdS and enzyme inhibition strategy." Journal of Materials Chemistry B 6, no. 42 (2018): 6842–47. http://dx.doi.org/10.1039/c8tb02286k.
Full textGai, Panpan, Xinke Kong, Shuxia Zhang, Panpan Song, and Feng Li. "Photo-driven self-powered biosensor for ultrasensitive microRNA detection via DNA conformation-controlled co-sensitization behavior." Chemical Communications 56, no. 52 (2020): 7116–19. http://dx.doi.org/10.1039/d0cc03039b.
Full textZhou, Chunhong, Ruiting Wen, Jiuying Tian, and Jusheng Lu. "Isocarbophos determination using a nanozyme-catalytic photoelectrochemical fuel cell-based aptasensor." Microchemical Journal 190 (July 2023): 108662. http://dx.doi.org/10.1016/j.microc.2023.108662.
Full textDoukas, Elias, Paraskevi Balta, Dimitrios Raptis, George Avgouropoulos, and Panagiotis Lianos. "A Realistic Approach for Photoelectrochemical Hydrogen Production." Materials 11, no. 8 (July 24, 2018): 1269. http://dx.doi.org/10.3390/ma11081269.
Full textWu, Weibing, Wei Liu, Wei Mu, and Yulin Deng. "Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study." Journal of Power Sources 318 (June 2016): 86–92. http://dx.doi.org/10.1016/j.jpowsour.2016.03.074.
Full textIhssen, Julian, Artur Braun, Greta Faccio, Krisztina Gajda-Schrantz, and Linda Thöny-Meyer. "Light Harvesting Proteins for Solar Fuel Generation in Bioengineered Photoelectrochemical Cells." Current Protein & Peptide Science 15, no. 4 (April 2014): 374–84. http://dx.doi.org/10.2174/1389203715666140327105530.
Full textHilbrands, Adam, and Kyoung-Shin Choi. "(Invited) Photoelectrochemical Glycerol Oxidation to Value-Added Commodity Chemicals Using BiVO4-Based Photoanodes." ECS Meeting Abstracts MA2022-01, no. 36 (July 7, 2022): 1549. http://dx.doi.org/10.1149/ma2022-01361549mtgabs.
Full textRen, Kai, Yong X. Gan, Efstratios Nikolaidis, Sharaf Al Sofyani, and Lihua Zhang. "Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of TiO2 Nanotube Anode." ISRN Materials Science 2013 (March 20, 2013): 1–7. http://dx.doi.org/10.1155/2013/682516.
Full textGan, Yong X., Bo J. Gan, Evan Clark, Lusheng Su, and Lihua Zhang. "Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell." Materials Research Bulletin 47, no. 9 (September 2012): 2380–88. http://dx.doi.org/10.1016/j.materresbull.2012.05.049.
Full textHuang, Mingjuan, Chunhong Zhou, Jiuying Tian, Ke Yang, Han Yang, and Jusheng Lu. "Self-powered aptasensing for prostate specific antigen based on a membraneless photoelectrochemical fuel cell." Biosensors and Bioelectronics 165 (October 2020): 112357. http://dx.doi.org/10.1016/j.bios.2020.112357.
Full textChong, Ruifeng, Baoyun Wang, Deliang Li, Zhixian Chang, and Ling Zhang. "Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell." Solar Energy Materials and Solar Cells 160 (February 2017): 287–93. http://dx.doi.org/10.1016/j.solmat.2016.10.052.
Full textBhanawat, Abhinav, Keyong Zhu, and Laurent Pilon. "How do bubbles affect light absorption in photoelectrodes for solar water splitting?" Sustainable Energy & Fuels 6, no. 3 (2022): 910–24. http://dx.doi.org/10.1039/d1se01730f.
Full textKadosh, Yanir, Eli Korin, and Armand Bettelheim. "Room-temperature conversion of the photoelectrochemical oxidation of methane into electricity at nanostructured TiO2." Sustainable Energy & Fuels 5, no. 1 (2021): 127–34. http://dx.doi.org/10.1039/d0se00984a.
Full textJeng, King-Tsai, Yu-Chang Liu, Yung-Fang Leu, Yu-Zhen Zeng, Jen-Chren Chung, and Tsong-Yang Wei. "Membrane electrode assembly-based photoelectrochemical cell for hydrogen generation." International Journal of Hydrogen Energy 35, no. 20 (October 2010): 10890–97. http://dx.doi.org/10.1016/j.ijhydene.2010.07.058.
Full textAndrade, Tatiana S., Antero R. S. Neto, Francisco G. E. Nogueira, Luiz C. A. Oliveira, Márcio C. Pereira, and Panagiotis Lianos. "Photo-Charging a Zinc-Air Battery Using a Nb2O5-CdS Photoelectrode." Catalysts 12, no. 10 (October 15, 2022): 1240. http://dx.doi.org/10.3390/catal12101240.
Full textBarczuk, Piotr J., Adam Lewera, Krzysztof Miecznikowski, Pawel Kulesza, and Jan Augustynski. "Visible Light-Driven Photoelectrochemical Conversion of the By-Products of the Ethanol Fuel Cell into Hydrogen." Electrochemical and Solid-State Letters 12, no. 12 (2009): B165. http://dx.doi.org/10.1149/1.3236383.
Full textZhao, Qianwen, Zhen Li, Qiang Deng, Licai Zhu, Suilian Luo, and Hong Li. "Paired photoelectrocatalytic reactions of glucose driven by a photoelectrochemical fuel cell with assistance of methylene blue." Electrochimica Acta 210 (August 2016): 38–44. http://dx.doi.org/10.1016/j.electacta.2016.05.117.
Full textWang, Qian, Takashi Hisatomi, Masao Katayama, Tsuyoshi Takata, Tsutomu Minegishi, Akihiko Kudo, Taro Yamada, and Kazunari Domen. "Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges." Faraday Discussions 197 (2017): 491–504. http://dx.doi.org/10.1039/c6fd00184j.
Full textLiu, Ya, Dan Lei, Xiaoqi Guo, Tengfei Ma, Feng Wang, and Yubin Chen. "Scale Effect on Producing Gaseous and Liquid Chemical Fuels via CO2 Reduction." Energies 15, no. 1 (January 4, 2022): 335. http://dx.doi.org/10.3390/en15010335.
Full textZhang, Bingqing, Qingsong Zhang, Lihua He, Yifu Xia, Fuhong Meng, Guoliang Liu, Quanzi Pan, et al. "Photoelectrochemical Oxidation of Glucose on Tungsten Trioxide Electrode for Non-Enzymatic Glucose Sensing and Fuel Cell Applications." Journal of The Electrochemical Society 166, no. 8 (2019): B569—B575. http://dx.doi.org/10.1149/2.0221908jes.
Full textHe, Lihua, Quanbing Liu, Shenjie Zhang, Xiangtian Zhang, Chunli Gong, Honghui Shu, Guangjin Wang, Hai Liu, Sheng Wen, and Bingqing Zhang. "High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application." Electrochemistry Communications 94 (September 2018): 18–22. http://dx.doi.org/10.1016/j.elecom.2018.07.021.
Full textGutierrez, Ronald R., and Sophia Haussener. "Modeling and design guidelines of high-temperature photoelectrochemical devices." Sustainable Energy & Fuels 5, no. 7 (2021): 2169–80. http://dx.doi.org/10.1039/d0se01749c.
Full textMilczarek, Grzegorz, Atsuo Kasuya, Sergiy Mamykin, T. Arai, K. Shinoda, and K. Tohji. "Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production." International Journal of Hydrogen Energy 28, no. 9 (September 2003): 919–26. http://dx.doi.org/10.1016/s0360-3199(02)00171-4.
Full textXu, K., A. Chatzitakis, E. Vøllestad, Q. Ruan, J. Tang, and T. Norby. "Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell." International Journal of Hydrogen Energy 44, no. 2 (January 2019): 587–93. http://dx.doi.org/10.1016/j.ijhydene.2018.11.030.
Full textSwierk, John R., Dalvin D. Méndez-Hernández, Nicholas S. McCool, Paul Liddell, Yuichi Terazono, Ian Pahk, John J. Tomlin, et al. "Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells." Proceedings of the National Academy of Sciences 112, no. 6 (January 12, 2015): 1681–86. http://dx.doi.org/10.1073/pnas.1414901112.
Full textZhang, Jun, Ankang Fang, Jili Zheng, Penglin Yang, Shuai Lv, Chuanxiao Cheng, Peiyuan Xu, and Shuang Cao. "Flowable capacitive cathode for efficiency carbon dioxide reduction in photoelectrochemical cell." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45, no. 3 (June 19, 2023): 7294–302. http://dx.doi.org/10.1080/15567036.2023.2220678.
Full textLaTempa, Thomas J., Sanju Rani, Ningzhong Bao, and Craig A. Grimes. "Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell." Nanoscale 4, no. 7 (2012): 2245. http://dx.doi.org/10.1039/c2nr00052k.
Full textDu, Chun, Jie Yang, Jinhui Yang, Yunkun Zhao, Rong Chen, and Bin Shan. "An iron oxide -copper bismuth oxide photoelectrochemical cell for spontaneous water splitting." International Journal of Hydrogen Energy 43, no. 51 (December 2018): 22807–14. http://dx.doi.org/10.1016/j.ijhydene.2018.10.170.
Full textAdamopoulos, Panagiotis Marios, Ioannis Papagiannis, Dimitrios Raptis, and Panagiotis Lianos. "Photoelectrocatalytic Hydrogen Production Using a TiO2/WO3 Bilayer Photocatalyst in the Presence of Ethanol as a Fuel." Catalysts 9, no. 12 (November 21, 2019): 976. http://dx.doi.org/10.3390/catal9120976.
Full textKudchikar, Tushar, Samsudeen Naina Mohamed, and Priya Dharshini Palanivel. "NiO & CuO nanocomposites coated photoanode for conversion of CO2 into solar fuel using photoelectrochemical cell." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45, no. 4 (September 1, 2023): 10926–36. http://dx.doi.org/10.1080/15567036.2023.2252778.
Full textSu'ait, M. S., A. Ahmad, K. H. Badri, N. S. Mohamed, M. Y. A. Rahman, C. L. Azanza Ricardo, and P. Scardi. "The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application." International Journal of Hydrogen Energy 39, no. 6 (February 2014): 3005–17. http://dx.doi.org/10.1016/j.ijhydene.2013.08.117.
Full textMahmoud, Mohamed, Amer S. El-Kalliny, and Gaetano Squadrito. "Stacked titanium dioxide nanotubes photoanode facilitates unbiased hydrogen production in a solar-driven photoelectrochemical cell powered with a microbial fuel cell treating animal manure wastewater." Energy Conversion and Management 254 (February 2022): 115225. http://dx.doi.org/10.1016/j.enconman.2022.115225.
Full textKim, Tae Gyun, Jung Hwan Lee, Gayea Hyun, Sungsoon Kim, Do Hyung Chun, SunJe Lee, Gwangmin Bae, Hyung-Suk Oh, Seokwoo Jeon, and Jong Hyeok Park. "Monolithic Lead Halide Perovskite Photoelectrochemical Cell with 9.16% Applied Bias Photon-to-Current Efficiency." ACS Energy Letters 7, no. 1 (December 17, 2021): 320–27. http://dx.doi.org/10.1021/acsenergylett.1c02326.
Full textSantos Andrade, Tatiana, Ioannis Papagiannis, Vassilios Dracopoulos, Márcio César Pereira, and Panagiotis Lianos. "Visible-Light Activated Titania and Its Application to Photoelectrocatalytic Hydrogen Peroxide Production." Materials 12, no. 24 (December 17, 2019): 4238. http://dx.doi.org/10.3390/ma12244238.
Full textPapagiannis, Ioannis, Nikolaos Balis, Vassilios Dracopoulos, and Panagiotis Lianos. "Photoelectrocatalytic Hydrogen Peroxide Production Using Nanoparticulate WO3 as Photocatalyst and Glycerol or Ethanol as Sacrificial Agents." Processes 8, no. 1 (December 30, 2019): 37. http://dx.doi.org/10.3390/pr8010037.
Full textPai, Yi-Hao, and Chih-Teng Tsai. "Synthesis and characterization of bifunctional β-MnO2-based Pt/C photoelectrochemical cell for hydrogen production." International Journal of Hydrogen Energy 38, no. 11 (April 2013): 4342–50. http://dx.doi.org/10.1016/j.ijhydene.2013.02.038.
Full textImperiyka, M., A. Ahmad, S. A. Hanifah, N. S. Mohamed, and M. Y. A. Rahman. "Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application." International Journal of Hydrogen Energy 39, no. 6 (February 2014): 3018–24. http://dx.doi.org/10.1016/j.ijhydene.2013.03.059.
Full textTahir, Muhammad Bilal. "Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation." International Journal of Hydrogen Energy 44, no. 32 (June 2019): 17316–22. http://dx.doi.org/10.1016/j.ijhydene.2019.01.067.
Full textAnuratha, Krishnan Shanmugam, Mia Rinawati, Tzu-Ho Wu, Min-Hsin Yeh, and Jeng-Yu Lin. "Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution." Nanomaterials 12, no. 17 (August 27, 2022): 2970. http://dx.doi.org/10.3390/nano12172970.
Full textAbdelazeez, Ahmed Adel A., Amira Ben Gouider Trabelsi, Fatemah H. Alkallas, Samira Elaissi, and Mohamed Rabia. "Facile Preparation of Flexible Lateral 2D MoS2 Nanosheets for Photoelectrochemical Hydrogen Generation and Optoelectronic Applications." Photonics 9, no. 9 (September 5, 2022): 638. http://dx.doi.org/10.3390/photonics9090638.
Full textYin, Xiang, Qiong Liu, Yahui Yang, Yang Liu, Keke Wang, Yaomin Li, Dongwei Li, Xiaoqing Qiu, Wenzhang Li, and Jie Li. "An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting." International Journal of Hydrogen Energy 44, no. 2 (January 2019): 594–604. http://dx.doi.org/10.1016/j.ijhydene.2018.11.032.
Full textStoll, T., G. Zafeiropoulos, and M. N. Tsampas. "Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants." International Journal of Hydrogen Energy 41, no. 40 (October 2016): 17807–17. http://dx.doi.org/10.1016/j.ijhydene.2016.07.230.
Full textYong, Zi-Jun, Sze-Mun Lam, Jin-Chung Sin, and Abdul RahmanMohamed. "Feasibility study of municipal wastewater removal synchronized with electricity generation via solar-driven photocatalytic fuel cell with Bi2WO6/ZnO nanorods array photoanode." IOP Conference Series: Earth and Environmental Science 945, no. 1 (December 1, 2021): 012004. http://dx.doi.org/10.1088/1755-1315/945/1/012004.
Full textSun, Yan, and Kang-Ping Yan. "Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell." International Journal of Hydrogen Energy 39, no. 22 (July 2014): 11368–75. http://dx.doi.org/10.1016/j.ijhydene.2014.05.115.
Full text