Academic literature on the topic 'Photodiode avalanche'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photodiode avalanche.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Photodiode avalanche"

1

Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V., et al. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes." Technical Physics Letters 48, no. 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.

Full text
Abstract:
Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage Vbr 70-80 V. At the applied bias of 0.9 Vbr, the dark current was 75-200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5A/W at 1550 nm. Keywords: avalanche photodiode, InAlAs/InGaAs, mesa structure, dark current.
APA, Harvard, Vancouver, ISO, and other styles
2

Giggenbach, Dirk. "Free-Space Optical Data Receivers with Avalanche Detectors for Satellite Downlinks Regarding Background Light." Sensors 22, no. 18 (September 7, 2022): 6773. http://dx.doi.org/10.3390/s22186773.

Full text
Abstract:
Data receiving frontends using avalanche photodiodes are used in optical free-space communications for their effective sensitivity, large detection area, and uncomplex operation. Precise control of the high voltage necessary to trigger the avalanche effect inside the photodiode depends on the semiconductor’s excess noise factor, temperature, received signal power, background light, and also the subsequent thermal noise behavior of the transimpedance amplifier. Several prerequisites must be regarded and are explained in this document. We focus on the application of using avalanche photodiodes as data receivers for the on/off-keying of modulated bit streams with a 50% duty cycle. Also, experimental verification of the performance of the receiver with background light is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
3

Аруев, П. Н., В. П. Белик, В. В. Забродский, Е. М. Круглов, А. В. Николаев, В. И. Сахаров, И. Т. Серенков, В. В. Филимонов, and Е. В. Шерстнев. "Квантовый выход кремниевого лавинного фотодиода в диапазоне длин волн 120-170 nm." Журнал технической физики 90, no. 8 (2020): 1386. http://dx.doi.org/10.21883/jtf.2020.08.49552.44-20.

Full text
Abstract:
The external quantum yield of silicon avalanche photodiode in the wavelength range of 120-170 nm was performed. It was shown that the engineered avalanche photodiode has the external quantum yield of 24-150 electron/proton under reverse bias voltage of 230-345 V, respectively. The testing of worked out avalanche photodiode by means of pulse flash of 280 and 340 nm wavelength demonstrates the speed, corresponding to the bandwidth not less than 25 MHz.
APA, Harvard, Vancouver, ISO, and other styles
4

Aruev P. N., Belik V. P., Blokhin A. A., Zabrodskii V. V., Nikolaev A. V., Sakharov V. I., Serenkov I. T., Filimonov V. V., and Sherstnev E. V. "In memoriam of E.M. Kruglov and V.V. Filimonov Quantum yield of an avalanche silicon photodiode in the 114-170 and 210-1100 nm wavelength ranges." Technical Physics Letters 48, no. 3 (2022): 3. http://dx.doi.org/10.21883/tpl.2022.03.52871.19026.

Full text
Abstract:
An avalanche silicon photodiode has been developed for the near IR, visible, UV and VUV light ranges. The external quantum efficiency has been studied in the 114-170 and 210-1100 nm ranges. It has been demonstrated that the avalanche photodiode reaches the quantum yield of 29 to 9300 electrons/photon at the 160 nm wavelength and bias voltage of 190-303 V, respectively. Keywords: avalanche photodiode, vacuum ultraviolet, visible light range, near IR, silicon
APA, Harvard, Vancouver, ISO, and other styles
5

Deeb, Hazem, Kristina Khomyakova, Andrey Kokhanenko, Rahaf Douhan, and Kirill Lozovoy. "Dependence of Ge/Si Avalanche Photodiode Performance on the Thickness and Doping Concentration of the Multiplication and Absorption Layers." Inorganics 11, no. 7 (July 15, 2023): 303. http://dx.doi.org/10.3390/inorganics11070303.

Full text
Abstract:
In this article, the performance and design considerations of the planar structure of germanium on silicon avalanche photodiodes are presented. The dependences of the breakdown voltage, gain, bandwidth, responsivity, and quantum efficiency on the reverse bias voltage for different doping concentrations and thicknesses of the absorption and multiplication layers of germanium on the silicon avalanche photodiode were simulated and analyzed. The study revealed that the gain of the avalanche photodiode is directly proportional to the thickness of the multiplication layer. However, a thicker multiplication layer was also associated with a higher breakdown voltage. The bandwidth of the device, on the other hand, was inversely proportional to the product of the absorption layer thickness and the carrier transit time. A thinner absorption layer offers a higher bandwidth, but it may compromise responsivity and quantum efficiency. In this study, the dependence of the photodetectors’ operating characteristics on the doping concentration used for the multiplication and absorption layers is revealed for the first time.
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Anand, and Ravinder Pal. "Infrared Avalanche Photodiode Detectors." Defence Science Journal 67, no. 2 (March 14, 2017): 159. http://dx.doi.org/10.14429/dsj.67.11183.

Full text
Abstract:
This study presents on the design, fabrication and characteristics of HgCdTe mid-wave infrared avalanche photodiode (MWIR APD). The gain of 800 at - 8 V bias is measured in n+-ν-p+ detector array with pitch size of 30 μm. The gain independent bandwidth of 6 MHz is achieved in the fabricated device. This paper also covers the status of HgCdTe and III-V material based IR-APD technology. These APDs having high internal gain and bandwidth are suitable for the detection of attenuated optical signals such as in the battle field conditions/long range imaging in defence and space applications. It provides a combined solution for both detection and amplification if the detector receives a very weak optical signal. HgCdTe based APDs provide high avalanche gain with low excess noise, high quantum efficiency, low dark current and fast response time.
APA, Harvard, Vancouver, ISO, and other styles
7

Pauchard, A., P. A. Besse, M. Bartek, R. F. Wolffenbuttel, and R. S. Popovic. "Ultraviolet-selective avalanche photodiode." Sensors and Actuators A: Physical 82, no. 1-3 (May 2000): 128–34. http://dx.doi.org/10.1016/s0924-4247(99)00326-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hobbs, Matthew James, and Jon R. Willmott. "InGaAs avalanche photodiode thermometry." Measurement Science and Technology 31, no. 1 (October 25, 2019): 014005. http://dx.doi.org/10.1088/1361-6501/ab41c6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Levi, Barbara Goss. "High‐Gain Avalanche Photodiode." Physics Today 50, no. 4 (April 1997): 21–22. http://dx.doi.org/10.1063/1.881723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cao, Ye, Tarick Blain, Jonathan D. Taylor-Mew, Longyan Li, Jo Shien Ng, and Chee Hing Tan. "Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region." Applied Physics Letters 122, no. 5 (January 30, 2023): 051103. http://dx.doi.org/10.1063/5.0139495.

Full text
Abstract:
An extremely low noise Separate Absorption and Multiplication Avalanche Photodiode (SAM-APD), consisting of a GaAs0.52Sb0.48 absorption region and an Al0.85Ga0.15As0.56Sb0.44 avalanche region, is reported. The device incorporated an appropriate doping profile to suppress tunneling current from the absorption region, achieving a large avalanche gain, ∼130 at room temperature. It exhibits extremely low excess noise factors of 1.52 and 2.48 at the gain of 10 and 20, respectively. At the gain of 20, our measured excess noise factor of 2.48 is more than three times lower than that in the commercial InGaAs/InP SAM-APD. These results are corroborated by a Simple Monte Carlo simulation. Our results demonstrate the potential of low excess noise performance from GaAs0.52Sb0.48/Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Photodiode avalanche"

1

Ong, Daniel Swee Guan. "The type-II/InA1As avalanche photodiode and optimisation of avalanche photodiodes in receiver systems." Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554392.

Full text
Abstract:
Calculations based on a rigorous analytical model arc carried out to optimise the width of the avalanche region, w, in high-speed direct-detection avalanche photodiode- . based optical receivers. The model includes the effects of intersymbol interference (ISI), tunnelling current, avalanche noise, as well as dead space. The sensitivity of InP, InA1As and InAs avalanche photodiodes (APDs) were investigated. The interplay among the factors controlling the optimum sensitivity is confirmed. Results show that for a given transmission speed, as the device width decreases below the optimum value, increased tunnelling current outweighs avalanche noise reduction due to dead space, resulting in poorer receiver sensitivity. As the device width increases above its optimum value, the receiver sensitivity worsens as bandwidth decreases, causing TST to dominate avalanche noise and tunnelling current. For a 10 Gb/s system and a bit-error rate of 10.12, an optimum w of 0.191lm is predicted, yielding an optimum sensitivity of -28.1 dBm at an M of 13 for InP APDs. InAIAs APDs were found to provide an improvement of 0.5 dBm over InP at an M of 15 and w of 0.15Ilm. InAs APDs have been calculated to yield an optimum sensitivity between -29.6 and -30.2 dBm at an M of 76 and w of 4.2Ilm. A type-II InGaAs/GaAsSb superlattice p-i-n diode and separate absorption and multiplication (SAM) APD using TnAlAs as the multiplication region (both lattice- matched to InP) is reported. Optical and electrical characterisations of the devices are performed. The devices exhibited a cut-off wavelength of 2.511 m. Unity-gain responsivities of 0.53 A/W and 0.47 A/W have been obtained for the p-i-n diode and APD, respectively, when illuminated with 2.004f.lm wavelength light. Detectivity at this wavelength was calculated to be 7.1 x 10Y cmHzY'l/W for the p-i-n diode and 5.9x I O~ cmHz'f,/W for the APD. Excess noise measurements conducted on the APD show that the characteristics follow that of an In AlAs p-i-n diode with the same multiplication layer thickness, giving an effective k of 0.2. Significant multiplication factors, above 50 at 290K and above 200 at 200K, have also been achieved by the APD.
APA, Harvard, Vancouver, ISO, and other styles
2

Virot, Léopold. "Développement de photodiodes à avalanche en Ge sur Si pour la détection faible signal et grande vitesse." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112414/document.

Full text
Abstract:
Afin d’adresser la problématique liée aux limitations des interconnections métalliques en termes de débits notamment, la photonique Si s’est imposée comme une technologie de choix. Un des composants de base des circuits photonique Si est le photodétecteur : Il permet de convertir un signal optique en signal électrique. Les photodétecteurs à base de Ge sur Si ont montré leur potentiel et offrent la meilleure alternative aux photodétecteurs III-V, pour une intégration dans les circuits photoniques Si.Dans ce contexte, les photodiodes à base de Ge su Si ont été étudiées. L’optimisation des photodiodes p-i-n a permis l’obtention de résultats à l’état de l’art. Une nouvelle approche utilisant une double hétéro-jonction latérale Si/Ge/Si a été proposée afin d’augmenter la responsivité mais aussi afin de proposer une meilleure solution d’intégration, avec les modulateurs Si notamment. Pour augmenter encore la sensibilité des récepteurs, l’utilisation de photodiodes à avalanche est cependant nécessaire. La structure SACM (Separate Absorption Charge Multiplication), combinant le faible bruit de multiplication du Si et l’absorption du Ge aux longueurs d’onde télécom, a d’abord été étudiée. Des modèles ont été développées afin d’optimiser le fonctionnement, et ces photodiodes ont été fabriquées et caractérisées. Les résultats obtenus sur des photodiodes éclairées par la surface (produit Gain-Bande passante de 560GHz à seulement -11V) sont très encourageant pour une intégration avec un guide d’onde. D’autre part, les photodiodes p-i-n en Ge sur Si, ont été étudiées en avalanche. La faible largeur de la zone intrinsèque a permis de diminuer le bruit de multiplication par effet « dead space », et le fonctionnement à 10Gbits/s pour un gain de 20 et une puissance optique de seulement -26dBm, pour une tension de -7V, sans utilisation d’amplificateur (TIA), a pu être démontré. Ces développements ouvrent ainsi la voie vers des récepteurs rapides, à faible consommation électrique et grande sensibilité
To address the issue related to the limitations of metallic interconnects especially in terms of bitrate, Si photonics has become the technology of choice. One of the basic components of photonic circuits is the photodetector: It allows to convert an optical signal into an electrical signal. Photodetectors based on Ge on Si have shown their potential and offer the best alternative to III-V photodetectors, for integration into Si photonic circuits. In this context, the Ge on Si photodiodes have been studied. The optimization of pin photodiodes enabled the achievement of state of the art results. A new approach using a double lateral Si/Ge/Si heterojunction was proposed to increase the responsivity but also to provide a better integration solution, especially with Si modulators. To further increase the sensitivity of the receivers, the use of avalanche photodiodes, is however necessary. SACM (Separate Absorption Charge Multiplication) structure, combining Si low multiplication noise and Ge absorption at telecom wavelengths was first studied. Models have been developed to optimize the devices, and the photodiodes have been fabricated and characterized. The results obtained on the surface illuminated photodiodes (Gain-bandwidth product of 560GHz only -11V) are very encouraging for waveguide integration. On the other hand, Ge on Si pin photodiodes have been studied in avalanche. The small width of the intrinsic region contributed to the multiplication noise reduction thanks to "dead space" effect, and operation at 10Gbps for a gain of 20 and an optical power of -26dBm at only-7V, without using amplifier (TIA), have been demonstrated. These developments open the way to fast, low power consumption and high sensitivity receivers
APA, Harvard, Vancouver, ISO, and other styles
3

Fyath, Raad Sami. "Advanced avalanche photodiode receivers in optical communications." Thesis, Bangor University, 1990. https://research.bangor.ac.uk/portal/en/theses/advanced-avalanche-photodiode-receivers-in-optical-communications(7774537f-4772-4a52-b216-d04db73b3781).html.

Full text
Abstract:
This thesis is concerned with a detailed study of the performance of superlattice avalanche photodiodes (SAPDs) and the implications for high bit rate direct-detection optical fibre communication systems. In these advanced detectors the electron to hole ionisation rate ratio is artificially enhanced through selective heating of the electron distribution to reduce the excess noise associated with the randomness of the avalanche multiplication and to ensure high gain-bandwidth product. Thus SAPDs are suitable for long wavelength applications (1.3-1.6 pm) where most compound semiconductor materials otherwise have comparable electron and hole ionisation rates. A comprehensive discrete ionisation model is developed to assess the performance of SAPDs; emphasis being placed on the gain, excess noise factor, gain moment generating function (MGF), and gain-bandwidth product. The model is quite flexible and it is found that other device impairments such as dark current and the number of ionisations per stage caused by the injected carrier can be readily incorporated into the formulation. The performance of optical receivers employing SAPDs is examined using a Gaussian approximation (GA) and taking into account the influence of various device impairments. To assess the accuracy of GA a rigorous statistical analysis is developed using a MGF formulation. New signal designs for optical communications devised specifically for APD receivers are described. These signals achieve simultaneously both zero intersymbol interference and zero telegraph distortion with respect to a depressed optimum threshold and are thus well suited to untimed transmission. Importantly, they also offer improved tolerance to alignment jitter when they used in conventional fully retimed receivers.
APA, Harvard, Vancouver, ISO, and other styles
4

Abautret, Johan. "Conception, fabrication et caractérisation de photodiodes à avalanche InSb." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20232.

Full text
Abstract:
Cette thèse, réalisée à l'IES en partenariat avec la société SOFRADIR et le CEA-LETI, avait pour objectif d'évaluer les potentialités du matériau InSb pour la réalisation de photodiodes à avalanche (APD) moyen infrarouge (MWIR). Par l'étude du design (simulations TCAD), de la fabrication technologique en configuration MESA (voie humide, voie sèche, passivation), puis par la caractérisation électrique des dispositifs, ce travail de thèse s'est attaché à explorer l'ensemble des éléments nécessaires au développement de cette filière de photodétecteurs. Les photodiodes InSb fabriquées par épitaxie par jets moléculaires (EJM) ont présenté des densités de courant d'obscurité sur des monoléments de 10 à 30nA/cm² à -50mV et à 77K. Ces performances positionnent ces photodiodes à l'état de l'art pour la filière épi-InSb et souligne ainsi l'excellente qualité cristalline des couches épitaxiées. Les premières APDs InSb ont ensuite été épitaxiées et caractérisées. Avec une pure injection d'électrons nous avons observé une augmentation exponentielle du gain dans l'InSb, signature d'une multiplication initiée exclusivement par les électrons. Un premier gain de 3 à -4V a été mesuré. Cette asymétrie du processus d'ionisation par impact indiquerait la possibilité d'obtenir du gain sans excès de bruit, propriété indispensable pour les applications d'imagerie faible flux visée. A ce stade de l'étude, les performances des APDs InSb sont limitées par un dopage résiduel trop élevé dans les zones de multiplications réalisées, entrainant une forte contribution du courant tunnel bande à bande. Néanmoins, ces travaux fournissent tous les éléments d'orientations nécessaires au développement des APDs InSb dont le point clé est définitivement l'obtention d'un faible dopage résiduel dans la zone de multiplication
This thesis realized at the IES, with the collaboration of SOFRADIR and the CEA-LETI, had for objective the potential evaluation of the InSb material for the realization of midwave infrared (MWIR) avalanche photodiodes (APD). Studying the design (TCAD modeling), the MESA technological fabrication (wet etching, dry etching, passivation) and analyzing the electrical characterizations of devices fabricated, this work has investigated all the scientific elements necessary for the development of this photodetector technology. The MBE (Molecular Beam Epitaxy) grow InSb photodiodes have shown monopixel dark current density from 10 to 30nA/cm² at -50mV and 77K. These performances are at the state of the art for InSb epi-diodes and highlight the excellent crystal quality of the epitaxial layers. The first InSb APDs were grown and characterized. With a pure electron injection, we have observed an exponential increase of the gain, signature of a single carrier multiplication exclusively initiated by the electrons. A gain value of 3 was measured at -4V. This asymmetrical aspect of the impact ionization process would indicate the possibility to obtain a gain without excess noise. This is fundamental for the intended imaging applications. At this stage, InSb APD performances are limited by a too high residual doping level, resulting in a strong band to band tunneling current. Nevertheless, this work provides all the milestones needed for the InSb APD development where the key point is undoubtedly the getting of low residual doping level in the multiplication layer
APA, Harvard, Vancouver, ISO, and other styles
5

Strasburg, Jana Dee. "Characterization of avalanche photodiode arrays for temporally resolved photon counting /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gouy, Jean-Philippe. "Etude comparative de la photodiode PIN, de la photodiode à avalanche et du photoconducteur sur matériaux III-V." Lille 1, 1989. http://www.theses.fr/1989LIL10058.

Full text
Abstract:
L'objet de cette thèse est de présenter un certain nombre d'outils théoriques et expérimentaux pour l'évaluation des performances de photodétecteurs, et de les appliquer à l'étude comparative de la photodiode pin, de la photodiode à avalanche et du photoconducteur, fabriqué sur matériaux III-V. Dans ce but, des logiciels de simulation des deux sortes de photodiodes ont été mis au point ainsi que deux méthodes de mesure ; l'une concernant les réponses impulsionnelles de photodétecteurs, l'autre la mesure du niveau de bruit d'éclairement
APA, Harvard, Vancouver, ISO, and other styles
7

Haralson, Joe Nathan II. "Design, analysis, and macroscopic modeling of high speed photodetectors emphasizing the joint opening effect avalanche photodiode and the lateral P-I-N photodiode." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/14940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoo, Dongwon. "Growth and Characterization of III-Nitrides Materials System for Photonic and Electronic Devices by Metalorganic Chemical Vapor Deposition." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16220.

Full text
Abstract:
A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (λ < 290 nm). These intrinsically solar-blind UV APDs will not require filters to operate in the solar-blind spectral regime of λ < 290 nm. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates, a high density of defects is usually introduced during the growth; thereby, causing a device failure by premature microplasma, which has been a major issue for GaN-based APDs. The extensive research on epitaxial growth and optimization of Alx Ga 1-x N (0 ≤ x ≤ 1) grown on low dislocation density native bulk III-N substrates have brought UV APDs into realization. GaN and AlGaN UV p-i-n APDs demonstrated first and record-high true avalanche gain of > 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n - type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and lower forward resistance due to the reduction of current crowding at the bottom n -type layer. The AlGaN:Si nucleation layer was proven to provide excellent electrical properties while also acting as a good buffer role for subsequent GaN growth. The reverse breakdown voltage for a relatively thin 2.5 μm-thick i -region was found to be over -400V.
APA, Harvard, Vancouver, ISO, and other styles
9

Mages, Phillip. "III-V to Si wafer fusion for the fused Si/InGaAs avalanche photodiode /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Egner, Joanna C., Michael Groza, Arnold Burger, Keivan G. Stassun, Vladimir Buliga, Liviu Matei, Julia G. Bodnarik, Ashley C. Stowe, and Thomas H. Prettyman. "Integration of a (6)LilnSe(2) thermal neutron detector into a CubeSat instrument." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2016. http://hdl.handle.net/10150/624360.

Full text
Abstract:
We present a preliminary design for a neutron detection system that is compact, lightweight, and low power consuming, utilizing the CubeSat platform making it suitable for space-based applications. This is made possible using the scintillating crystal lithium indium diselenide ((LiInSe2)-Li-6), the first crystal to include Li-6 in the crystalline structure, and a silicon avalanche photodiode. The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. A principal aim of this work is to demonstrate the feasibility of such a neutron detection system within a CubeSat platform. The entire end-to-end system presented here is 10 x 10 x 15 cm(3), weighs 670 g, and requires 5 V direct current at 3 W. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Photodiode avalanche"

1

S, Luck William, DeYoung Russell J, and Langley Research Center, eds. Temperature control of avalanche photodiode using thermoelectric cooler. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

M, Davidson Frederic, and United States. National Aeronautics and Space Administration., eds. Avalanche photodiode photon counting receivers for space-borne lidars. [Baltimore, Md.]: Johns Hopkins University, Electrical & Computer Engineering, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davies, Andrew Richard. Avalanche photodiodes in stellar spectroscopy. Birmingham: University of Birmingham, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meier, Hektor. Design, characterization and simulation of avalanche photodiodes. Konstanz: Hartung-Gorre Verlag, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dolgos, Denis. Full-band Monte Carlo simulation of single photon avalanche diodes. Konstanz: Hartung-Gorre Verlag, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Photodiode avalanche"

1

Weik, Martin H. "avalanche photodiode." In Computer Science and Communications Dictionary, 92. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weik, Martin H. "avalanche photodiode coupler." In Computer Science and Communications Dictionary, 92. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aihara, Hiroaki. "Hybrid Avalanche Photodiode Array Imaging." In Springer Series in Optical Sciences, 49–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18443-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nadeem Ishaque, A., Donald E. Castleberry, and Henri M. Rougeot. "Photon-Counting Monolithic Avalanche Photodiode Arrays for the Super Collider." In Supercollider 5, 375–80. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2439-7_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vinogradov, Sergey, Elena Popova, Wolfgang Schmailzl, and Eugen Engelmann. "Tip Avalanche Photodiode – A New Wide Spectral Range Silicon Photomultiplier." In Radiation Detection Systems, 257–88. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003147633-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vinogradov, Sergey, Elena Popova, Wolfgang Schmailzl, and Eugen Engelmann. "Tip Avalanche Photodiode – A New Wide Spectral Range Silicon Photomultiplier." In Radiation Detection Systems, 257–88. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003219446-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perotin, M., H. Luquet, L. Gouskov, P. Abiale-Abi, H. Archidi, M. Lahbabi, B. Mbow, and A. Perez. "Ga0.96Al0.04Sb Implanted Avalanche Photodiode; Perspective for a 2.55 μm SAM APD Photodetector." In ESSDERC ’89, 393–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Woodard, Nathan G., Eric G. Hufstedler, and Gregory P. Lafyatis. "Photon Counting Using a Large Area Avalanche Photodiode Cooled to 100 K." In Applications of Photonic Technology, 489–94. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9247-8_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Otto, C., H. Gelevert, G. F. J. M. Vrensen, and J. Greve. "Raman imaging of cataract in whole Human eye lenses using an avalanche photodiode." In Spectroscopy of Biological Molecules: New Directions, 513–14. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roth, Jeffrey M., Chris Xu, Wayne H. Knox, and Keren Bergman. "Ultra-sensitive autocorrelation of 1.5 μm light with a photon-counting silicon avalanche photodiode." In Coherence and Quantum Optics VIII, 399–400. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Photodiode avalanche"

1

Douhan, R. M. H., A. P. Kokhanenko, and K. A. Lozovoy. "Dark current behaviour analysis for avalanche photodiodes." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.n4-p-052901.

Full text
Abstract:
This paper deals with the results of serial of analytical calculations which have been done on an avalanche photodiode made of germanium with silicon quantum dots (QD) which has multilayers of QDs to determine its characteristics. In these calculations we focus on the main parameters that determine the performance of avalanche photodiode such as tunneling current, photosensitivity, multiplication factor, noise spectral density and avalanche noise factor. The study also compares the results of germanium silicon avalanche photodiode with other avalanche photodiodes made with different materials. The model which has been used for calculation is considered with a separated absorption and multiplication regions operation under several conditions varied between classical and Geiger mode.
APA, Harvard, Vancouver, ISO, and other styles
2

Woodring, Mitchell, Richard Farell, David Souza, Michael R. Squillante, Gerald Entine, and David K. Wehe. "Multiplexed avalanche photodiode arrays." In International Symposium on Optical Science and Technology, edited by F. P. Doty, H. Bradford Barber, Hans Roehrig, and Edward J. Morton. SPIE, 2000. http://dx.doi.org/10.1117/12.410575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haralson II, Joe N., and Kevin F. Brennan. "Edge breakdown suppression in planar avalanche photodiodes: the joint opening effect avalanche photodiode." In Symposium on Integrated Optics, edited by Gail J. Brown and Manijeh Razeghi. SPIE, 2001. http://dx.doi.org/10.1117/12.429436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hunt, J. H., and R. B. Holmes. "Spatial Light Modulation at Photon-Counting Light Levels." In Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slma.1995.ltha4.

Full text
Abstract:
Recently, there has been a great deal of interest in the use of avalanche photodiodes (APD) for spatial light modulation.1,2,3 We report improved performance of our all-optical spatial light modulation with an avalanche photodiode. Modulation is performed with the APD operating as an asymmetric Fizeau interferometer with refractive index modulated by optically-initiated, avalanche-induced heating. Modulation of 80 % is achieved with optically optimized APDs. We demonstrate multiple-pixel operation, as well as free-carrier induced modulation.
APA, Harvard, Vancouver, ISO, and other styles
5

Kagawa, Toshiaki, Yuichi Kawamura, and Hidetoshi Iwamura. "Wide-bandwidth avalanche-photodiode receivers." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/ofc.1993.thg2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koçak, Fatma, and Ilhan Tapan. "Fluctuations in Avalanche Photodiode Structure." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gramsch, Ernesto V., Shane X. Zhang, Michael C. Madden, Myron Lindberg, and Marek Szawlowski. "High-density avalanche photodiode array." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Kenneth J. Kaufmann. SPIE, 1993. http://dx.doi.org/10.1117/12.158566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chia, C. K. "Low noise multiwavelength avalanche photodiode." In 35th Australian Conference on Optical Fibre Technology (ACOFT 2010). IEEE, 2010. http://dx.doi.org/10.1109/acoft.2010.5929895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beck, Jeffrey D., Chang-Feng Wan, Michael A. Kinch, James E. Robinson, Pradip Mitra, Richard E. Scritchfield, Feng Ma, and Joe C. Campbell. "The HgCdTe electron avalanche photodiode." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Randolph E. Longshore and Sivalingam Sivananthan. SPIE, 2004. http://dx.doi.org/10.1117/12.565142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Campbell, Joe C., Ravi Kuchibhotla, Anand Srinivasan, Chun Lei, Dennis G. Deppe, Yue Song He, and Ben G. Streetman. "Resonance-enhanced, low-voltage InGaAs avalanche photodiode." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.we5.

Full text
Abstract:
Avalanche photodiodes (APDs) and p-i-n photodiodes are two of the most widely deployed photodiodes for optical fiber communications. The transit time of photogenerated carriers in p-i-n diodes and that of secondary electrons in avalanche diodes at low gain is the fundamental limit on the bandwidth of these devices. However, conventional structures require a thick absorbing layer to ensure high quantum efficiency. Consequently, while high band widths of 35 GHz have been reported for In0.53Ga0.47As p-i-n photodiodes, the use of a 0.5-µm-thick absorbing layer restricted the quantum efficiency to ≤36%.1
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Photodiode avalanche"

1

Holmes, Jr, and Archie L. InP Based Avalanche Photodiode Arrays for Mid Infrared Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada482291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rasmussen, A. L., P. A. Simpson, and A. A. Sanders. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ikagawa, T. Performance of Large Area Avalanche Photodiode for a Low Energy X-Rays and gamma-rays Scintillation Detection. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/826645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Razeghi, Manijeh. III-Nitride Visible- and Solar-Blind Avalanche Photodiodes. Fort Belvoir, VA: Defense Technical Information Center, December 2007. http://dx.doi.org/10.21236/ada483336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fenker, H., T. Regan, J. Thomas, and M. Wright. Higher efficiency active quenching circuit for avalanche photodiodes. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/67491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fenker, H., and J. Thomas. Studies of avalanche photodiodes for scintillating fibre tracking readout. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10131796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Foster, G. W., A. Ronzhin, and R. Rusack. Some tests of avalanche photodiodes produced by Advanced Photonix, Inc. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/88548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fenker, H., K. Morgan, and T. Regan. Progress in the use of avalanche photodiodes for readout for calorimeters. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6264399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Itzler, Mark. Low-Noise Avalanche Photodiodes for Midwave Infrared (2 to 5 um) Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada437268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dabiran, Amir, Boris Borisov, Elaheh Ahmadi, and Winston Schoenfeld. Large-area visible and UV metal-oxide avalanche photodiodes for Cherenkov detectors. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1863493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography