Academic literature on the topic 'Photodiode avalanche'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photodiode avalanche.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photodiode avalanche"
Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V., et al. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes." Technical Physics Letters 48, no. 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.
Full textGiggenbach, Dirk. "Free-Space Optical Data Receivers with Avalanche Detectors for Satellite Downlinks Regarding Background Light." Sensors 22, no. 18 (September 7, 2022): 6773. http://dx.doi.org/10.3390/s22186773.
Full textАруев, П. Н., В. П. Белик, В. В. Забродский, Е. М. Круглов, А. В. Николаев, В. И. Сахаров, И. Т. Серенков, В. В. Филимонов, and Е. В. Шерстнев. "Квантовый выход кремниевого лавинного фотодиода в диапазоне длин волн 120-170 nm." Журнал технической физики 90, no. 8 (2020): 1386. http://dx.doi.org/10.21883/jtf.2020.08.49552.44-20.
Full textAruev P. N., Belik V. P., Blokhin A. A., Zabrodskii V. V., Nikolaev A. V., Sakharov V. I., Serenkov I. T., Filimonov V. V., and Sherstnev E. V. "In memoriam of E.M. Kruglov and V.V. Filimonov Quantum yield of an avalanche silicon photodiode in the 114-170 and 210-1100 nm wavelength ranges." Technical Physics Letters 48, no. 3 (2022): 3. http://dx.doi.org/10.21883/tpl.2022.03.52871.19026.
Full textDeeb, Hazem, Kristina Khomyakova, Andrey Kokhanenko, Rahaf Douhan, and Kirill Lozovoy. "Dependence of Ge/Si Avalanche Photodiode Performance on the Thickness and Doping Concentration of the Multiplication and Absorption Layers." Inorganics 11, no. 7 (July 15, 2023): 303. http://dx.doi.org/10.3390/inorganics11070303.
Full textSingh, Anand, and Ravinder Pal. "Infrared Avalanche Photodiode Detectors." Defence Science Journal 67, no. 2 (March 14, 2017): 159. http://dx.doi.org/10.14429/dsj.67.11183.
Full textPauchard, A., P. A. Besse, M. Bartek, R. F. Wolffenbuttel, and R. S. Popovic. "Ultraviolet-selective avalanche photodiode." Sensors and Actuators A: Physical 82, no. 1-3 (May 2000): 128–34. http://dx.doi.org/10.1016/s0924-4247(99)00326-x.
Full textHobbs, Matthew James, and Jon R. Willmott. "InGaAs avalanche photodiode thermometry." Measurement Science and Technology 31, no. 1 (October 25, 2019): 014005. http://dx.doi.org/10.1088/1361-6501/ab41c6.
Full textLevi, Barbara Goss. "High‐Gain Avalanche Photodiode." Physics Today 50, no. 4 (April 1997): 21–22. http://dx.doi.org/10.1063/1.881723.
Full textCao, Ye, Tarick Blain, Jonathan D. Taylor-Mew, Longyan Li, Jo Shien Ng, and Chee Hing Tan. "Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region." Applied Physics Letters 122, no. 5 (January 30, 2023): 051103. http://dx.doi.org/10.1063/5.0139495.
Full textDissertations / Theses on the topic "Photodiode avalanche"
Ong, Daniel Swee Guan. "The type-II/InA1As avalanche photodiode and optimisation of avalanche photodiodes in receiver systems." Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554392.
Full textVirot, Léopold. "Développement de photodiodes à avalanche en Ge sur Si pour la détection faible signal et grande vitesse." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112414/document.
Full textTo address the issue related to the limitations of metallic interconnects especially in terms of bitrate, Si photonics has become the technology of choice. One of the basic components of photonic circuits is the photodetector: It allows to convert an optical signal into an electrical signal. Photodetectors based on Ge on Si have shown their potential and offer the best alternative to III-V photodetectors, for integration into Si photonic circuits. In this context, the Ge on Si photodiodes have been studied. The optimization of pin photodiodes enabled the achievement of state of the art results. A new approach using a double lateral Si/Ge/Si heterojunction was proposed to increase the responsivity but also to provide a better integration solution, especially with Si modulators. To further increase the sensitivity of the receivers, the use of avalanche photodiodes, is however necessary. SACM (Separate Absorption Charge Multiplication) structure, combining Si low multiplication noise and Ge absorption at telecom wavelengths was first studied. Models have been developed to optimize the devices, and the photodiodes have been fabricated and characterized. The results obtained on the surface illuminated photodiodes (Gain-bandwidth product of 560GHz only -11V) are very encouraging for waveguide integration. On the other hand, Ge on Si pin photodiodes have been studied in avalanche. The small width of the intrinsic region contributed to the multiplication noise reduction thanks to "dead space" effect, and operation at 10Gbps for a gain of 20 and an optical power of -26dBm at only-7V, without using amplifier (TIA), have been demonstrated. These developments open the way to fast, low power consumption and high sensitivity receivers
Fyath, Raad Sami. "Advanced avalanche photodiode receivers in optical communications." Thesis, Bangor University, 1990. https://research.bangor.ac.uk/portal/en/theses/advanced-avalanche-photodiode-receivers-in-optical-communications(7774537f-4772-4a52-b216-d04db73b3781).html.
Full textAbautret, Johan. "Conception, fabrication et caractérisation de photodiodes à avalanche InSb." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20232.
Full textThis thesis realized at the IES, with the collaboration of SOFRADIR and the CEA-LETI, had for objective the potential evaluation of the InSb material for the realization of midwave infrared (MWIR) avalanche photodiodes (APD). Studying the design (TCAD modeling), the MESA technological fabrication (wet etching, dry etching, passivation) and analyzing the electrical characterizations of devices fabricated, this work has investigated all the scientific elements necessary for the development of this photodetector technology. The MBE (Molecular Beam Epitaxy) grow InSb photodiodes have shown monopixel dark current density from 10 to 30nA/cm² at -50mV and 77K. These performances are at the state of the art for InSb epi-diodes and highlight the excellent crystal quality of the epitaxial layers. The first InSb APDs were grown and characterized. With a pure electron injection, we have observed an exponential increase of the gain, signature of a single carrier multiplication exclusively initiated by the electrons. A gain value of 3 was measured at -4V. This asymmetrical aspect of the impact ionization process would indicate the possibility to obtain a gain without excess noise. This is fundamental for the intended imaging applications. At this stage, InSb APD performances are limited by a too high residual doping level, resulting in a strong band to band tunneling current. Nevertheless, this work provides all the milestones needed for the InSb APD development where the key point is undoubtedly the getting of low residual doping level in the multiplication layer
Strasburg, Jana Dee. "Characterization of avalanche photodiode arrays for temporally resolved photon counting /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9710.
Full textGouy, Jean-Philippe. "Etude comparative de la photodiode PIN, de la photodiode à avalanche et du photoconducteur sur matériaux III-V." Lille 1, 1989. http://www.theses.fr/1989LIL10058.
Full textHaralson, Joe Nathan II. "Design, analysis, and macroscopic modeling of high speed photodetectors emphasizing the joint opening effect avalanche photodiode and the lateral P-I-N photodiode." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/14940.
Full textYoo, Dongwon. "Growth and Characterization of III-Nitrides Materials System for Photonic and Electronic Devices by Metalorganic Chemical Vapor Deposition." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16220.
Full textMages, Phillip. "III-V to Si wafer fusion for the fused Si/InGaAs avalanche photodiode /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090440.
Full textEgner, Joanna C., Michael Groza, Arnold Burger, Keivan G. Stassun, Vladimir Buliga, Liviu Matei, Julia G. Bodnarik, Ashley C. Stowe, and Thomas H. Prettyman. "Integration of a (6)LilnSe(2) thermal neutron detector into a CubeSat instrument." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2016. http://hdl.handle.net/10150/624360.
Full textBooks on the topic "Photodiode avalanche"
S, Luck William, DeYoung Russell J, and Langley Research Center, eds. Temperature control of avalanche photodiode using thermoelectric cooler. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Find full textM, Davidson Frederic, and United States. National Aeronautics and Space Administration., eds. Avalanche photodiode photon counting receivers for space-borne lidars. [Baltimore, Md.]: Johns Hopkins University, Electrical & Computer Engineering, 1991.
Find full textRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Find full textRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Find full textRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Find full textRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Find full textRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Find full textDavies, Andrew Richard. Avalanche photodiodes in stellar spectroscopy. Birmingham: University of Birmingham, 1995.
Find full textMeier, Hektor. Design, characterization and simulation of avalanche photodiodes. Konstanz: Hartung-Gorre Verlag, 2011.
Find full textDolgos, Denis. Full-band Monte Carlo simulation of single photon avalanche diodes. Konstanz: Hartung-Gorre Verlag, 2012.
Find full textBook chapters on the topic "Photodiode avalanche"
Weik, Martin H. "avalanche photodiode." In Computer Science and Communications Dictionary, 92. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1190.
Full textWeik, Martin H. "avalanche photodiode coupler." In Computer Science and Communications Dictionary, 92. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1191.
Full textAihara, Hiroaki. "Hybrid Avalanche Photodiode Array Imaging." In Springer Series in Optical Sciences, 49–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18443-7_3.
Full textNadeem Ishaque, A., Donald E. Castleberry, and Henri M. Rougeot. "Photon-Counting Monolithic Avalanche Photodiode Arrays for the Super Collider." In Supercollider 5, 375–80. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2439-7_90.
Full textVinogradov, Sergey, Elena Popova, Wolfgang Schmailzl, and Eugen Engelmann. "Tip Avalanche Photodiode – A New Wide Spectral Range Silicon Photomultiplier." In Radiation Detection Systems, 257–88. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003147633-9.
Full textVinogradov, Sergey, Elena Popova, Wolfgang Schmailzl, and Eugen Engelmann. "Tip Avalanche Photodiode – A New Wide Spectral Range Silicon Photomultiplier." In Radiation Detection Systems, 257–88. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003219446-9.
Full textPerotin, M., H. Luquet, L. Gouskov, P. Abiale-Abi, H. Archidi, M. Lahbabi, B. Mbow, and A. Perez. "Ga0.96Al0.04Sb Implanted Avalanche Photodiode; Perspective for a 2.55 μm SAM APD Photodetector." In ESSDERC ’89, 393–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_80.
Full textWoodard, Nathan G., Eric G. Hufstedler, and Gregory P. Lafyatis. "Photon Counting Using a Large Area Avalanche Photodiode Cooled to 100 K." In Applications of Photonic Technology, 489–94. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9247-8_93.
Full textOtto, C., H. Gelevert, G. F. J. M. Vrensen, and J. Greve. "Raman imaging of cataract in whole Human eye lenses using an avalanche photodiode." In Spectroscopy of Biological Molecules: New Directions, 513–14. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_230.
Full textRoth, Jeffrey M., Chris Xu, Wayne H. Knox, and Keren Bergman. "Ultra-sensitive autocorrelation of 1.5 μm light with a photon-counting silicon avalanche photodiode." In Coherence and Quantum Optics VIII, 399–400. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_88.
Full textConference papers on the topic "Photodiode avalanche"
Douhan, R. M. H., A. P. Kokhanenko, and K. A. Lozovoy. "Dark current behaviour analysis for avalanche photodiodes." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.n4-p-052901.
Full textWoodring, Mitchell, Richard Farell, David Souza, Michael R. Squillante, Gerald Entine, and David K. Wehe. "Multiplexed avalanche photodiode arrays." In International Symposium on Optical Science and Technology, edited by F. P. Doty, H. Bradford Barber, Hans Roehrig, and Edward J. Morton. SPIE, 2000. http://dx.doi.org/10.1117/12.410575.
Full textHaralson II, Joe N., and Kevin F. Brennan. "Edge breakdown suppression in planar avalanche photodiodes: the joint opening effect avalanche photodiode." In Symposium on Integrated Optics, edited by Gail J. Brown and Manijeh Razeghi. SPIE, 2001. http://dx.doi.org/10.1117/12.429436.
Full textHunt, J. H., and R. B. Holmes. "Spatial Light Modulation at Photon-Counting Light Levels." In Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slma.1995.ltha4.
Full textKagawa, Toshiaki, Yuichi Kawamura, and Hidetoshi Iwamura. "Wide-bandwidth avalanche-photodiode receivers." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/ofc.1993.thg2.
Full textKoçak, Fatma, and Ilhan Tapan. "Fluctuations in Avalanche Photodiode Structure." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733106.
Full textGramsch, Ernesto V., Shane X. Zhang, Michael C. Madden, Myron Lindberg, and Marek Szawlowski. "High-density avalanche photodiode array." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Kenneth J. Kaufmann. SPIE, 1993. http://dx.doi.org/10.1117/12.158566.
Full textChia, C. K. "Low noise multiwavelength avalanche photodiode." In 35th Australian Conference on Optical Fibre Technology (ACOFT 2010). IEEE, 2010. http://dx.doi.org/10.1109/acoft.2010.5929895.
Full textBeck, Jeffrey D., Chang-Feng Wan, Michael A. Kinch, James E. Robinson, Pradip Mitra, Richard E. Scritchfield, Feng Ma, and Joe C. Campbell. "The HgCdTe electron avalanche photodiode." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Randolph E. Longshore and Sivalingam Sivananthan. SPIE, 2004. http://dx.doi.org/10.1117/12.565142.
Full textCampbell, Joe C., Ravi Kuchibhotla, Anand Srinivasan, Chun Lei, Dennis G. Deppe, Yue Song He, and Ben G. Streetman. "Resonance-enhanced, low-voltage InGaAs avalanche photodiode." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.we5.
Full textReports on the topic "Photodiode avalanche"
Holmes, Jr, and Archie L. InP Based Avalanche Photodiode Arrays for Mid Infrared Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada482291.
Full textRasmussen, A. L., P. A. Simpson, and A. A. Sanders. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3917.
Full textIkagawa, T. Performance of Large Area Avalanche Photodiode for a Low Energy X-Rays and gamma-rays Scintillation Detection. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/826645.
Full textRazeghi, Manijeh. III-Nitride Visible- and Solar-Blind Avalanche Photodiodes. Fort Belvoir, VA: Defense Technical Information Center, December 2007. http://dx.doi.org/10.21236/ada483336.
Full textFenker, H., T. Regan, J. Thomas, and M. Wright. Higher efficiency active quenching circuit for avalanche photodiodes. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/67491.
Full textFenker, H., and J. Thomas. Studies of avalanche photodiodes for scintillating fibre tracking readout. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10131796.
Full textFoster, G. W., A. Ronzhin, and R. Rusack. Some tests of avalanche photodiodes produced by Advanced Photonix, Inc. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/88548.
Full textFenker, H., K. Morgan, and T. Regan. Progress in the use of avalanche photodiodes for readout for calorimeters. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6264399.
Full textItzler, Mark. Low-Noise Avalanche Photodiodes for Midwave Infrared (2 to 5 um) Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada437268.
Full textDabiran, Amir, Boris Borisov, Elaheh Ahmadi, and Winston Schoenfeld. Large-area visible and UV metal-oxide avalanche photodiodes for Cherenkov detectors. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1863493.
Full text