Journal articles on the topic 'Photoconductivity - ZnO based Nanocomposites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Photoconductivity - ZnO based Nanocomposites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Han, Lei, Wen Li, Chao Meng, Yan Chen, and Shan Fan. "Charge transport mechanism of polyaniline/ZnO nanocomposites based on inorganic/organic heterojunctions." MATEC Web of Conferences 179 (2018): 02005. http://dx.doi.org/10.1051/matecconf/201817902005.
Full textPetrov, Victor V., Victor V. Sysoev, Irina O. Ignatieva, Irina A. Gulyaeva, Maria G. Volkova, Alexandra P. Ivanishcheva, Soslan A. Khubezhov, Yuri N. Varzarev, and Ekaterina M. Bayan. "Nanocomposite Co3O4-ZnO Thin Films for Photoconductivity Sensors." Sensors 23, no. 12 (June 15, 2023): 5617. http://dx.doi.org/10.3390/s23125617.
Full textBian, Lin, Shi Sheng Lv, Jian Xun Qiu, Xin Tao Zhang, Ming Jun Gao, Xiao Chun He, Xing Fa Ma, and Guang Li. "Organic Functionalization and Properties of ZnO Nanosheets with Polymer Containing N-Vinyl Carbazole." Materials Science Forum 898 (June 2017): 2118–27. http://dx.doi.org/10.4028/www.scientific.net/msf.898.2118.
Full textGuo, Bin, Bo Zhang, Qin Cong, Lu Wei Ma, Xiao Chun He, Ming Jun Gao, Lin Bian, Xing Fa Ma, and Guang Li. "Surface Modification of Low-Dimensional Heterostructured Functional Materials with Dendrimers and their Properties of Organic-Inorganic Nanocomposites." Materials Science Forum 847 (March 2016): 299–307. http://dx.doi.org/10.4028/www.scientific.net/msf.847.299.
Full textChizhov, Artem, Marina Rumyantseva, Nikolay Khmelevsky, and Andrey Grunin. "Sensitization of ZnO Photoconductivity in the Visible Range by Colloidal Cesium Lead Halide Nanocrystals." Nanomaterials 12, no. 23 (December 5, 2022): 4316. http://dx.doi.org/10.3390/nano12234316.
Full textWu, Jun, Huayao Li, Yuan Liu, and Changsheng Xie. "Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites." Journal of Applied Physics 110, no. 12 (December 15, 2011): 123513. http://dx.doi.org/10.1063/1.3662954.
Full textUddin, Islam. "An Overview of Photoconductivity in Zn-based Nanomaterials." Advanced Nano Research 3, no. 1 (October 16, 2020): 46–50. http://dx.doi.org/10.21467/anr.3.1.46-50.
Full textTzeng, Shi-Kai, Min-Hsiung Hon, and Ing-Chi Leu. "Persistent Photoconductivity of Solution-Grown ZnO–Based UV Detectors." Journal of The Electrochemical Society 158, no. 11 (2011): H1188. http://dx.doi.org/10.1149/2.086111jes.
Full textWang, Chao-Jun, Xun Yang, Jin-Hao Zang, Yan-Cheng Chen, Chao-Nan Lin, Zhong-Xia Liu, and Chong-Xin Shan. "Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO." Chinese Physics B 29, no. 5 (May 2020): 058504. http://dx.doi.org/10.1088/1674-1056/ab8891.
Full textChitra, M., G. Mangamma, K. Uthayarani, N. Neelakandeswari, and E. K. Girija. "Band gap engineering in ZnO based nanocomposites." Physica E: Low-dimensional Systems and Nanostructures 119 (May 2020): 113969. http://dx.doi.org/10.1016/j.physe.2020.113969.
Full textNoothongkaew, Suttinart, Orathai Thumthan, and Ki-Seok An. "UV-Photodetectors based on CuO/ZnO nanocomposites." Materials Letters 233 (December 2018): 318–23. http://dx.doi.org/10.1016/j.matlet.2018.09.024.
Full textMerijs Meri, R., I. Bochkov, A. Grigalovca, J. Zicans, J. Grabis, R. Kotsilkova, and I. Borovanska. "Nanocomposites Based on ZnO Modified Polymer Blends." Macromolecular Symposia 321-322, no. 1 (December 2012): 130–34. http://dx.doi.org/10.1002/masy.201251122.
Full textD. HUSSEIN, Amel. "FABRICATION SENSORS BASED ON NANOCOMPOSITES ZnO/PVDF." MINAR International Journal of Applied Sciences and Technology 04, no. 03 (September 1, 2022): 123–28. http://dx.doi.org/10.47832/2717-8234.12.13.
Full textAnandhi, P., V. Jawahar Senthil Kumar, and S. Harikrishnan. "Improved electrochemical behavior of metal oxides-based nanocomposites for supercapacitor." Functional Materials Letters 12, no. 05 (September 17, 2019): 1950064. http://dx.doi.org/10.1142/s1793604719500644.
Full textScolfaro, D., Y. J. Onofre, M. D. Teodoro, and M. P. F. de Godoy. "Atmosphere-Dependent Photoconductivity of ZnO in the Urbach Tail." International Journal of Photoenergy 2018 (October 21, 2018): 1–8. http://dx.doi.org/10.1155/2018/8607247.
Full textHui, Aiping, Fangfang Yang, Rui Yan, Yuru Kang, and Aiqin Wang. "Palygorskite-Based Organic–Inorganic Hybrid Nanocomposite for Enhanced Antibacterial Activities." Nanomaterials 11, no. 12 (November 28, 2021): 3230. http://dx.doi.org/10.3390/nano11123230.
Full textSharma, Prashant, Na-Yoon Jang, Jae-Won Lee, Bum Chul Park, Young Keun Kim, and Nam-Hyuk Cho. "Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy." Pharmaceutics 11, no. 10 (September 26, 2019): 493. http://dx.doi.org/10.3390/pharmaceutics11100493.
Full textRahman, Mohammed M., Hadi M. Marwani, Faisal K. Algethami, and Abdullah M. Asiri. "Xanthine sensor development based on ZnO–CNT, ZnO–CB, ZnO–GO and ZnO nanoparticles: an electrochemical approach." New Journal of Chemistry 41, no. 14 (2017): 6262–71. http://dx.doi.org/10.1039/c7nj00278e.
Full textBayan, S., and D. Mohanta. "ZnO nanorod-based UV photodetection and the role of persistent photoconductivity." Philosophical Magazine 92, no. 32 (November 11, 2012): 3909–19. http://dx.doi.org/10.1080/14786435.2012.698761.
Full textMridha, S., and D. Basak. "ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties." Applied Physics Letters 92, no. 14 (April 7, 2008): 142111. http://dx.doi.org/10.1063/1.2898399.
Full textIbrahem, Mohammed A., Emanuele Verrelli, Fei Cheng, Ali M. Adawi, Jean-Sebastien G. Bouillard, and Mary O'Neill. "Persistent near-infrared photoconductivity of ZnO nanoparticles based on plasmonic hot charge carriers." Journal of Applied Physics 131, no. 10 (March 14, 2022): 103103. http://dx.doi.org/10.1063/5.0079006.
Full textMu, Haichuan, Yanming Gu, and Haifen Xie. "Photocatalysis of Nickel-Based Graphene/Au/ZnO Nanocomposites." IEEE Sensors Journal 19, no. 14 (July 15, 2019): 5376–88. http://dx.doi.org/10.1109/jsen.2019.2907712.
Full textLiao, Zhijia, Yao Yu, Zhenyu Yuan, and Fanli Meng. "Ppb-Level Butanone Sensor Based on ZnO-TiO2-rGO Nanocomposites." Chemosensors 9, no. 10 (October 6, 2021): 284. http://dx.doi.org/10.3390/chemosensors9100284.
Full textKaur, Daljeet, Amardeep Bharti, Tripti Sharma, and Charu Madhu. "Dielectric Properties of ZnO-Based Nanocomposites and Their Potential Applications." International Journal of Optics 2021 (July 22, 2021): 1–20. http://dx.doi.org/10.1155/2021/9950202.
Full textKannan, Karthik, Mostafa H. Sliem, Aboubakr M. Abdullah, Kishor Kumar Sadasivuni, and Bijandra Kumar. "Fabrication of ZnO-Fe-MXene Based Nanocomposites for Efficient CO2 Reduction." Catalysts 10, no. 5 (May 15, 2020): 549. http://dx.doi.org/10.3390/catal10050549.
Full textGeetha, P., E. Sai Ram, N. Anasuya, and P. Sarita. "Facile Synthesis of Graphene Based ZnO Nanocomposite." Volume 4,Issue 5,2018 4, no. 5 (October 28, 2018): 508–10. http://dx.doi.org/10.30799/jnst.158.18040512.
Full textIvanoff Reyes, Pavel, Chieh-Jen Ku, Ziqing Duan, Yi Xu, Eric Garfunkel, and Yicheng Lu. "Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector." Applied Physics Letters 101, no. 3 (July 16, 2012): 031118. http://dx.doi.org/10.1063/1.4737648.
Full textAnn, Ling Chuo, Shahrom Mahmud, Siti Khadijah Mohd Bakhori, Amna Sirelkhatim, Dasmawati Mohamad, Habsah Hasan, Azman Seeni, and Rosliza Abdul Rahman. "Enhanced Photoconductivity and Antibacterial Response of Rubber-Grade ZnO upon UVA Illumination." Advanced Materials Research 925 (April 2014): 33–37. http://dx.doi.org/10.4028/www.scientific.net/amr.925.33.
Full textTsay, Chien-Yie, Shih-Ting Chen, and Man-Ting Fan. "Solution-Processed Mg-Substituted ZnO Thin Films for Metal-Semiconductor-Metal Visible-Blind Photodetectors." Coatings 9, no. 4 (April 25, 2019): 277. http://dx.doi.org/10.3390/coatings9040277.
Full textSabry, Raad S., and Amel D. Hussein. "Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations." Materials Research Express 6, no. 10 (September 20, 2019): 105549. http://dx.doi.org/10.1088/2053-1591/ab4296.
Full textTan, Thian Khoon, PoiSim Khiew, WeeSiong Chiu, and ChinHua Chia. "Simple fabrication of magnetically separable ZnO-based photocatalyst nanocomposites." IOP Conference Series: Materials Science and Engineering 744 (February 10, 2020): 012020. http://dx.doi.org/10.1088/1757-899x/744/1/012020.
Full textFaraji, Naser, and Zahra Hajimahdi. "Synthesis, characterisation, and antimicrobial activity of ZnO‐based nanocomposites." Micro & Nano Letters 13, no. 12 (December 2018): 1667–71. http://dx.doi.org/10.1049/mnl.2018.5202.
Full textSathiya, S. M., Gunadhor S. Okram, S. Maria Dhivya, Subramanian Mugesh, Maruthamuthu Murugan, and M. A. Jothi Rajan. "Synergistic Bactericidal Effect of Chitosan/Zinc Oxide Based Nanocomposites Against Staphylococcus aureus." Advanced Science Letters 24, no. 8 (August 1, 2018): 5537–42. http://dx.doi.org/10.1166/asl.2018.12144.
Full textMiao, Yuxin, Guofeng Pan, Caixuan Sun, Ping He, Guanlong Cao, Chao Luo, Li Zhang, and Hongliang Li. "Enhanced photoelectric responses induced by visible light of acetone gas sensors based on CuO-ZnO nanocomposites at about room temperature." Sensor Review 38, no. 3 (June 18, 2018): 311–20. http://dx.doi.org/10.1108/sr-08-2017-0158.
Full textJeong, Sehee, and Seong-Ju Park. "Enhanced Electrical Transport and Photoconductivity of ZnO/ZnS Core/Shell Nanowires Based on Piezotronic and Piezo-Phototronic Effects." Applied Sciences 12, no. 17 (August 23, 2022): 8393. http://dx.doi.org/10.3390/app12178393.
Full textJha, Pankaj Kumar, Chamorn Chawengkijwanich, Chonlada Pokum, Pichai Soisan, and Kuaanan Techato. "Antibacterial Activities of Biosynthesized Zinc Oxide Nanoparticles and Silver-Zinc Oxide Nanocomposites using Camellia Sinensis Leaf Extract." Trends in Sciences 20, no. 3 (January 15, 2023): 5649. http://dx.doi.org/10.48048/tis.2023.5649.
Full textBeinik, Igor, Markus Kratzer, Astrid Wachauer, Lin Wang, Yuri P. Piryatinski, Gerhard Brauer, Xin Yi Chen, Yuk Fan Hsu, Aleksandra B. Djurišić, and Christian Teichert. "Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM." Beilstein Journal of Nanotechnology 4 (March 21, 2013): 208–17. http://dx.doi.org/10.3762/bjnano.4.21.
Full textAbebe, Buzuayehu, and H. C. Ananda Murthy. "Insights into ZnO-based doped porous nanocrystal frameworks." RSC Advances 12, no. 10 (2022): 5816–33. http://dx.doi.org/10.1039/d1ra09152b.
Full textPlatonov, Vadim B., Marina N. Rumyantseva, Alexander S. Frolov, Alexey D. Yapryntsev, and Alexander M. Gaskov. "High-temperature resistive gas sensors based on ZnO/SiC nanocomposites." Beilstein Journal of Nanotechnology 10 (July 26, 2019): 1537–47. http://dx.doi.org/10.3762/bjnano.10.151.
Full textFarha, Ashraf H., Abdullah F. Al Naim, and Shehab A. Mansour. "Thermal Degradation of Polystyrene (PS) Nanocomposites Loaded with Sol Gel-Synthesized ZnO Nanorods." Polymers 12, no. 9 (August 27, 2020): 1935. http://dx.doi.org/10.3390/polym12091935.
Full textWang, Weiying, Jie Liu, Xibin Yu, and Guangqian Yang. "Transparent Poly(methyl methacrylate)/ZnO Nanocomposites Based on KH570 Surface Modified ZnO Quantum Dots." Journal of Nanoscience and Nanotechnology 10, no. 8 (August 1, 2010): 5196–201. http://dx.doi.org/10.1166/jnn.2010.2223.
Full textWu, Di, and Ali Akhtar. "Ppb-Level Hydrogen Sulfide Gas Sensor Based on the Nanocomposite of MoS2 Octahedron/ZnO-Zn2SnO4 Nanoparticles." Molecules 28, no. 7 (April 4, 2023): 3230. http://dx.doi.org/10.3390/molecules28073230.
Full textYaqoob, Asim Ali, Nur Habibah binti Mohd Noor, Albert Serrà, and Mohamad Nasir Mohamad Ibrahim. "Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation." Nanomaterials 10, no. 5 (May 12, 2020): 932. http://dx.doi.org/10.3390/nano10050932.
Full textFANG, YONGLING, ZHONGYU LI, SONG XU, DANAN HAN, and DAYONG LU. "FABRICATION OF SQUARAINE DYE SENSITIZED SPHERICAL ZINC OXIDE NANOCOMPOSITES AND THEIR VISIBLE-LIGHT INDUCED PHOTOCATALYTIC ACTIVITY." Nano 09, no. 03 (April 2014): 1450036. http://dx.doi.org/10.1142/s1793292014500362.
Full textDev G., Sarang, Vikas Sharma, Ashish Singh, Vidushi Singh Baghel, Masatoshi Yanagida, Atsuko Nagataki, and Neeti Tripathi. "Raman spectroscopic study of ZnO/NiO nanocomposites based on spatial correlation model." RSC Advances 9, no. 46 (2019): 26956–60. http://dx.doi.org/10.1039/c9ra04555d.
Full textJoshi, Hira, and S. Annapoorni. "Tuning Optical Properties in Nanocomposites." International Journal of Nanoscience 19, no. 04 (February 12, 2020): 1950026. http://dx.doi.org/10.1142/s0219581x19500261.
Full textSeitov, Bekbolat, Sherzod Kurbanbekov, Dina Bakranova, Nuriya Abdyldayeva, and Nurlan Bakranov. "Study of the Photoelectrochemical Properties of 1D ZnO Based Nanocomposites." Catalysts 11, no. 10 (October 13, 2021): 1235. http://dx.doi.org/10.3390/catal11101235.
Full textPlatonov, Rumyantseva, and Gaskov. "High Temperature Resistive Gas Sensors Based on ZnO/SiC Nanocomposites." Proceedings 14, no. 1 (June 19, 2019): 36. http://dx.doi.org/10.3390/proceedings2019014036.
Full textUtari, Listya, Ni Luh Wulan Septiani, Suyatman, Nugraha, Levy Olivia Nur, Hutomo Suryo Wasisto, and Brian Yuliarto. "Wearable Carbon Monoxide Sensors Based on Hybrid Graphene/ZnO Nanocomposites." IEEE Access 8 (2020): 49169–79. http://dx.doi.org/10.1109/access.2020.2976841.
Full textBelhaj, Marwa, Cherif Dridi, Habib Elhouichet, and Jean Cristophe Valmalette. "Study of ZnO nanoparticles based hybrid nanocomposites for optoelectronic applications." Journal of Applied Physics 119, no. 9 (March 7, 2016): 095501. http://dx.doi.org/10.1063/1.4942525.
Full text