To see the other types of publications on this topic, follow the link: Photoconducting.

Journal articles on the topic 'Photoconducting'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photoconducting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Phuong, Nguyen Mai, Nak-Jin Seong, Jun-Ku Ahn, Eui-Tae Kim, Ji-Hong Lee, Geun Hong Kim, and Soon-Gil Yoon. "Characterization of Photoconductive Amorphous Si:H Films for Photoconducting Sensor Applications." Electrochemical and Solid-State Letters 10, no. 9 (2007): H284. http://dx.doi.org/10.1149/1.2754243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Porada, Zbigniew, and Elzbieta Schabowska-Osiowska. "Optoelectronic Logical Gates “AND”, “OR” and “NOT”." Active and Passive Electronic Components 27, no. 2 (2004): 95–105. http://dx.doi.org/10.1080/0882751031000116197.

Full text
Abstract:
Optoelectronic AND, OR and NOT logical gates were composed of thin film photoconducting and electroluminescent elements, made of cadmium sulphide and zinc sulphide, respectively, doped with copper, chlorine and manganese. The gates consisted of several photoconducting elements and one electroluminescent element suitably connected and supplied with a sinusoidal voltage. In such circuits the functions of product, sum and negation for input light signals illuminating the photoconducting elements were realized, and the output signal was the light emitted by the electroluminescent element.
APA, Harvard, Vancouver, ISO, and other styles
3

Galmiche, Laurent, François Guyon, Annig Pondaven, Jean-Yves Moisan, and Maurice L'Her. "Photogeneration of charges in poly(N-vinylcarbazole) doped with lutetium bisphthalocyanines and lutetium bisnaphthalocyanines." Journal of Porphyrins and Phthalocyanines 07, no. 05 (May 2003): 382–87. http://dx.doi.org/10.1142/s1088424603000495.

Full text
Abstract:
Lutetium bisphthalocyanines and bisnaphthalocyanines, sandwich complexes having interesting electronic properties were studied as electron-acceptors associated with the donor polyvinylcarbazole ( PVCz ) in single-layer photoconductors. It is known, from their redox properties, that these lanthanide complexes are potential electron-acceptors as well as electron-donors; moreover, they strongly absorb light from the near-UV to the near-IR. The xerographic spectra recorded between 400 and 900 nm show that the polymeric phases doped with the lutetium bisphthalocyanines are photoconductive. These new photoconducting phases are active in the near IR domain which is promising with regard to their potential applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Bushby, Richard J., and Owen R. Lozman. "Photoconducting liquid crystals." Current Opinion in Solid State and Materials Science 6, no. 6 (December 2002): 569–78. http://dx.doi.org/10.1016/s1359-0286(03)00007-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reucroft, P. J., H. Scott, and F. L. Serafin. "Photoconducting pyrrone polymers." Journal of Polymer Science Part C: Polymer Symposia 30, no. 1 (March 7, 2007): 261–69. http://dx.doi.org/10.1002/polc.5070300129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Verkhovskaya, K. A., V. M. Fridkin, A. V. Bune, and J. F. Legrand. "EoC21a. Photoconducting ferroelectric polymers." Ferroelectrics 134, no. 1 (September 1992): 7–15. http://dx.doi.org/10.1080/00150199208015557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, B. B., J. T. Darrow, X. ‐C Zhang, D. H. Auston, and P. R. Smith. "Optically steerable photoconducting antennas." Applied Physics Letters 56, no. 10 (March 5, 1990): 886–88. http://dx.doi.org/10.1063/1.102618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, P. R., D. H. Auston, and M. C. Nuss. "Subpicosecond photoconducting dipole antennas." IEEE Journal of Quantum Electronics 24, no. 2 (February 1988): 255–60. http://dx.doi.org/10.1109/3.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Joshi, N. V., J. C. Sanchez, and J. M. Martin. "Photoconducting properties of InP:Fe." Journal of Physics and Chemistry of Solids 50, no. 6 (January 1989): 629–32. http://dx.doi.org/10.1016/0022-3697(89)90458-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adinehnia, Morteza, Bryan Borders, Michael Ruf, Bhaskar Chilukuri, Ursula Mazur, and K. W. Hipps. "Structure-Function Correlation of Photoactive Ionic pi-Conjugated Binary Porphyrin Assemblies." MRS Advances 2, no. 42 (2017): 2267–73. http://dx.doi.org/10.1557/adv.2017.133.

Full text
Abstract:
ABSTRACTWe present the first detailed structure-function study of a photoconducting ionic porphyrin supermolecular assembly, fabricated from tetra(N-methyl-4-pyridyl)porphyrin (TMPyP) and tetra(4-sulfonatophenyl)porphyrin (TSPP) in a 1:1 stoichiometric ratio. Rod like crystals large enough for single crystal diffraction studies were grown by utilizing a nucleation and growth model described in our previous work. The unit cell of the TMPyP:TSPP crystals is monoclinic P21/c and the cell constants are a = 8.3049(11) Å, b = 16.413(2) Å, c = 29.185(3) Å, β = 92.477(9)°. These crystals have smooth well defined facets and their internal structure consists of highly organized molecular columns of alternating porphyrin cations and anions that are stacked face to face. For the first time crystal morphology (habit) of an ionic porphyrin solid is predicted by using the crystal structure data and applying attachment energy (AE) model. The predicted habit is in good agreement with the experimental structural morphology observed in AFM and SEM images of the TMPyP:TSPP crystalline solid. The TMPyP:TSPP crystals are non-conducting in the dark and are photoconducting. The photoconductive response is significantly faster with excitation in the Q-band (Red) than with excitation in the Soret band (blue). DFT calculations were performed to determine their electronic band structure and density of states. The TMPyP:TSPP crystalline system is a useful model structure that combine the elements of molecular organization and morphology along with theory and correlate them with electronic and optical electronic properties.
APA, Harvard, Vancouver, ISO, and other styles
11

Suresh, S., P. Mand, and K. Anand. "Studies on Mechanical and Dielectric Properties of L-Phenylalanine Benzoic Acid Single Crystal for NLO Applications." Journal of Chemistry 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/181680.

Full text
Abstract:
Nonlinear optics (NLO) materials have a significant impact on laser technology, optical communication, optical storage technology, and electrooptic modulation. Nonlinear optical single crystal of L-phenylalanine benzoic acid has been grown by slow evaporation. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. Microhardness investigations are conducted on the grown crystals. The dielectric response of the sample is studied as a function of different frequencies and different temperatures. The photoconducting studies confirm that the title compound has negative photoconducting nature.
APA, Harvard, Vancouver, ISO, and other styles
12

Vannikov, A. V., A. G. Tyurin, A. Y. Kryukov, and T. S. Zhuravleva. "Electron Transport in Photoconducting Polymers." Materials Science Forum 42 (January 1991): 29–38. http://dx.doi.org/10.4028/www.scientific.net/msf.42.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Żmija, J., M. T. Borowiec, A. Majchrowski, H. Szymczak, and T. Zayarnyuk. "Highly photoconducting sillenite single crystals." Crystal Engineering 5, no. 3-4 (September 2002): 273–82. http://dx.doi.org/10.1016/s1463-0184(02)00038-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schildkraut, Jay S. "Photoconducting electro‐optic polymer films." Applied Physics Letters 58, no. 4 (January 28, 1991): 340–42. http://dx.doi.org/10.1063/1.104680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Davidenko, N. A. "Conductivity of sandwich-structures based on dye-doped photoconducting and non-photoconducting polymer films." Semiconductor Physics, Quantum Electronics and Optoelectronics 5, no. 4 (December 17, 2002): 453–56. http://dx.doi.org/10.15407/spqeo5.04.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ulanski, J., J. Sielski, D. T. Glatzhofer, and M. Kryszewski. "Poly(paracyclophane)-high-mobility photoconducting polymer." Journal of Physics D: Applied Physics 23, no. 1 (January 14, 1990): 75–78. http://dx.doi.org/10.1088/0022-3727/23/1/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Narayan, K. S., B. E. Taylor‐Hamilton, R. J. Spry, and J. B. Ferguson. "Photoconducting properties of a ladder polymer." Journal of Applied Physics 77, no. 8 (April 15, 1995): 3938–41. http://dx.doi.org/10.1063/1.358574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tanaka, Keiji. "Photoconducting Urbach edge in amorphous Se." Journal of Non-Crystalline Solids 426 (October 2015): 32–34. http://dx.doi.org/10.1016/j.jnoncrysol.2015.05.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Reineix, A., M. Ariaudo, C. Chatenet, and B. Jecko. "Theoretical analysis of photoconducting dipole antennas." Microwave and Optical Technology Letters 15, no. 2 (June 5, 1997): 110–13. http://dx.doi.org/10.1002/(sici)1098-2760(19970605)15:2<110::aid-mop14>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kuczkowski, Andrzej. "Photoconducting composite, polyester polymer-cds powder." Makromolekulare Chemie. Macromolecular Symposia 37, no. 1 (August 1990): 149–58. http://dx.doi.org/10.1002/masy.19900370114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Studzinsky, S. L. "Photoelectric Properties of Photoconducting Composites Based on Non-Photoconducting Polymers Doped by Triarylmethane and Xanthene Dyes." Molecular Crystals and Liquid Crystals 589, no. 1 (January 22, 2014): 183–94. http://dx.doi.org/10.1080/15421406.2013.872822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Misra, M., D. Doppalapudi, A. V. Sampath, T. D. Moustakas, and P. H. McDonald. "Generation Recombination Noise in GaN Photoconducting Detectors." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 817–22. http://dx.doi.org/10.1557/s1092578300003471.

Full text
Abstract:
Low frequency noise measurements are a powerful tool for detecting deep traps in semiconductor devices and investigating trapping-recombination mechanisms. We have performed low frequency noise measurements on a number of photoconducting detectors fabricated on autodoped n-GaN films grown by ECR-MBE. At room temperature, the noise spectrum is dominated by 1/f noise and thermal noise for low resistivity material and by generationrecombination (G-R) noise for high resistivity material. Noise characteristics were measured as a function of temperature in the 80K to 300K range. At temperatures below 150K, 1/f noise is dominant and at temperatures above 150K, G-R noise is dominant. Optical excitation revealed the presence of traps not observed in the dark, at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
23

Sugunan, Abhilash, S. Hassan M. Jafri, Jian Qin, Tobias Blom, Muhammet S. Toprak, Klaus Leifer, and Mamoun Muhammed. "Low-temperature synthesis of photoconducting CdTe nanotetrapods." J. Mater. Chem. 20, no. 6 (2010): 1208–14. http://dx.doi.org/10.1039/b916208a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Serdobintsev, A. A., A. G. Rokakh, S. V. Stetsyura, and A. G. Zhukov. "Secondary-ion mass spectrometry of photoconducting targets." Technical Physics 52, no. 11 (November 2007): 1483–89. http://dx.doi.org/10.1134/s1063784207110163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Andrews, S. R., A. Armitage, P. G. Huggard, and A. Hussain. "Optimization of photoconducting receivers for THz spectroscopy." Physics in Medicine and Biology 47, no. 21 (October 16, 2002): 3705–10. http://dx.doi.org/10.1088/0031-9155/47/21/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Darrow, J. T., X. ‐C Zhang, and D. H. Auston. "Power scaling of large‐aperture photoconducting antennas." Applied Physics Letters 58, no. 1 (January 7, 1991): 25–27. http://dx.doi.org/10.1063/1.104426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Froberg, N., M. Mack, B. B. Hu, X. ‐C Zhang, and D. H. Auston. "500 GHz electrically steerable photoconducting antenna array." Applied Physics Letters 58, no. 5 (February 4, 1991): 446–48. http://dx.doi.org/10.1063/1.104629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Venkataprasad Bhat, S., S. R. C. Vivekchand, A. Govindaraj, and C. N. R. Rao. "Photoluminescence and photoconducting properties of ZnO nanoparticles." Solid State Communications 149, no. 13-14 (April 2009): 510–14. http://dx.doi.org/10.1016/j.ssc.2009.01.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rosenzweig, J. "Characterization of photoconducting CdTe using acoustoelectric methods." Journal of Crystal Growth 86, no. 1-4 (January 1988): 689–94. http://dx.doi.org/10.1016/0022-0248(90)90796-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mridha, S., and D. Basak. "Thickness dependent photoconducting properties of ZnO films." Chemical Physics Letters 427, no. 1-3 (August 2006): 62–66. http://dx.doi.org/10.1016/j.cplett.2006.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Thomas, Jayan, Cory W. Christenson, Pierre-Alexandre Blanche, Michiharu Yamamoto, Robert A. Norwood, and Nasser Peyghambarian. "Photoconducting Polymers for Photorefractive 3D Display Applications†." Chemistry of Materials 23, no. 3 (February 8, 2011): 416–29. http://dx.doi.org/10.1021/cm102144h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Feng, Wei, Enhai Sun, Akihiko Fujii, Hongcai Wu, Koichi Niihara, and Katsumi Yoshino. "Synthesis and Characterization of Photoconducting Polyaniline-TiO2Nanocomposite." Bulletin of the Chemical Society of Japan 73, no. 11 (November 2000): 2627–33. http://dx.doi.org/10.1246/bcsj.73.2627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Darrow, J. T., X. C. Zhang, D. H. Auston, and J. D. Morse. "Saturation properties of large-aperture photoconducting antennas." IEEE Journal of Quantum Electronics 28, no. 6 (June 1992): 1607–16. http://dx.doi.org/10.1109/3.135314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Froberg, N. M., Bin Bin Hu, Xi-Cheng Zhang, and D. H. Auston. "Terahertz radiation from a photoconducting antenna array." IEEE Journal of Quantum Electronics 28, no. 10 (1992): 2291–301. http://dx.doi.org/10.1109/3.159536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Calvo, Mauricio E., Silvia Colodrero, T. Cristina Rojas, Juan Antonio Anta, Manuel Ocaña, and Hernán Míguez. "Photoconducting Bragg Mirrors based on TiO2Nanoparticle Multilayers." Advanced Functional Materials 18, no. 18 (September 23, 2008): 2708–15. http://dx.doi.org/10.1002/adfm.200800039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Shariati, Mohsen, and Sahel Alishavandi. "Phototransistor Properties of Indium Tin Oxide Nanowires Grown by RF Sputtering Mechanism and Annealing Process." Nano 10, no. 01 (January 2015): 1550006. http://dx.doi.org/10.1142/s179329201550006x.

Full text
Abstract:
Photoconducting properties of indium tin oxide (ITO) nanowires grown by RF sputtering associated with annealing process were studied. ITO nanowires have been grown without the use of catalysts or oblique deposition. The cubic cross-sectional nanowires length was of the order of several microns, while their diameter was ~150–250 nm. The photoluminescence (PL) analysis on nanowires proved their excellent photoemission characteristics. Devices based on ITO nanowires showed a substantial increase in conductance of up to three orders of magnitude upon exposure to UV light and showing reproducible UV photoresponse and remaining relatively stable. The rising speed is slightly reduced, while the decay time is prolonged. Such devices also exhibited short response times and significant shifts in the threshold gate voltage. It was found that the dynamic response of the ITO nanowires phototransistor was stable with an on/off current contrast ratio of around 101. It is thus found that the change in the carrier concentrations in constant gate voltage was enhanced by 1.12 × 1017 cm-3 for the 350 nm UV light, corresponding to threshold-voltage shifts of before to after UV-light exposition. The photoconductive gain corresponding to responsivity measured at 350 nm was 0.11 × 105.
APA, Harvard, Vancouver, ISO, and other styles
37

Giro, Gabriele, Giancarlo Beggiato, Giuseppe Casalbore-miceli, Piergiulio Di Marco, and Salvatore Emmi. "Poly-Thionaphthene-Indole: A New Electrosynthesized Photoconducting Material." Molecular Crystals and Liquid Crystals 156, no. 1 (March 1, 1988): 311–17. http://dx.doi.org/10.1080/00268948808070580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gao, P., Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D. Bai, and E. G. Wang. "Photoconducting response on bending of individual ZnO nanowires." J. Mater. Chem. 19, no. 7 (2009): 1002–5. http://dx.doi.org/10.1039/b816791e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Darrow, J. T., B. B. Hu, X. C. Zhang, and D. H. Auston. "Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas." Optics Letters 15, no. 6 (March 15, 1990): 323. http://dx.doi.org/10.1364/ol.15.000323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Miniewicz, A., F. Michelotti, and A. Belardini. "Photoconducting polymer–liquid crystal structure studied by electroreflectance." Journal of Applied Physics 95, no. 3 (February 2004): 1141–47. http://dx.doi.org/10.1063/1.1637706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Panagamuwa, C. J., A. Chauraya, and J. C. Vardaxoglou. "Frequency and Beam Reconfigurable Antenna Using Photoconducting Switches." IEEE Transactions on Antennas and Propagation 54, no. 2 (February 2006): 449–54. http://dx.doi.org/10.1109/tap.2005.863393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bukharov, V. É., A. G. Rokakh, and S. V. Stetsyura. "Diffusion degradation model for a heterogeneous photoconducting system." Technical Physics 48, no. 2 (February 2003): 225–30. http://dx.doi.org/10.1134/1.1553565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Giro, Gabriele, Giancarlo Beggiato, Giuseppe Casalbore-Miceli, Piergiulio Di Marco, and Salvatore S. Emmi. "Poly-Thionaphthene-Indole: A New Electrosynthesized Photoconducting Material." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 156, no. 1 (March 1988): 311–17. http://dx.doi.org/10.1080/10441859.1988.11009208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Spielman, R. B., W. W. Hsing, and D. L. Hanson. "Photoconducting x‐ray detectors for Z‐pinch experiments." Review of Scientific Instruments 59, no. 8 (August 1988): 1804–6. http://dx.doi.org/10.1063/1.1140118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Abramavicius, D., V. Gulbinas, A. Ruseckas, A. Undzenas, and L. Valkunas. "Geminate charge pair recombination in sensitized photoconducting polymer." Journal of Chemical Physics 111, no. 12 (September 22, 1999): 5611–16. http://dx.doi.org/10.1063/1.479819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Froberg, N. M., B. B. Hu, X. ‐C Zhang, and D. H. Auston. "Time‐division multiplexing by a photoconducting antenna array." Applied Physics Letters 59, no. 25 (December 16, 1991): 3207–9. http://dx.doi.org/10.1063/1.105733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, S., Y. F. Zhu, and D. E. Brodie. "Photoconducting TiO2 prepared by spray pyrolysis using TiCl4." Thin Solid Films 213, no. 2 (June 1992): 265–70. http://dx.doi.org/10.1016/0040-6090(92)90292-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Patil, L. A., P. A. Wani, S. R. Sainkar, A. Mitra, G. J. Phatak, and D. P. Amalnerkar. "Studies on ‘fritted’ thick films of photoconducting CdS." Materials Chemistry and Physics 55, no. 1 (August 1998): 79–83. http://dx.doi.org/10.1016/s0254-0584(98)00047-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Amalnerkar, D. P. "Photoconducting and allied properties of CdS thick films." Materials Chemistry and Physics 60, no. 1 (July 1999): 1–21. http://dx.doi.org/10.1016/s0254-0584(99)00061-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ramachandran, V. "Photoconducting cells in the production of AM signals." Physics Education 36, no. 2 (March 2001): 121–23. http://dx.doi.org/10.1088/0031-9120/36/2/306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography