Academic literature on the topic 'Photochemical processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photochemical processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photochemical processes"
Melchiorre, Paolo. "Introduction: Photochemical Catalytic Processes." Chemical Reviews 122, no. 2 (January 26, 2022): 1483–84. http://dx.doi.org/10.1021/acs.chemrev.1c00993.
Full textReuther, A., A. Laubereau, and D. N. Nikogosyan. "Primary Photochemical Processes in Water." Journal of Physical Chemistry 100, no. 42 (January 1996): 16794–800. http://dx.doi.org/10.1021/jp961462v.
Full textHrdlovic, Pavol. "Photochemical Reactions and Photophysical Processes." Polymer News 30, no. 12 (December 2005): 380–84. http://dx.doi.org/10.1080/00323910500402870.
Full textHrdlovič, Pavol. "Photochemical Reactions and Photophysical Processes." Polymer News 30, no. 3 (April 2005): 86–89. http://dx.doi.org/10.1080/00323910500459029.
Full textStroyuk, O. L., N. S. Andryushina, S. Ya Kuchmy, and V. D. Pokhodenko. "Photochemical Processes Involving Graphene Oxide." Theoretical and Experimental Chemistry 51, no. 1 (March 2015): 1–29. http://dx.doi.org/10.1007/s11237-015-9393-y.
Full textLegrini, O., E. Oliveros, and A. M. Braun. "Photochemical processes for water treatment." Chemical Reviews 93, no. 2 (March 1993): 671–98. http://dx.doi.org/10.1021/cr00018a003.
Full textYoung, Douglas D., and Alexander Deiters. "Photochemical control of biological processes." Org. Biomol. Chem. 5, no. 7 (2007): 999–1005. http://dx.doi.org/10.1039/b616410m.
Full textFrei, H., and G. C. Pimentel. "Infrared Induced Photochemical Processes in Matrices." Annual Review of Physical Chemistry 36, no. 1 (October 1985): 491–524. http://dx.doi.org/10.1146/annurev.pc.36.100185.002423.
Full textSong, Pill-Soon. "Photochemical Processes in Organized Molecular Systems." Photochemistry and Photobiology 56, no. 2 (August 1992): 285. http://dx.doi.org/10.1111/j.1751-1097.1992.tb02160.x.
Full textYilmaz, Gorkem, and Yusuf Yagci. "New Photochemical Processes for Macromolecular Syntheses." Journal of Photopolymer Science and Technology 29, no. 1 (2016): 91–98. http://dx.doi.org/10.2494/photopolymer.29.91.
Full textDissertations / Theses on the topic "Photochemical processes"
Cuadros, Huertas Sara. "Exploiting Organocatalysis in Photochemical Processes." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668446.
Full textEl trabajo descrito en esta disertación se centra en la implementación de estrategias organocatalíticas para superar las limitaciones de procesos fotoquímicos establecidos. Específicamente, dos transformaciones promovidas por la luz han sido estudiadas: (i) la fotoenolización de 2-alquilbenzofenonas para acceder intermedios enólicos transitorios (fotoenoles), y (ii) la ruptura homolítica fotoinducida de derivados ditiocarbonílicos para producir radicales. Por un lado, el proceso de fotoenolización acoplado con la reactividad de tipo Diels-Alder (secuencia fotoenolización/ Diels-Alder) es una histórica reacción fotoquímica con aplicaciones conocidas en síntesis total. Sin embargo, una variante asimétrica de este proceso no ha sido reportada. Los Capítulos II y III demuestran cómo la organocatálisis asimétrica proporciona herramientas simples y efectivas para hacer participar a las especies fotoenólicas en procesos de tipo Diels-Alder y aldólicos altamente esteroselectivos. Por otro lado, la ruptura fotolítica de especies ditiocarbonílicas capaces de absorber luz visible, es un conocido método para la generación de radicales bajo condiciones suaves de reacción. Esta tecnología hace uso de cantidades estequiométricas de compuestos ditiocarbonílicos fácilmente accesibles. Aunque esta estrategia ha mejorado considerablemente las condiciones para acceder a la reactividad de tipo radicalaria, ésta requiere la síntesis previa de compuestos que contentan la funcionalidad ditiocarbonílica.
The work described in this dissertation focuses on the implementation of organocatalytic strategies to overcome limitations of established photochemical processes. Specifically, two known light-driven transformations have been studied: (i) the photoenolization of 2-alkyl-benzophenones to access transient enol-intermediates (photoenols), and (ii) the photoinduced homolytic cleavage of stoichiometric dithiocarbonyl derivatives to produce radicals. On the one hand, the photoenolization process coupled with classical Diels-Alder chemistry (photoenolization/Diels- Alder sequence) is an historical photochemical reaction with known applications in total synthesis. However, an asymmetric catalytic variant of this light-driven transformation has remained elusive over the years. Chapter II and Chapter III demonstrate how asymmetric organocatalysis provides simple but effective catalytic tools to engage photoenols in highly stereoselective Diels-Alder and Aldol-type processes, respectively. On the other hand, the photolytic cleavage of visible-light-absorbing dithiocarbonyl-based compounds is a known effective method for the mild generation of radicals. This technology uses stoichiometric amounts of easy-to make dithiocarbonyl-based substrates, capable of triggering the formation of open-shell intermediates upon direct light-excitation. Although this strategy has greatly enhanced the conditions to access radical-type reactivity, it still relies on purposely designed stoichiometric reagents.
Buzzetti, Luca. "Photochemical Strategies for Carbon–Carbon Bond Forming Processes." Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/668971.
Full textLa capacidad de generar intermedios radicalarios, bajo condiciones suaves, ha llevado al emergente campo de la catálisis fotoredox al desarrollo de nuevas transformaciones. Tradicionalmente, esta se basa en el uso de un fotocatalizador, que absorbe eficientemente luz e induce una transferencia simple de electrones (SET). Sin embargo, la reactividad química de las moléculas excitadas electrónicamente difiere fundamentalmente de las que se encuentran en su estado fundamental. Una molécula en estado excitado es a la vez una mejor donante y aceptora de electrones que en su estado fundamental y se comporta respectivamente como una mejor reductora y una mejor oxidante. El principal objetivo científico de esta tesis doctoral ha sido investigar y comprender la reactividad del estado excitado de algunas moléculas orgánicas para desarrollar nuevos procesos fotoquímicos de formación de enlaces C-C. Para lograr este objetivo, se han combinado diferentes herramientas de la química orgánica. En los primeros proyectos (discutidos en los Capítulos III y IV), la fusión de la organocatálisis y la fotoquímica han permitido la funcionalización asimétrica directa en la posición β de enales, desencadenada por la excitación con luz visible de sales de iminio quirales formadas in situ. En la segunda parte de estos estudios doctorales (discutido en el Capítulo V), se ha explotado las propiedades del estado excitado de 4-alquil-1,4-dihidropiridinas (alquil-DHP) en combinación con la catálisis de metales de transición para el desarrollo de catalizadores de níquel en reacciones radicalarias de acoplamiento cruzado.
The emerging field of photoredox catalysis has led to the development of new transformations due to the ability to generate radical intermediates under mild conditions. Traditionally, this relies on the use of a photocatalyst, which efficiently absorbs light and induces a single electron transfer (SET). However, the chemical reactivity of electronically excited molecules differs fundamentally from that in the ground state. An excited-state molecule is both a better electron donor and a better electron acceptor than in the ground state and behaves respectively as a better reductant and a better oxidant. The main scientific objective of this doctoral research was to investigate and understand the excited-state reactivity of some organic molecules to develop novel photochemical C–C bond-forming processes. In order to achieve this goal, different tools of organic chemistry were combined. In the first projects (discussed in Chapter III and IV), the merger of organocatalysis and photochemistry enabled the direct asymmetric β-functionalization of enals triggered by the visible-light excitation of in situ formed chiral iminium salts. In the second part of the PhD studies (discussed in Chapter V), the excited-state properties of 4-alkyl-1,4-dihydropyridines (alkyl-DHP) were exploited in combination with transition metal catalysis for the development of nickel-catalyzed radical cross-couplings.
Raybone, D. "Chemiluminescent and photochemical processes in the gas phase." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383197.
Full textSutton, Paul David. "Studies in infrared multiple photon excitations." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291598.
Full textAlandini, Nurtalya. "1,4-Dihydropyridines as Versatile Reagents in Photochemical Carbon-Carbon Bond-Forming Processes." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669606.
Full textLas reacciones fotoquímicas se basan en la capacidad de moléculas orgánicas o catalizadores para absorber luz y alcanzar a un estado electrónicamente excitado. Dado que tanto las propiedades químicas como físicas de las moléculas en su estado excitado se diferencian de aquellas en su estado fundamental, la fotoquímica puede ofrecer acceso a interesante nueva reactividad no disponible por la vía térmica. El principal objetivo de esta tesis doctoral fue la implementación de estrategias fotoquímicas para el desarrollo de reacciones sintéticamente útiles no accesibles mediante el empleo de métodos térmicos ya establecidos. En particular, la investigación y explotación de la capacidad única de las 1,4-dihidropiridinas-4-substituidas (DHPs) para formar radicales de tipo carbono usando condiciones suaves. En el primer proyecto, 1,4-dihidropiridinas-4-alquilo (DHP-alquilo) se emplearon como precursores de radicales para la alquilación enantioselectiva de enales desencadenada por excitación mediante luz visible de una sal de iminio quiral formada in situ. En la segunda parte de la tesis doctoral (desarrollada en el capítulo 4), 1,4-dihidropiridinas-4-carbamoil (DHP-carbamoil) fueron empleadas como fuente de radicales de tipo carbamoil y aplicadas en reacciones de acoplamiento de radicales catalizadas por niquel para la síntesis de un amplio rango de (hetero)aril amidas.
Photochemical transformations rely on the ability of organic molecules or catalysts to absorb light and reach the electronically excited states. Since the chemical and physical properties of excited-state molecules significantly differ from the ground state, light-mediated chemistry can offer interesting new reactivity patterns that are unavailable under thermal activation. The main objective of this doctoral studies was to implement photochemical strategies suitable for developing useful synthetic transformations not achievable using established thermal approaches. In particular, I investigated and exploited the unique ability of 4-substituted-1,4-dihydropyridines (DHPs) to form carbon-centered radicals under mild conditions. In the first project (Chapter III), 4-alkyl-1,4-dihydropyridines (alkyl-DHPs) were employed as alkyl radical precursors in the enantioselective alkylation of enals triggered by the visible-light excitation of in situ generated chiral iminium salts. In the second part of the doctoral studies (discussed in Chapter IV), 4-carbamoyl-1,4-dihydropyridines (carbamoyl-DHP) were employed as carbamoyl radical sources and applied in nickel-catalyzed radical cross-coupling reactions for the synthesis of a wide range of (hetero)aryl amides.
Filippini, Giacomo. "Development of radical processes triggered by the photochemical activity of transient organic intermediates." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461090.
Full textLa química desarrollada durante mi tesis doctoral ha sido impulsada por la capacidad de intermedios ricos en electrones (aniones fenolato y enaminas quirales), generados transitoriamente a partir de precursores fotoquímicamente inactivos (fenoles y aldehídos), para alcanzar directamente un estado electrónicamente excitado tras la absorción de luz y, posteriormente, promover la formación de especies radicalarias reactivas a partir de los yoduros de alquilo adecuados. En las transformaciones estudiadas, la formación de los radicales es a través de la escisión reductora del enlace carbono-yodo del precursor de yoduro de alquilo mediante mecanismos de transferencia de un solo electrón (SET). Inicialmente, he desarrollado un nuevo enfoque para la perfluoroalquilación fotoquímica directa de fenoles sustituidos. El uso de luz visible simple, sin necesidad de ningún fotocatalizador o iniciador de radicales, puede promover la perfluoroalquilación o trifluorometilación aromática de fenoles a temperatura ambiente. En un segundo proyecto, he desarrollado una nueva metodología para la metilación o bencilación en α de aldehídos mediante fotoorganocatálisis. En este caso, la reacción se produce en ausencia de catalizadores fotoredox externos, y los compuestos deseados se obtienen con buenos rendimientos aislados y elevada enantioselectividad.
The chemistry developed during my doctoral thesis was driven by the ability of electron rich intermediates (phenolate anions and chiral enamines), transiently generated from photochemically inactive precursors (phenols and aldehydes), to directly reach an electronically excited state upon light absorption and subsequently promoting the formation of reactive radical species from suitable alkyl iodides. In the studied transformations, the radicals are formed through the reductive cleavage of the carbon-iodine bond within the alkyl iodide precursor via single-electron transfer (SET) mechanisms. Initially, I developed a new approach for the photochemical direct perfluoroalkylation of substituted phenols. The use of simple visible light, without the need of any photocatalyst or radical initiator, can promote an aromatic perfluoroalkylation or trifluoromethylation of phenols at ambient temperature. In a second project, I developed a new methodology for the enantioselective formal α-methylation and α-benzylation of aldehydes by means of photo-organocatalysis. The reaction occurs in the absence of external photoredox catalysts, and the desired compounds were obtained in good isolated yields with high enantioselectivity.
Shrestha, Sweta. "Application of Transition Metal Coordination for Energy Efficient Processes: Catalysis and Separation." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1502975499629018.
Full textZeng, Tao. "Three-Dimensional Model Analysis of Tropospheric Photochemical Processes in the Arctic and Northern Mid_Latitudes." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7648.
Full textMalpass, Simon. "Oxidant, particle and photochemical processes in the atmosphere above a Southeast Asian rain forest." Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/2366/.
Full textYamazaki, Shohei. "A method for locating conical intersection in solvated molecules and application to photochemical processes." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136734.
Full textBooks on the topic "Photochemical processes"
Ramamurthy, V. Supramolecular photochemistry: Controlling photochemical processes. Hoboken, NJ: Wiley, 2011.
Find full textSupramolecular photochemistry: Controlling photochemical processes. Hoboken, NJ: Wiley, 2011.
Find full textGardner, Edward P. The primary photochemical processes of acrolein. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1986.
Find full textHess, Peter. Photoacoustic, Photothermal and Photochemical Processes in Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textHess, Peter, ed. Photoacoustic, Photothermal and Photochemical Processes in Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83851-4.
Full textJoint Workshop COST 611/Working Party 2 and EUROTRAC (1990 Madrid, Spain). Joint Workshop COST 611/Working Party 2 and EUROTRAC: Atmospheric oxidation processes, September 25-27, 1990, Madrid/Spain. Brussel: E. Guyot, 1991.
Find full textHess, Peter. Photoacoustic, Photothermal and Photochemical Processes at Surfaces and in Thin Films. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textHess, Peter, ed. Photoacoustic, Photothermal and Photochemical Processes at Surfaces and in Thin Films. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83945-0.
Full textP, Hess, Boccara A. C, and Physikzentrum (Bad Honnef Germany), eds. Photoacoustic, photothermal, and photochemical processes at surfaces and in thin films. Berlin: Springer-Verlag, 1989.
Find full textMechanisms of photophysical processes and photochemical reactions in polymers: Theory and applications. Chichester [West Sussex]: Wiley, 1987.
Find full textBook chapters on the topic "Photochemical processes"
Rodgers, M. A. J. "Primary Photochemical Processes." In Photosensitisation, 11–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73151-8_2.
Full textMoortgat, Geert K. "PhotoChemical Processes in the Atmosphere." In Global Atmospheric Change and its Impact on Regional Air Quality, 115–20. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0082-6_18.
Full textBäuerle, Dieter. "Thermal, Photophysical, and Photochemical Processes." In Laser Processing and Chemistry, 13–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17613-5_2.
Full textMajer, J. R., and J. P. Simons. "Photochemical Processes in Halogenated Compounds." In Advances in Photochemistry, 137–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470133323.ch4.
Full textSantarelli, Francesco. "Radiative Transfer in Photochemical Processes." In Photoelectrochemistry, Photocatalysis and Photoreactors, 549–59. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7725-0_24.
Full textBäuerle, Dieter. "Thermal, Photophysical, and Photochemical Processes." In Advanced Texts in Physics, 13–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04074-4_2.
Full textBäuerle, Dieter. "Thermal, Photophysical, and Photochemical Processes." In Laser Processing and Chemistry, 13–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03253-4_2.
Full textVione, Davide. "Photochemical Transformation Processes of Environmental Significance." In Tomorrow's Chemistry Today, 395–419. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527628902.ch17.
Full textRichard, Claire, and Norbert Hoffmann. "Chapter 4. Direct Photolysis Processes." In Comprehensive Series in Photochemical & Photobiological Sciences, 61–75. Cambridge: Royal Society of Chemistry, 2015. http://dx.doi.org/10.1039/9781782622154-00061.
Full textWang, Ying. "Photophysical and Photochemical Processes of Semiconductor Nanoclusters." In Advances in Photochemistry, 179–234. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470133507.ch3.
Full textConference papers on the topic "Photochemical processes"
Jaber, Jad, James Hamzik, Nicholas Filipancic, Justin Brewster, and Annie Xia. "Addressing metallic contaminants in the photochemical supply chain." In Advances in Patterning Materials and Processes XXXVII, edited by Roel Gronheid and Daniel P. Sanders. SPIE, 2020. http://dx.doi.org/10.1117/12.2551646.
Full textGrishina, Antonina D., Anatoly V. Vannikov, Galina O. Khazova, Marine G. Tedoradze, and Yurij I. Koltsov. "Photochemical processes in photoresists containing electron donor molecules." In Optical Information Science and Technology, edited by Andrei L. Mikaelian. SPIE, 1998. http://dx.doi.org/10.1117/12.301424.
Full textAkselrod, L., H. J. Byrne, C. Thomsen, and S. Roth. "A spectroscopic analysis of photochemical processes in fullerenes." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.834646.
Full textMaharjan, Kusum, Iou-Sheng Ke, Sabrina Wong, Aiwen Wu, Ying Qi, James Hamzik, and Lawrence Chen. "Removing metallic contaminants from photochemical solvents using advanced purification technologies." In Advances in Patterning Materials and Processes XXXIX, edited by Douglas Guerrero and Daniel P. Sanders. SPIE, 2022. http://dx.doi.org/10.1117/12.2614308.
Full textOgura, T., Y. Yamakage, T. Inoue, and M. Hirose. "Surface Processes in Fluorine-Based Photochemical Etching of Silicon." In 1986 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1986. http://dx.doi.org/10.7567/ssdm.1986.a-4-3.
Full textLuey, Kenneth T., and Dianne J. Coleman. "Photochemical processes in a two-component molecular contaminant film." In Optical Engineering + Applications, edited by Sharon A. Straka. SPIE, 2008. http://dx.doi.org/10.1117/12.793502.
Full textMelzer, Madeline E., Priscilla Lopez, Gary Noojin, Amanda Tijerina, Harvey Hodnett, Matthew A. Macasadia, and Michael L. Denton. "Distinguishing photothermal from photochemical damage processes at 447 nm." In Optical Interactions with Tissue and Cells XXXIII and Advanced Photonics in Urology, edited by Hyun Wook Kang, Ronald Sroka, Bennett L. Ibey, and Norbert Linz. SPIE, 2022. http://dx.doi.org/10.1117/12.2609049.
Full textDanilova, E. D., L. V. Коlomeichuk, and M. V. Efimova. "Influence of chloride salinity on primary photosynthetic processes in potato leaves." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.056.
Full textRaddi, S. "Remote Sensing Of Photosynthetic Processes By Photochemical Reflectance Index (PRI)." In EARTH OBSERVATION FOR VEGETATION MONITORING AND WATER MANAGEMENT. AIP, 2006. http://dx.doi.org/10.1063/1.2349348.
Full textSekiguchi, Atsushi, Mikio Kadoi, Yasuhiro Miyake, Toshiharu Matsuzawa, and Chris A. Mack. "Development of analysis system for F 2 -excimer laser photochemical processes." In Microlithography 2000, edited by Francis M. Houlihan. SPIE, 2000. http://dx.doi.org/10.1117/12.388324.
Full textReports on the topic "Photochemical processes"
Walker, David, Craig Baker-Austin, Andy Smith, Karen Thorpe, Adil Bakir, Tamara Galloway, Sharron Ganther, et al. A critical review of microbiological colonisation of nano- and microplastics (NMP) and their significance to the food chain. Food Standards Agency, April 2022. http://dx.doi.org/10.46756/sci.fsa.xdx112.
Full textWurl, Oliver. Biofilm-like habitat at the sea-surface: A mesocosm study, Cruise No. POS537, 14.09.2019 – 04.10.2019, Malaga (Spain) – Cartagena (Spain) - BIOFILM. University of Oldenburg, November 2020. http://dx.doi.org/10.3289/cr_pos537.
Full textLONG, KRISTY M., GORDON D. JARVINEN, and DORIS K. FORD. PHOTOCHEMICAL OXIDATION OF OXALATE, UREA, AND HYDROXYLAMMONIUM IN PU-238 PROCESS STREAMS. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/1087619.
Full textNelson, Nathan, and Charles F. Yocum. Structure, Function and Utilization of Plant Photosynthetic Reaction Centers. United States Department of Agriculture, September 2012. http://dx.doi.org/10.32747/2012.7699846.bard.
Full textOhad, Itzhak, and Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, December 1995. http://dx.doi.org/10.32747/1995.7613031.bard.
Full text