Journal articles on the topic 'Photocatalytic Properties - Nanostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Photocatalytic Properties - Nanostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cao, Feng, Jianmin Wang, Wanhong Tu, Xin Lv, Song Li, and Gaowu Qin. "Uniform Bi2O2CO3 hierarchical nanoflowers: solvothermal synthesis and photocatalytic properties." Functional Materials Letters 08, no. 02 (April 2015): 1550021. http://dx.doi.org/10.1142/s1793604715500216.
Full textGuo, Xiaoxiao, Xiaoyun Qin, Zhenjie Xue, Changbo Zhang, Xiaohua Sun, Jibo Hou, and Tie Wang. "Morphology-controlled synthesis of WO2.72 nanostructures and their photocatalytic properties." RSC Advances 6, no. 54 (2016): 48537–42. http://dx.doi.org/10.1039/c6ra08551b.
Full textPrabhakar Vattikuti, Surya V., Jie Zeng, Rajavaram Ramaraghavulu, Jaesool Shim, Alain Mauger, and Christian M. Julien. "High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts." International Journal of Molecular Sciences 24, no. 1 (December 30, 2022): 663. http://dx.doi.org/10.3390/ijms24010663.
Full textWang, S. L., H. W. Zhu, W. H. Tang, and P. G. Li. "Propeller-Shaped ZnO Nanostructures Obtained by Chemical Vapor Deposition: Photoluminescence and Photocatalytic Properties." Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/594290.
Full textStride, John A., and Nam T. Tuong. "Controlled Synthesis of Titanium Dioxide Nanostructures." Solid State Phenomena 162 (June 2010): 261–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.162.261.
Full textMutuma, Bridget K., Xiluva Mathebula, Isaac Nongwe, Bonakele P. Mtolo, Boitumelo J. Matsoso, Rudolph Erasmus, Zikhona Tetana, and Neil J. Coville. "Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity." Beilstein Journal of Nanotechnology 11 (December 9, 2020): 1834–46. http://dx.doi.org/10.3762/bjnano.11.165.
Full textAK AZEM, Funda, Işıl BİRLİK, Özgür Yasin KESKİN, and Tülay KOÇ DELİCE. "Improvement of Photocatalytic Degradation of Titanium Dioxide Nanomaterials by Non-metal Doping." Afyon Kocatepe University Journal of Sciences and Engineering 23, no. 4 (August 29, 2023): 874–82. http://dx.doi.org/10.35414/akufemubid.1256778.
Full textKarpyna, V. A., L. A. Myroniuk, D. V. Myroniuk, M. E. Bugaiova, L. I. Petrosian, O. I. Bykov, O. I. Olifan, et al. "Photocatalysis and optical properties of ZnO nanostructures grown by MOCVD on Si, Au/Si and Ag/Si wafers." Himia, Fizika ta Tehnologia Poverhni 14, no. 1 (March 30, 2023): 83–92. http://dx.doi.org/10.15407/hftp14.01.083.
Full textVerma, Hemant Kumar, Mahak Vij, and K. K. Maurya. "Synthesis, Characterization and Sun Light-Driven Photocatalytic Activity of Zinc Oxide Nanostructures." Journal of Nanoscience and Nanotechnology 20, no. 6 (June 1, 2020): 3683–92. http://dx.doi.org/10.1166/jnn.2020.17679.
Full textRajbongshi, Himanshu, and Dipjyoti Kalita. "Morphology-Dependent Photocatalytic Degradation of Organic Pollutant and Antibacterial Activity with CdS Nanostructures." Journal of Nanoscience and Nanotechnology 20, no. 9 (September 1, 2020): 5885–95. http://dx.doi.org/10.1166/jnn.2020.18552.
Full textAbu-Dalo, Muna A., Saja A. Al-Rosan, and Borhan A. Albiss. "Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures." Polymers 13, no. 19 (October 8, 2021): 3451. http://dx.doi.org/10.3390/polym13193451.
Full textPocoví-Martínez, Salvador, Inti Zumeta-Dube, and David Diaz. "Production of Methanol from Aqueous CO2 by Using Co3O4 Nanostructures as Photocatalysts." Journal of Nanomaterials 2019 (January 9, 2019): 1–10. http://dx.doi.org/10.1155/2019/6461493.
Full textKulis-Kapuscinska, Anna, Monika Kwoka, Michal Adam Borysiewicz, Massimo Sgarzi, and Gianaurelio Cuniberti. "ZnO Low-Dimensional Thin Films Used as a Potential Material for Water Treatment." Engineering Proceedings 6, no. 1 (May 17, 2021): 10. http://dx.doi.org/10.3390/i3s2021dresden-10131.
Full textWang, Hong Mei, Da Peng Zhou, Yuan Lian, Ming Pang, and Dan Liu. "Hydrothermal Synthesis and Photocatalytic Properties of Flower-Like CdS Nanostructures." Advanced Materials Research 335-336 (September 2011): 460–63. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.460.
Full textYousef, Aseel, Zeineb Thiehmed, Rana Abdul Shakoor, and Talal Altahtamouni. "Recent Progress in WS2-Based Nanomaterials Employed for Photocatalytic Water Treatment." Catalysts 12, no. 10 (September 28, 2022): 1138. http://dx.doi.org/10.3390/catal12101138.
Full textAl Suliman, Noura, Chawki Awada, Adil Alshoaibi, and Nagih M. Shaalan. "Simple Preparation of Ceramic-Like Materials Based on 1D-Agx(x=0, 5, 10, 20, 40 mM)/TiO2 Nanostructures and Their Photocatalysis Performance." Crystals 10, no. 11 (November 10, 2020): 1024. http://dx.doi.org/10.3390/cryst10111024.
Full textLi, Xiling, Wenfeng Guo, Hui Huang, Tingfang Chen, Moyu Zhang, and Yinshu Wang. "Synthesis and Photocatalytic Properties of CuO Nanostructures." Journal of Nanoscience and Nanotechnology 14, no. 5 (May 1, 2014): 3428–32. http://dx.doi.org/10.1166/jnn.2014.7965.
Full textXia, X. H., Y. Liang, Z. Wang, J. Fan, Y. S. Luo, and Z. J. Jia. "Synthesis and photocatalytic properties of TiO2 nanostructures." Materials Research Bulletin 43, no. 8-9 (August 2008): 2187–95. http://dx.doi.org/10.1016/j.materresbull.2007.08.026.
Full textZhang, Yunping, Xi Liu, Mahani Yusoff, and Mohd Hasmizam Razali. "Photocatalytic and Antibacterial Properties of a 3D Flower-Like TiO2 Nanostructure Photocatalyst." Scanning 2021 (September 27, 2021): 1–11. http://dx.doi.org/10.1155/2021/3839235.
Full textSevastaki, Maria, Vassilis M. Papadakis, Cosmin Romanitan, Mirela Petruta Suchea, and George Kenanakis. "Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds." Nanomaterials 11, no. 1 (January 11, 2021): 168. http://dx.doi.org/10.3390/nano11010168.
Full textSevastaki, Maria, Vassilis M. Papadakis, Cosmin Romanitan, Mirela Petruta Suchea, and George Kenanakis. "Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds." Nanomaterials 11, no. 1 (January 11, 2021): 168. http://dx.doi.org/10.3390/nano11010168.
Full textNoontasa, Sopa, Vatcharinkorn Mekla, and Sert Kiennork. "Structural and Photocatalytic Properties of CuO Nanorods Using the Hydrothermal Treatment Method." Advanced Materials Research 634-638 (January 2013): 2258–60. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2258.
Full textKuriakose, Sini, Vandana Choudhary, Biswarup Satpati, and Satyabrata Mohapatra. "Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method." Beilstein Journal of Nanotechnology 5 (May 15, 2014): 639–50. http://dx.doi.org/10.3762/bjnano.5.75.
Full textBaibara, O. E., M. V. Radchenko, V. A. Karpyna, and A. I. Ievtushenko. "A Review of the some aspects for the development of ZnO based photocatalysts for a variety of applications." Physics and Chemistry of Solid State 22, no. 3 (September 26, 2021): 585–94. http://dx.doi.org/10.15330/pcss.22.3.585-594.
Full textJOSE, VINAYA, VISMAYA JOSE, C. FREEDA CHRISTY, and A. SAMSON NESARAJ. "Development of Perovskite Based Electrode Materials for Application in Electrochemical Supercapacitors: Present Status and Future Prospects." Asian Journal of Chemistry 34, no. 3 (2022): 497–507. http://dx.doi.org/10.14233/ajchem.2022.23549.
Full textFawzi, Tarek, Sanju Rani, Somnath C. Roy, and Hyeonseok Lee. "Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures." International Journal of Molecular Sciences 23, no. 15 (July 24, 2022): 8143. http://dx.doi.org/10.3390/ijms23158143.
Full textJagvaral, Yesukhei, Qing Guo, Haiying He, and Ravindra Pandey. "Silicene-supported TiO2 nanostructures: a theoretical study of electronic and optical properties." Physical Chemistry Chemical Physics 21, no. 18 (2019): 9335–41. http://dx.doi.org/10.1039/c9cp00894b.
Full textTigabu Bekele, Mekonnen. "An overview of the developments of nanotechnology and heterogeneous photocatalysis in the presence of metal nanoparticles." Journal of Plant Science and Phytopathology 6, no. 3 (September 20, 2022): 103–14. http://dx.doi.org/10.29328/journal.jpsp.1001083.
Full textMarin, Riccardo, Fadi Oussta, Sarmad Naim Katea, Sagar Prabhudev, Gianluigi A. Botton, Gunnar Westin, and Eva Hemmer. "Europium-doped ZnO nanosponges – controlling optical properties and photocatalytic activity." Journal of Materials Chemistry C 7, no. 13 (2019): 3909–19. http://dx.doi.org/10.1039/c9tc00215d.
Full textLi, Li, Yongxing Zhang, Jia Li, Dong Ma, Dechuan Li, Guangping Zhu, Huijie Tang, and Xuanhua Li. "A simple chemical solution synthesis of nanowire-assembled hierarchical CuO microspheres with enhanced photochemical properties." Dalton Transactions 47, no. 42 (2018): 15009–16. http://dx.doi.org/10.1039/c8dt02931h.
Full textKuriakose, Sini, Neha Bhardwaj, Jaspal Singh, Biswarup Satpati, and Satyabrata Mohapatra. "Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method." Beilstein Journal of Nanotechnology 4 (November 18, 2013): 763–70. http://dx.doi.org/10.3762/bjnano.4.87.
Full textTuyen, Le Thi Thanh, Dinh Quang Khieu, Hoang Thai Long, Duong Tuan Quang, Chau The Lieu Trang, Tran Thai Hoa, and Nguyen Duc Cuong. "Monodisperse Uniform CeO2Nanoparticles: Controlled Synthesis and Photocatalytic Property." Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/8682747.
Full textParedes, Patricio, Erwan Rauwel, and Protima Rauwel. "Surveying the Synthesis, Optical Properties and Photocatalytic Activity of Cu3N Nanomaterials." Nanomaterials 12, no. 13 (June 28, 2022): 2218. http://dx.doi.org/10.3390/nano12132218.
Full textShahzad, Aasim, Taekyung Yu, and Woo-Sik Kim. "Controlling the morphology and composition of Ag/AgBr hybrid nanostructures and enhancing their visible light induced photocatalytic properties." RSC Advances 6, no. 60 (2016): 54709–17. http://dx.doi.org/10.1039/c6ra08682a.
Full textAmin, Muhammad T., and Abdulrahman A. Alazba. "Structural study of monoclinic TiO2 nanostructures and photocatalytic applications for degradation of crystal violet dye." Modern Physics Letters B 31, no. 29 (October 17, 2017): 1750264. http://dx.doi.org/10.1142/s0217984917502645.
Full textQ. Alijani, Hajar, Siavash Iravani, and Rajender S. Varma. "Bismuth Vanadate (BiVO4) Nanostructures: Eco-Friendly Synthesis and Their Photocatalytic Applications." Catalysts 13, no. 1 (December 28, 2022): 59. http://dx.doi.org/10.3390/catal13010059.
Full textSun, Shaodong, Peng Song, Jie Cui, and Shuhua Liang. "Amorphous TiO2 nanostructures: synthesis, fundamental properties and photocatalytic applications." Catalysis Science & Technology 9, no. 16 (2019): 4198–215. http://dx.doi.org/10.1039/c9cy01020c.
Full textSakar, M., S. Balakumar, P. Saravanan, and S. Bharathkumar. "Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures." Nanoscale 8, no. 2 (2016): 1147–60. http://dx.doi.org/10.1039/c5nr06655g.
Full textKoli, Valmiki B., Gavaskar Murugan, and Shyue-Chu Ke. "Self-Assembled Synthesis of Porous Iron-Doped Graphitic Carbon Nitride Nanostructures for Efficient Photocatalytic Hydrogen Evolution and Nitrogen Fixation." Nanomaterials 13, no. 2 (January 9, 2023): 275. http://dx.doi.org/10.3390/nano13020275.
Full textZyoud, Samer H., Samer O. Alalalmeh, Omar E. Hegazi, Ibrahim S. Yahia, Heba Y. Zahran, Hamed Abu Sara, Samir Haj Bloukh, et al. "Novel Laser-Assisted Chemical Bath Synthesis of Pure and Silver-Doped Zinc Oxide Nanoparticles with Improved Antimicrobial and Photocatalytic Properties." Catalysts 13, no. 5 (May 17, 2023): 900. http://dx.doi.org/10.3390/catal13050900.
Full textLi, Jian, Pablo Jiménez-Calvo, Erwan Paineau, and Mohamed Nawfal Ghazzal. "Metal Chalcogenides Based Heterojunctions and Novel Nanostructures for Photocatalytic Hydrogen Evolution." Catalysts 10, no. 1 (January 7, 2020): 89. http://dx.doi.org/10.3390/catal10010089.
Full textVrithias, Nikolaos Rafael, Klytaimnistra Katsara, Lampros Papoutsakis, Vassilis M. Papadakis, Zacharias Viskadourakis, Ioannis N. Remediakis, and George Kenanakis. "Three-Dimensional-Printed Photocatalytic Sponges Decorated with Mn-Doped ZnO Nanoparticles." Materials 16, no. 16 (August 18, 2023): 5672. http://dx.doi.org/10.3390/ma16165672.
Full textSelvaraj, Rengaraj, Kezhen Qi, Uiseok Jeong, Kholood Al Nofli, Salma Al-Kindy, Mika Sillanpää, and Younghun Kim. "A Simple Surfactant-Free Solution Phase Synthesis of Flower-like In2S3 Hierarchitectures and their Photocatalytic Activities." Sultan Qaboos University Journal for Science [SQUJS] 19, no. 2 (February 1, 2015): 29. http://dx.doi.org/10.24200/squjs.vol19iss2pp29-36.
Full textSupunnee, Khun Ngern, Vatcharinkorn Mekla, and Eakkarach Raksasri. "Structural and Photocatalytic Properties of Fe-Dope TiO2 Nanostructure Using the Hydrothermal Treatment Method." Advanced Materials Research 634-638 (January 2013): 2261–63. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2261.
Full textOmr, Hossam A. E., Mark W. Horn, and Hyeonseok Lee. "Low-Dimensional Nanostructured Photocatalysts for Efficient CO2 Conversion into Solar Fuels." Catalysts 11, no. 4 (March 25, 2021): 418. http://dx.doi.org/10.3390/catal11040418.
Full textCai, Jiabai, and Shunxing Li. "Photocatalytic Treatment of Environmental Pollutants using Multilevel- Structure TiO2-based Organic and Inorganic Nanocomposites." Current Organocatalysis 7, no. 3 (November 30, 2020): 161–78. http://dx.doi.org/10.2174/2213337207999200701214637.
Full textShiravizadeh, A. Ghorban, Ramin Yousefi, S. M. Elahi, and S. A. Sebt. "Effects of annealing atmosphere and rGO concentration on the optical properties and enhanced photocatalytic performance of SnSe/rGO nanocomposites." Physical Chemistry Chemical Physics 19, no. 27 (2017): 18089–98. http://dx.doi.org/10.1039/c7cp02995k.
Full textShu, Zhanxia, Xiuling Jiao, and Dairong Chen. "Synthesis and photocatalytic properties of flower-like zirconia nanostructures." CrystEngComm 14, no. 3 (2012): 1122–27. http://dx.doi.org/10.1039/c1ce06155k.
Full textBi, Yingpu, Hongyan Hu, Zhengbo Jiao, Hongchao Yu, Gongxuan Lu, and Jinhua Ye. "Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties." Physical Chemistry Chemical Physics 14, no. 42 (2012): 14486. http://dx.doi.org/10.1039/c2cp42822a.
Full textHu, Yongming, Jinmei Lei, Jing He, Yuebin Li, Zhao Wang, Yu Wang, and Haoshuang Gu. "Ferromagnetic and Photocatalytic Properties of Layered Perovskite LaBaCo2O6 Nanostructures." Journal of Nanoscience and Nanotechnology 16, no. 1 (January 1, 2016): 930–33. http://dx.doi.org/10.1166/jnn.2016.10808.
Full text