Dissertations / Theses on the topic 'Photocatalytic Properties - Nanostructures'

To see the other types of publications on this topic, follow the link: Photocatalytic Properties - Nanostructures.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Photocatalytic Properties - Nanostructures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zinatloo-Ajabshir, S., and M. Salavati-Niasari. "Facile Solvent-Less Preparation, Characterization and Investigation of Photocatalytic Properties of Pr6O11 Nanostructures." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42498.

Full text
Abstract:
Pr6O11 nanostructures were synthesized through a facile solvent-less method. Nanostructures were prepared by heat treatment in air, using [Pr L(NO3)2]NO3 (L  bis-(salicyladehyde)-1,4-butadiimine Schiff base ligand), as new precursor, which was obtained by a solvent-free solid–solid reaction from praseodymium nitrate and Schiff base ligand. The as-obtained nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet–visible (UV–vis)spectroscopy. The obtained results demonstrated that utilizing of this precursor is suitable choice for preparation of Pr6O11 nanostructures with very uniform sphere-like morphology. The photocatalyst activity of as-obtained Pr6O11 was also examined by degradation of 2-naphthol as organic contaminant under ultraviolet light irradiation.
APA, Harvard, Vancouver, ISO, and other styles
2

Kirsanova, Maria. "ZnSe/CdS Core/Shell Nanostructures and Their Catalytic Properties." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1342565590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Chun-Hsien, and 陳俊賢. "The Structural, Photocatalytic and Photoelectric Properties of Oxide-Based Heterojunction Nanostructures." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/55592582805076786438.

Full text
Abstract:
博士
國立臺灣大學
材料科學與工程學研究所
102
In order to improve the efficiency of water splitting in photocatalysis, a series of photoelectrodes based on TiO2 nanostructures were proposed in this study. The optical and photoelectric properties of these photocatalysts influenced by ionic defects and semiconductor-composite heterojunctions were investigated. The dopant-free oxygen-deficient TiO2 nanotube arrays were prepared by electrochemical anodization in the aqueous and organic electrolytes, respectively yielding TiO2(aq) and TiO2(EG) nanotube arrays, followed by long-time annealing at four temperatures – 450, 550, 650, and 750 °C. The evolution of architectures (i.e., anatase nanotubes and rutile film) in TiO2 nanotube arrays is confirmed by XRD patterns and SEM micrographs. The depth profiles of these annealed TiO2 samples are obtained from XPS analysis, and the elemental-concentration stable zones within the TiO2 nanostructures show the approximate O/Ti atomic ratios, revealing the extent of oxygen deficiency. The TiO2(aq) samples annealed at high temperatures (i.e., 650 and 750 °C) have O/Ti atomic ratios significantly less than 2 compared to the low-temperature-annealed TiO2(aq) samples, and the TiO2(EG) samples annealed at these four temperatures show extreme O/Ti atomic ratios around 1.5, revealing that the oxygen vacancy concentration in TiO2 nanotube arrays is governed by the annealing temperature and the experimental conditions in the anodization procedure. The optical absorption spectra demonstrate quite different behavior between these two kinds of TiO2 nanotube arrays: a blue shift in absorption edge along with a notable increase in the long-wavelength absorption due to the presence of oxygen vacancies is observed in TiO2(aq) samples; on the other hand, a red shift in absorption edge and an increase in absorbance within the wavelength region of 400-600 nm both result from the carbon doping effect, and are examined in TiO2(EG) samples. For the photocurrent density measurement under controlled light irradiation, the low-temperature-annealed TiO2 samples exhibit large photocurrent responses under light sources containing UV because the high specific surface area provides a large number of active sites for chemical reactions. A strong photocurrent response is found for high-temperature-annealed TiO2 samples under filtered white light (visible light range, λ > 500 nm), which is attributed to the presence of a high concentration of oxygen vacancies. Nanostructured composites composed of TiO2 nanotube arrays and SrTiO3 or CeO2 nanoparticles were fabricated, forming an array of TiO2(EG) nanotubes coated with SrTiO3 or CeO2 nanoparticles. The UV-Vis and UPS spectra were adopted to identify the band structures of the TiO2-SrTiO3 and TiO2-CeO2 heterojunctions. The oxygen vacancy concentration, which can be modified by adjusted the experimental parameters, in composites strongly influenced the band structure of the heterojunction and the photoelectric properties of the composite samples. Compared to the TiO2(EG) nanotube arrays, the photocurrent densities and the capability of photocatalytic water splitting for these composite samples under irradiation are enhanced because the semiconductor heterojunctions in the composites promote the separation of the photo-induced e-/h+ pairs.
APA, Harvard, Vancouver, ISO, and other styles
4

Lai, Chia-I., and 賴佳儀. "The capacitive and photocatalytic properties of composite nanostructures based on titania." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/42223547663260764833.

Full text
Abstract:
碩士
國立臺灣大學
材料科學與工程學研究所
104
Titania nanotube arrays (TNTs) is playing an important role in the field of composite capacitor and improvement of the efficiency of water splitting because of its high chemical stability and high aspect ratio. In this study, we try to develop the unique composite capacitor with special nanostructure from the TNTs. On the other side, The TNTs from one-step or two-step anodization was going through annealing treatment with different temperature. The optical and photoelectric properties to visible light of these photocatalysts would be improved when maintaining complete nanotube arrays structure. To produce composite capacitor, we synthesize TNTs with high aspect ratio from anodization treatment. The structure and chemical composition can be tuned by the combination of wet-etching process and hydrothermal treatment. Filling the nanotube arrays with HfO2 by ALD to produce the composite structure of TiO2 and high-K materials. From the results of several analysis, we found that the shorter nanotube arrays can scale down only with little decreased capacitance. The contact area of high-K material and nanotube arrays structure is the important index of the capacitor performance. And among the polarization mechanisms we proposed, space charge polarization from the width variation of the depletion layer is the most important.one. The other topic of this study is to investigate the photocatalytic ability of the annealed anodized TNTs. Higher annealing temperature can induce higher concentration of oxygen vacancies, extent of nitrogen doping and the ratio of rutile phase, and these are known as band gap narrowing factors. However, higher annealing temperature will make TNTs sintered to become rutile film layer and collapsed, which decreasing irradiated area. In conclusion, one-step anodized TNTs combining the low temperature annealing can perform well under UV light. The better photocatalytic performance can be achieved by the combination of two-step anodized TNTs and higher annealing temperature.
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Yuan-yuan, and 游沅沅. "Surface modified TiO2 nanostructures with enhanced bio-sensitivity and photocatalytic properties." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/62999830254530740437.

Full text
Abstract:
碩士
國立中央大學
材料科學與工程研究所
102
Titanium oxide (TiO2) has been widely applied in photocatalysts, sensors, solar cells, biomaterials, self-cleaning and so on. The surface morphology and surface chemical modification play important role in the properties of TiO2. This study employed a supercritical-CO2-fluid (ScCO2) cleaning process to modify the chemical properties of anodic TiO2 nanotubes surface. We found that ScCO2-treated TiO2 nanotubes can effectively change their surface wettability as a result of photo-oxidation of C-H functional groups formed on the TiO2 surface. In addition, the crystal structure of TiO2 nanotubes transformed from amorphous phase to anatase after annealing at 450 °C for 2 hours. The C-H functional groups of annealed TiO2 nanotubes were significantly less than amorphous TiO2 nanotubes after the ScCO2 cleaning process. We demonstrated a switchable superhydrophilicity of ScCO2-treated anodic TiO2 nanotubes with UV-light irradiation. In the following, TiO2 nanofibers with different size and crystal structures have been synthesized by electrospinning and further decorated with silver nanoparticles through antibody-mediated synthesis. The study indicates that Ag nanoparticles are uniform deposited on TiO2 nanofibers. Ag-TiO2 nanofibers possessed superb photocatalytic activity for the degradation of Rhodamine B ( RhB ) dye. This study also demonstrates that TiO2 nanofibers possess intrinsic peroxidase-like activity in suitable condition. Ag-TiO2 nanofibers show excellent catalytic performances and good biocompatibility so that they can be used a colorimetric biosensor for glucose detection.
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Debashree. "Oxide nanostructures based on Ti, Nb and Ta for photocatalytic properties." Thesis, 2013. http://localhost:8080/iit/handle/2074/6755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chu, Che-Wu, and 朱哲武. "Synthesis of TiO2 one-dimensional nanostructures by Hydrothermal process and their photocatalytic properties." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/74977349517134874095.

Full text
Abstract:
碩士
中興大學
材料科學與工程學系所
98
The anatase titanium dioxide nanowires on the titanium foil are prepared from hydrothermal treatment on commercial Ti foil in 1M NaOH or KOH followed by HCl washing and post-annealing processes. During the hydrothermal process, Ti foil surface will be etched by alkaline solution so that the roughness of Ti foil doesn’t play an important role to help TiO2 nanowires growth. In addition, 0.1M KOH additive in NaOH solution can better the alignment of TiO2 nanowires. All the formation process of sodium titania nanotubes will be in hydrothermal process. Namely, it will form nanosheets first and turn into roll-up nanosheets (nanotubes). Then, sodium titania nanotubes become hydrogen titania nanotubes during HCl washing. Finally, hydrogen titania nanotubes will transform into TiO2 nanowires. Post annealing process can better its crystallinity. In the end, with the Methylene Blue (MB) degradation by UV, anatase TiO2 nanowires on photocatalytic efficiency is superior than anatase TiO2 film.
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Lang-Wei, and 鄭朗尉. "Characterization and photocatalytic properties of bismuth phosphate nanostructures under sonochemical and hydrothermal synthesis." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60237351552985532062.

Full text
Abstract:
碩士
國立彰化師範大學
化學系
102
The synthesis of bismuth phosphate (BiPO4) nanostructures with various morphologies and phases was explored under ultrasound irradiation and hydrothermal process. Powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis diffuse reflectance spectroscopy (DRS) were used to characterize the BiPO4 samples. The effects of ultrasound irradiation and hydrothermal conditions on the phases and morphologies of the BiPO4 samples were studied, and the growth mechanisms of the 1D structure were investigated. The different BiPO4 samples exhibited different optical properties and photocatalytic activities for the degradation of methyl blue (MB) under UV light irradiation. The experimental results suggest that the high photocatalytic activity of the sample prepared under hydrothermal conditions is due to a low electron and hole recombination rate and the high potential of the photogenerated holes in the valence band. The practicality of this BiPO4 photocatalyst was validated for the degradation of MB in environmental and industrial wastewater samples, which demonstrated the advantages of its high photocatalytic activity.
APA, Harvard, Vancouver, ISO, and other styles
9

Jiang, Jian-Ru, and 江建儒. "Study on Surface Enhanced Raman Scattering and Photocatalytic Properties of Ag-decorated Cu2S Composite Nanostructures." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/29666594571430551225.

Full text
Abstract:
碩士
國立中央大學
材料科學與工程研究所
101
The surface characteristics of nanostructures play a critical role in the applications. In this thesis, two Cu2S nanostructures synthesized via a general solution route are applied in surface enhanced Raman scattering (SERS) and photocatalytic degradation. In the first part of this thesis, we demonstrate a facile, rapid, and practical approach to fabricate a flowerlike Cu2S substrate and then decorated Ag nanoparticles with a convenient galvanic reduction method. The scanning electron microscopy (SEM) images indicate that Ag nanoparticles are preferential deposited on the edge of Cu2S sheets due to the localization of the electrons on the surface of Cu2S. Owing to the introduction of Ag nanoparticles on the surface of Cu2S structures, the resulting Ag-Cu2S composite structures could be used as a versatile substrate for surface enhanced Raman scattering. In addition, Ag nanoparticles on the semiconductor surface behave like electron sinks, which can provide sites for accumulation of the photogenerated electrons, and then facilitate the separation of electrons and holes. Hence, adding Ag nanoparticles is a promising method to enhance the photocatalytic performance of Cu2S nanosheets. It is significant that photocatalysts fabricated by Cu2S nanosheets can be applied to the degradation of organic pollution, and solves the environmental issues.   In the second part, the Cu2S nanowires grow directly onto copper substrate by utilizing the biomolecule-assisted approach. Besides the reductive properties of biomolecules, they also have strong shape or size directing functionality in the reaction process. The field-emission properties of the Cu2S nanowires are studied by the Folwer-Nordheim (F-N) theory. The Cu2S nanowires show low turn-on field (1.19 V/μm) and high field enhancement factor (β=19381). The photocatalytic activity of two kinds of Cu2S structures was investigated by degradation of rhodamine B (RhB) under UV illumination. The experimental results indicate that surface area play a significant role on the efficiency of photocatalysis since photocatalytic reaction occurred on the surface.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Yi-Ru, and 陳怡如. "Study on Ultraviolet Photoresponsive and Photocatalytic Properties of ZnO Nanostructures Synthesized via Atmospheric Thermal Decomposition Process." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/13876752607193232200.

Full text
Abstract:
碩士
逢甲大學
材料科學所
98
ZnO (Zinc oxide, ZnO) nanostructures have been synthesized using ultraviolet and thermal decomposition process in ambient air, which is simple process, low cost, and short process time (only require ten minutes). As-synthesized ZnO nanostructures have been addressed to characterize the photoresponsive and photocatalytic properties. All as-synthesized products were characterized using field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS). In addition, a UV detection system was used to investigate the sensing activities of as-synthesized ZnO nanostructures while the ultraviolet-visible spectrophotometry (UV/vis, Hitachi U-3900 double-beam spectrophotometry) was performed to determine the photocatalytic activities of the as-synthesized products. Zinc acetylacetonate hydrate【Zn(AcAc)2】 was acted as solute while isopropyl alcohol (IPA), denatured alcohol, ethanol and acetone were used for solvent to prepared the Zn(AcAc)2 precursors. The UV-light (~365nm, 76mW/cm2) was used as light-source while the electronic furnace system was used as thermal-source to decompose the Zn(AcAc)2 precursors with process temperature ~ 200oC to synthesize the ZnO nanostructures. This work revealed that as-synthesized ZnO nanostructures (with IPA solvent) exhibited an ultra-high sensitivity ~809 folds as irradiated the sample to UV-light (~365 nm, 2.33 mW/cm2). Photoluminescence (PL) spectra demonstrated that the photoresponsive properties were proportional to the intensity of ZnO emission band (~380nm). In addition, the high surfaces to volume ratio of ZnO nanowires can be successful synthesized by UV decomposition and thermal decomposition process with process time ~ 10 minutes. The precursor is Zn(AcAc)2 with the solvent of denatured ethanol while through thermal decomposition for 3 minutes. To investigate the photocatalytic properties, as-synthesized ZnO nanowires with methylene blue (MB, C16H18ClN3S•H2O, 10μM) solution were irradiated under UV-light (254 nm, 3.15 mW/cm2) for 20 minutes. The highest dye decolorization efficiency (90% in 20 minutes ) was observed. The photocatalytic property of as-synthesized ZnO naowires is superior to that of commercial P25 TiO2 nanparticels. This work is developing a simple process, short process time, large scale, and cost of facilities-based investment. These unique advantages demonstrate that as-synthesized ZnO nanostructures probably possess the highly potential applications in novel optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
11

Yeh, Chih-Hui, and 葉志輝. "Study on the Electrical, Photocatalytic Properties and the Growth of One Dimension Indium-Oxide and Bismuth-Oxide Nanostructures." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/17342383282398781773.

Full text
Abstract:
碩士
逢甲大學
材料與製造工程所
98
In this work, the nanowires of indium-oxide (In2O3), bismuth-oxide(Bi2O3), and indium bismuth oxide (InxBi1-x)2O3 have been synthesized by thermal evaporation using vapor-liquid-solid (VLS) mechanism. All as-synthesized products were characterized by field emission scanning electron microscope (FESEM), thin-film X-Ray diffractometer (TFXRD), high resolution transmission electron microscope (HRTEM), X-ray photoelectron spectroscope (XPS), and Raman spectroscope. The sensing properties of gas and ultraviolet-light were conducted by placing the sample in a closed chamber to record the current-voltage (I-V) characteristics while applying a constant bias~5V from a Keithley 237 voltage source. As-synthesize nanowires of In2O3 and Bi2O3 belong to a body centered cubic (BCC) and monoclinic α-Bi2O3 structures, respectively. In XRD pattern, the (InxBi1-x)2O3 nanowires are included with the phase of In2O3, α-Bi2O3, and γ-Bi2O3 XPS evaluated that the x range of (InxBi1-x)2O3 nanowires is at 0.64. The length and diameter of Bi2O3 nanowires were 12-30μm and 200-400nm, respectively. And In2O3 nanowires were up to 14μm with 60-130nm in diameter. (InxBi1-x)2O3 nanowires exhibited the length ~ 2.6-5.8μm with ~20-50nm in diameter. The photocatalytic properties of as-synthesized nanowires exhibited that the photodegradation ratio can be achieved ~94% for In2O3 and (InxBi1-x)2O3 nanowires while Bi2O3 nanowires can be achieved around 91 % after the samples were irradiated under UV-light (~254 nm) for 120 minutes. Using Schottky contact electrode, the UV sensing properties of (InxBi1-x)2O3 nanowires exhibited that the sensitivity is 1.292 with response and recovery time 10.6 and 130.6, respectively. The electron field emission and CO gas sensing properties were also investigated in this work.
APA, Harvard, Vancouver, ISO, and other styles
12

"Pseudo-one-dimensional Zn-Fe-O nanostructure arrays: controlled fabrication, magnetic properties and photocatalytic applications." 2013. http://library.cuhk.edu.hk/record=b6116186.

Full text
Abstract:
在本論文中,我們利用簡單的濕化學氧化鋅(ZnO)納米線陣列模板法成功地製備了一系列具有不同化學成份、晶體結構和形貌的準一維鋅-鐵-氧納米結構陣列。
垂直排列的ZnO納米線陣列首先生長在不同的襯底上,然后进一步被用作其他納米結構陣列的生長模板。ZnO納米線不僅僅起到骨架定型的作用,最終還可以为后續納米結構提供原料组分。通過控制ZnO和氯化鐵溶液的反應時間,在煅燒后,我們可以製備ZnO/鐵酸鋅(ZnFe₂O₄)納米線纜陣列,以及化學/非化學計量的ZnFe₂O₄、ZnFe₂O₄/α-三氧化二鐵(α-Fe₂O₃)和α-Fe₂O₃納米管陣列。ZnFe₂O₄和α-Fe₂O₃納米管陣列都表現出了對可見光的吸收,它們的帶隙經估算分別是2.3 eV和1.7 eV。
通過電子能量損失譜(EELS),可以得到ZnFe₂O₄納米管陣列的一些細節的結構信息。我們分別研究了兩個不同系列(溫度和化學計量)的ZnFe₂O₄納米管。研究發現,樣品的磁性和它們的晶體結構有著非常緊密的關係。首先,對於溫度系列的樣品,當樣品的燒結溫度從600 °C降到400 °C時,更多的三價鐵離子(Fe³⁺)佔據了尖晶石結構中的A位置(四面體位置)而並非它們本應佔據的平衡B位置(八面體位置)。這種偏離了正常尖晶石結構的情況使得A和B位置上的Fe³⁺的超交換作用增加,進而增加了樣品的阻隔溫度(TB),磁各向異性常數(K),3K和300 K下的飽和磁化強度(MS)和3K下的矯頑力(HC)。同時使3K和300K下的MS的比值變小。其次,對於化學計量系列的樣品,通過比較在同一燒結溫度下製備的化學計量和非化學計量的ZnFe₂O₄納米管,我們發現在鐵鋅比大於2的納米管中,Fe³⁺佔據A和B位置的比例和化學計量的樣品是类似的。這些多出的Fe³⁺也會增加超交換作用,從而導致較大的TB, K, MS(3K和300 K),HC(3K)和較小的MS(3 K)/MS(300 K)比值。最後,作為非化學計量的極端情況,α-Fe₂O₃納米管在小的外加磁場下表現出了典型的Morin相變,在大的外加磁場下出現了場致spin-flop轉變。
另一方面,我們發現,當使用羅丹明B(RhB)作為指示劑時,ZnO/ZnFe₂O₄納米線纜陣列表現出了優於纯ZnO和纯ZnFe₂O₄納米管陣列的可見光降解活性,但是它們的降解路徑各不相同。ZnO由於染料敏化機制而具有可見光降解能力,但是其降解活性最差。ZnO/ZnFe₂O₄納米線纜陣列和ZnFe₂O₄納米管陣列的基本降解原理是相同的,那就是,利用有可見光活性的ZnFe₂O₄中的光生電子和空穴所生成的活性自由基降解RhB。但是,ZnO/ZnFe₂O₄納米線纜陣列的降解能力明顯優於ZnFe₂O₄納米管陣列,這是由於ZnO與ZnFe₂O₄之間的II型能帶匹配顯著地促進了光生電子和空穴的分離。
In the present thesis, several kinds of pseudo-one-dimensional Zn-Fe-O nanostructure arrays with tunable chemical compositions, crystal structures and morphologies are successfully synthesized via a simple wet-chemical ZnO-nanowire-array templating method.
Vertically-aligned ZnO nanowire arrays are firstly fabricated on several different substrates and then serve as templates for other nanostructured arrays growth. The ZnO nanowires not only act as morphology-defining skeleton but also contribute chemically to the final composition of the nanostructures. By controlling the reaction time between ZnO and FeCl₃ solution, ZnO/ZnFe₂O₄ nanocable arrays, stoichiometric ZnFe₂O₄ nanotube arrays, nonstoichiometric ZnFe₂O₄ nanotube arrays, ZnFe₂O₄/α-Fe₂O₃ nanotube arrays and α-Fe₂O₃ nanotube arrays can be synthesized in a controlled manner after calcination. Both ZnFe₂O₄ and α-Fe₂O₃ nanotube arrays exhibit visible light absorption and their bandgap are estimated to be ~2.3 eV and ~1.7 eV, respectively.
The detailed structural information of the ZnFe₂O₄ nanotube arrays are obtained by electron energy loss spectroscopy (EELS). In particular, EELS are carried out for two different series (i.e., temperature and stoichiometric series). The magnetic properties of these samples are found to closely correlate to their structural characteristics. Firstly, with the decrease of the calcination temperature from 600 °C to 400 °C, more Fe³⁺ions occupy A sites (tetrahedral sites in spinel structure) rather than their equilibrium B sites (octahedral sites in spinel structure). The deviation from the normal spinel structure leads to the enhancement of superexchange interactions between Fe³⁺ions in A and B sites, and thus results in an increase in blocking temperature (TB), magnetic anisotropic constant (K), saturation magnetization (MS, at 3 K and 300 K), coercivity (HC, at 3 K) and a decrease in MS(3 K)/MS(300 K) ratios. Secondly, by comparing stoichiometric and nonstoichiometric ZnFe₂O₄ nanotubes calcinated at the same temperature, we found that the nonstoichiometric nanotubes (Fe:Zn > 2) shows similar ratios of Fe³⁺in A and B sites to that of the stoichiometric one. The extra Fe³⁺in the crystal also enhances the superexchange interactions of Fe³⁺, which results in larger TB, K, MS(at 3 K and 300 K) and HC(at 3 K), and smaller MS(3 K)/MS(300 K) ratio. Lastly, α-Fe₂O₃ nanotubes, as an extreme case of the nonstoichiometric sample, show typical Morin-transition characterization under small external field, and field-induced spin-flop transition at large external field.
On the other hand, we found that the visible-light-driven photodegradation activities of ZnO/ZnFe₂O₄ nanocable arrays are superior to those of the ZnO nanowire arrays and ZnFe₂O₄ nanotube arrays using RhB as the probe molecules. All the three nanostructures show degradation of RhB molecules under visible light irradiation, but they take different degradation pathways. The degradation of RhB in the presence of ZnO nanowire arrays is attributed to the dye-sensitized mechanism, and the photodegradation activity is the worst. ZnO/ZnFe₂O₄ nanocable arrays and ZnFe₂O₄ nanotube arrays have the same degradation mechanism, that is, reactive radicals produced by photogenerated electron-hole pairs in the visible-light-active ZnFe₂O₄ are responsible for the photodegradation of RhB. However, the nanocable arrays show much higher degradation capability. This is owing to the type II band alignment between ZnO and ZnFe₂O₄, which greatly promotes the separation of photogenerated electronsand holes in ZnFe₂O₄.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Guo, Xuan = 準一維鋅-鐵-氧納米結構陣列 : 控制製備, 磁學性質以及光催化方面的應用 / 郭璇.
Thesis (Ph.D.) Chinese University of Hong Kong, 2013.
Includes bibliographical references (leaves 107-117).
Abstracts also in Chinese.
Guo, Xuan = Zhun yi wei xin-tie-yang na mi jie gou zhen lie : kong zhi zhi bei, ci xue xing zhi yi ji guang cui hua fang mian de ying yong / Guo Xuan.
APA, Harvard, Vancouver, ISO, and other styles
13

Hsu, Guo-Kai, and 徐國凱. "Study on One-dimensional Zinc-based-Metal Oxides Nanostructures of Photoresponsive and Photocatalystic Properties." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/62479553096936657456.

Full text
Abstract:
碩士
逢甲大學
材料科學所
99
Vapor transport synthesis was used to synthesize one-dimensional zinc-based metal oxides, including zinc oxide nanorods and composite zinc stannate (i.e., ZnSnO3 and Zn3SnO4) nanowires. Investigate this two materials surface morphology, optical properties and photodetector, photocatalytic properties, respectively. A filed emission scanning electron microscope (FESEM) was used to analyze its surface morphology. A thin film X-ray diffractometer (TFXRD) was used to analyze its crystal structure and composition. A high-resolution transmission electron microscope (HRTEM) was used to analyze its crystallization and atomic arrangement. Photoluminescence (PL) was used to analyze the energy gap and internal defect of the material. An X-ray photoelectron microscope (XPS) was used to analyze the type of internal atom binding. A Photodetector was used to study the nanodevice`s properties, and a photocatalytic was used to examine the system of photodegradation properties. The synthetic ZnO nanorods have vertival preferred orientation [0001] in this study under a variety of temperatures of PL (300 K to 100 K) with energy gaps from 3.23 eV to 3.34 eV. Photodetector properties, zinc stannnate complex with perovskit phase with orthorhombic structure, under ultraviolet (UV-A, 315 nm < λ < 400 nm, I = 2.33 mWcm-2) had the highest sensitivities of 2666.67. The fast corresponding response and recovery times are 1 and 1.5 sec, respectively. The photocatalytic properties under 1 hour of UV-A (315 nm < λ < 400 nm, I = 2.33 mWcm-2) showed a photodegradation of 77.5 %, whereas under 6 hours of visible light (λ < 550 nm), the photodegradation was only 60.5 %. Composite Zinc stannate nanowires have the high efficiency photocatalytic properties because of the electron-hole pairs with a low recombination rate.
APA, Harvard, Vancouver, ISO, and other styles
14

Pan, Ko-Ying, and 潘科穎. "Studies on Low-dimensional Metal Oxide Nanostructures and Their Surface Modification on Optoelectric and Photocatalystic Properties." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/75719458867038046866.

Full text
Abstract:
博士
國立清華大學
材料科學工程學系
102
There are two major parts in this thesis, including Part I: the fabrications, materials characteristics and optoelectronic applications of nanostructures of core-shell SnO2-ZnO, tin-doped indium oxide, and Part II: the syntheses, materials features and optoelectronic applications of nanoparticles of core-shelled silica-silver and silver-embedded aluminum/silica. In the Part I, as for core-shell SnO2-ZnO nanowires, in advance, tin dioxide nanowires were synthesized by thermal evaporation. Then, depositions of ZnO nanolayer on SnO2 nanowires have been successfully synthesized by atomic layer deposition (ALD). These results demonstrated that the SnO2-ZnO core-shell nanowires have potential application as UV photodetectors with high photon-sensing properties. In terms of nanostructures of tin-doped indium oxide, indium oxide (In2O3) nanorods, nanotowers and tin-doped (Sn:In=1:100) indium oxide (ITO) nanorods have been successfully fabricated by thermal evaporation, respectively. Judging from cathodeluminescence (CL) spectra of these three nanoproducts, it is clear that tin-doped (Sn:In=1:100) indium oxide (ITO) nanorods cause a blue shift. No doubt that ITO nanorods obtains the most effective performance among these three nanoproducts, and this also means doping elements in original nanomaterials would be the best way to enhance physical properties. Additionally, this study would be beneficial to the applications of In2O3 nanorods, nanotowers and ITO nanorods in optoelectronic nanodevices, especially in organic light-emitting diode (OLED). In the Part II, as for core-shelled silica-silver nanoparticles, abundant core-shelled silica-silver nanospheres with uniform diameter and morphology were successfully synthesized by Stöber and seed-mediated method, in sequence. Moreover, by the different additions of glucose as the reducing agent, the silver nanoparticles were deposited on silica spheres by redox reaction, and the dimensions of samples were well controlled. The surface plasmon resonance absorption band shifted toward infra-red region and became broader gradually during the dimensions of silver nanoparticles were increased in the growth range. Meanwhile, this intriguing result shows that two absorption characteristics peaks are observed in the spectra while the morphologies of nanoparticles are becoming oval-shaped. The amazing data imply that using core-shelled silica-silver nanospheres efficiently enhances the degradation of the organic pollutants under solar energy, which means the core-shelled silica-silver nanospheres is not only a cost-effective route but an energy-saving way to our planet. In terms of silver-embedded aluminum/silica nanoparticles, in order to improve the time-consumption issue of the above method, substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by a modified sol-gel technique, a one-spot method. The chemical durable examinations and antibacterial tests of each sample were also carried out for the confirmation of usages in practical. As a result of above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils.
APA, Harvard, Vancouver, ISO, and other styles
15

Yi-ChaiChiang and 江奕儕. "Solution-based Fabrication of Nanostructured BaZnO2 on Substrates and Its Study of Photocatalytic and Piezo-related Properties." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/au8j79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography