Academic literature on the topic 'Photocatalytic oxidation process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Photocatalytic oxidation process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Photocatalytic oxidation process"
Witkowski, Hubert, Wioletta Jackiewicz-Rek, Janusz Jarosławski, Karol Chilmon, and Artur Szkop. "Ozone Formation during Photocatalytic Oxidation of Nitric Oxides under UV Irradiation with the Use of Commercial TiO2 Photocatalytic Powders." Materials 15, no. 17 (August 26, 2022): 5905. http://dx.doi.org/10.3390/ma15175905.
Full textKhuzwayo, Z., and E. M. N. Chirwa. "Evaluation of flow-rate dynamics in the simultaneous photocatalytic treatment of multichlorinated substituted phenols in continuous-flow systems." Water Science and Technology 74, no. 9 (August 30, 2016): 2211–24. http://dx.doi.org/10.2166/wst.2016.411.
Full textKuliesiene, Neringa, Sandra Sakalauskaite, Simona Tuckute, Marius Urbonavicius, Sarunas Varnagiris, Rimantas Daugelavicius, and Martynas Lelis. "TiO2 Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures." Environmental and Climate Technologies 24, no. 3 (November 1, 2020): 418–29. http://dx.doi.org/10.2478/rtuect-2020-0113.
Full textKuliesiene, Neringa, Sandra Sakalauskaite, Simona Tuckute, Marius Urbonavicius, Sarunas Varnagiris, Rimantas Daugelavicius, and Martynas Lelis. "TiO2 Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures." Environmental and Climate Technologies 24, no. 3 (November 1, 2020): 418–29. http://dx.doi.org/10.2478/rtuect-2020-0113.
Full textTytgat, Tom, Birger Hauchecorne, Artem M. Abakumov, Marianne Smits, Sammy W. Verbruggen, and Silvia Lenaerts. "Photocatalytic process optimisation for ethylene oxidation." Chemical Engineering Journal 209 (October 2012): 494–500. http://dx.doi.org/10.1016/j.cej.2012.08.032.
Full textNikolenko, Anastasiya, and Boris Melnykov. "Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide." Chemistry & Chemical Technology 4, no. 4 (December 15, 2010): 311–15. http://dx.doi.org/10.23939/chcht04.04.311.
Full textQuan, Yu Lian, Bi Qing Shi, Li Jing Yang, and Ren Zhi Zhang. "Pretreatment of Seawater by PAC/PAM Coagulation-Photocatalytic Oxidation Process." Advanced Materials Research 779-780 (September 2013): 1518–21. http://dx.doi.org/10.4028/www.scientific.net/amr.779-780.1518.
Full textCoronel, Stalin, Diana Endara, Ana Belén Lozada, Lucía E. Manangón-Perugachi, and Ernesto de la Torre. "Photocatalytic Study of Cyanide Oxidation Using Titanium Dioxide (TiO2)-Activated Carbon Composites in a Continuous Flow Photo-Reactor." Catalysts 11, no. 8 (July 30, 2021): 924. http://dx.doi.org/10.3390/catal11080924.
Full textShi, Laishun, Xiaomei Wang, Na Li, Chunlei Huai, and Jie Liu. "UV Irradiation Chlorine Dioxide Photocatalytic Oxidation of Simulated Fuchsine Wastewater by UV-Vis and Online FTIR Spectrophotometric Method." ISRN Analytical Chemistry 2012 (April 11, 2012): 1–7. http://dx.doi.org/10.5402/2012/951465.
Full textLu, Ming-Chun, and Jong-Nan Chen. "Pretreatment of pesticide wastewater by photocatalytic oxidation." Water Science and Technology 36, no. 2-3 (July 1, 1997): 117–22. http://dx.doi.org/10.2166/wst.1997.0497.
Full textDissertations / Theses on the topic "Photocatalytic oxidation process"
Harianto, Rina. "Design of a Novel Thin Film Reactor for Photocatalytic Water Treatment Process." Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1604335732713241.
Full textGHOSH, MONOJ. "Fabrication of Inorganic Oxide Nanofibers Using Gas Jet Fiber Spinning Process and Their Applications in Photocatalytic Oxidation." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1478726324293037.
Full textFendrich, Murilo Alexandre. "Solar concentration for the environment industry: photocatalytic materials and application technologies." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/285695.
Full textTokode, Oluwatosin. "Photocatalytic destruction of volatile organic compounds from the oil and gas industry." Thesis, Robert Gordon University, 2014. http://hdl.handle.net/10059/1134.
Full textRincon, Guillermo J. "Photocatalytic Mineralization of Phenol on Fluidized Titanium Oxide-Coated Silica Gel." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2009.
Full textTapia, Tlatelpa Tecilli. "Optoelectronic optimization of photocatalytic processes for wastewater treatment." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667685.
Full textLa contaminación del agua es un problema alarmante que pone en peligro la salud de todos los seres vivos. La industria textil está catalogada como una de las industrias más contaminantes, puesto que para realizar sus procesos de teñido y acabado requieren de una gran cantidad de recursos hídricos; desde hace décadas esta industria ha usado los Procesos de Oxidación Avanzada (AOPs) al presentar diversas ventajas (e. g. destrucción de sustancias tóxicas, reducción de metales pesados, permitir su uso en conjunto con otros procesos, entre otros). Entre los AOPs, sobresale la fotocatálisis heterogénea, por su alta eficiencia para la remoción de contaminantes, incluidos los colorantes azoicos. Para realizar un proceso fotocatalítico, es necesario tener un fotorreactor, el cual requerirá de un fotocatalizador y al menos una fuente de iluminación que active el catalizador. Este tipo de fotorreactores pueden presentar diversos problemas, tales como, el uso fotocatalizadores de alto costo, la generación de subproductos tóxicos en algunos fotocatalizadores de bajo, el alto consumo eléctrico causado por la utilización de fuentes tradicionales de iluminación e incluso dificultades con la geometría de los fotorreactores. Por lo tanto la comunidad científica ha intentado optimizar los procesos fotocatalíticos, algunos científicos han trabajado en la generación de nuevos fotocatalizadores para poder utilizarlos en longitudes de onda generada por fuentes de iluminación de bajo coste (e. g. luz visible), no obstante, lo que en muchas ocasiones incrementa el precio del fotocatalizador. Otro enfoque se encuentra en la reducción del consumo eléctrico optando por la sustitución de las lámparas tradicionales por iluminación de bajo consumo, por ejemplo, iluminación LED; sin embargo, actualmente esta sustitución se realiza de manera arbitraria, por lo que en ocasiones algunos autores dudan de la capacidad de utilizar estas fuentes en este tipo de procesos. Además al intentar mejorar las fuentes de iluminación puede alterarse el fotorreactor, por lo que es importante tomar en consideración sus características para lograr una mejora significativa. Esta tesis se enfoca en una optimización optoelectrónica para mejorar la eficiencia de las fuentes de iluminación utilizadas en reactores fotocatalíticos. Para ello se ha generado una metodología para calcular arreglos de LEDs utilizando modelos de irradiancia uniforme, esta irradiancia debe ser homogénea, con energía suficiente para fotoactivar el catalizador y sustituir las lámparas tradicionales, evitando la alteración química de los fotocatalizadores; asimismo, se ha diseñado e implementado un reactor fotocatalítico a escala de laboratorio con iluminación ultravioleta ajustada a sus características (geometría, dimensiones, entre otros) para trabajar con un fotocatalizador de bajo coste (TiO2) en la decoloración de agua con colorantes textiles. Para finalizar se ha diseñado e implementado un sistema de monitorización in-situ para la decoloración de aguas teñidas, este tipo de monitorización evita la toma de muestras de durante el proceso, sin alterar la geometría del reactor ni disminuir el volumen de agua tratada del reactor.
Jiang, Dianlu, and n/a. "Studies of Photocatalytic Processes at Nanoporous TiO2 Film Electrodes by Photoelectrochemical Techniques and Development of a Novel Methodology for Rapid Determination of Chemical Oxygen Demand." Griffith University. School of Environmental and Applied Science, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040723.155003.
Full textJiang, Dianlu. "Studies of Photocatalytic Processes at Nanoporous TiO2 Film Electrodes by Photoelectrochemical Techniques and Development of a Novel Methodology for Rapid Determination of Chemical Oxygen Dphotocatalemand." Thesis, Griffith University, 2004. http://hdl.handle.net/10072/366458.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environmental and Applied Science
Full Text
Okolongo, Gauthier Nganda. "Advanced oxidative water treatment process using an electrohydraulic discharge reactor and TiO2 immobilised on nanofibres." Thesis, University of Western Cape, 2013. http://hdl.handle.net/11394/3329.
Full textThe aim of this study was to design and build an electrohydraulic discharge reactor in such a way that the synthetic immobilized TiO2 nanophotocatalytic components could be integrated, for the production of active species such as OH radicals, ozone and hydrogen peroxide, as a cocktail to clean drinking water without the addition of chemicals. The research objectives include: • To design and construct the different AOP prototypes based on various electrode configurations and compare their operation. • To optimize the discharge parameters and conditions of the best AOP system. • To determine the effectiveness of the best prototype for the degradation of methylene blue as model pollutant. • To compare the designed AOP system with the Sodis method for the disinfection of contaminated river water. • To prepare supported TiO2 nanoparticles via electro spinning, followed by combustion and study the effect on the morphology of TiO2 nanoparticles. • To determine the stability and robustness of composite nano-crystalline TiO2 photocatalysts by sonication • To determine the enhanced effect of combining the composite TiO2 in the AOP system on degradation of methylene blue under the same conditions. • To detect the active species promoting disinfection.
Samanamud, Gisella Rossana Lamas. "Estudo da aplicação de ZnO fotoirradiado com luz solar no tratamento de efluentes de laticínios." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/97/97136/tde-27082013-101339/.
Full textDairy products are the most perfect type of food for men due to its high nutritive value reflected on its high organic load of wastewater generated. The Advanced Oxidation Processes (AOP) are chemical methods based on the generation of hydroxyls radicals that promote the oxidation of organic compounds. The use of semiconductors in wastewater treatment has been of great interest owing to its high efficiency, photochemical stability, non-toxic nature and lower costs, especially when sunlight is used as source of irradiation. The use of Zinc Oxide (ZnO), for instance, besides being more economic, it also absorbs a greater range of UV spectrum and it has a better performance on neutral pH. This study consisted in evaluating the application and efficiency of solar photocatalytic oxidation (AOP) with ZnO in percentage terms of removal of Total Organic Carbon (TOC) prior to an aerobic biological treatment aiming to improve the conditions of the disposal of this wastewater in order to conserve the water environment and saving natural resources. The AOP system consisted of a working volume of 3 L, a sheet metal 800 x 250 mm covered with a paint formula containing ZnO, a glass vessel, a pump and an open system in order to collect solar UV radiation. The results were obtained and analyzed from design of experiments in terms of percentage of removal of TOC. The maximum percentage was found to be 31.5 % of removal of TOC and at pH 8.0, thickness of the sheet containing ZnO of 100 micrometers (?m), wastewater in natura and total time of reaction of 3 h (180 min). The solar AOP with ZnO treated wastewater was subjected to an aerobic biological treatment. The optimum pH and sludge loading were of 6.0 and 5.0 mg/L, respectively. The combination of both treatments resulted in 75.1 % of removal of TOC from the dairy wastewater used in this study. This suggests that the AOP using ZnO followed by an aerobic biological treatment would be a promising alternative for the treatment of dairy wastewater.
Books on the topic "Photocatalytic oxidation process"
Bruce, Raupp Gregory, Turchi Craig, and Superfund Innovative Technology Evaluation Program (U.S.), eds. Integration of photocatalytic oxidation with air stripping of contaminated aquifers. [Washington, D.C.?]: U.S. Environmental Protection Agency, Superfund Innovative Technology Evaluation, 1999.
Find full textBook chapters on the topic "Photocatalytic oxidation process"
Gupta, Tejendra K., Sucheta Sengupta, and Manoj Raula. "Optimization of Process, Mechanism and Kinetics Study for Photocatalytic Oxidation." In Green Chemistry and Sustainable Technology, 33–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77371-7_2.
Full textLi, X. Z., B. L. Yuan, and Nigel Graham. "Degradation of Dibutyl Phthalate in Aqueous Solution by a Combined Ferrate and Photocatalytic Oxidation Process." In Ferrates, 364–77. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0985.ch022.
Full textQuimbayo, Jennyffer Martinez, Satu Ojala, Samuli Urpelainen, Mika Huuhtanen, Wei Cao, Marko Huttula, and Riitta L. Keiski. "Nanostructured Photocatalytic Materials for Water Purification." In Advanced Oxidation Processes for Wastewater Treatment, 249–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165958-21.
Full textGoveas, Jenice Jean, Naveen Praveen Mascarenhas, and Richard Adolf Gonsalves. "Photocatalytic Degradation of Rhodamine-B by Advance Oxidative Process Using Electrochemically Synthesized ZnO–V2O5 Nanostructures." In Advanced Manufacturing and Materials Science, 255–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76276-0_25.
Full text"Photocatalytic Oxidation of Organic Contaminants." In Process Engineering for Pollution Control and Waste Minimization, 391–418. CRC Press, 1994. http://dx.doi.org/10.1201/9781482277586-25.
Full textSaravanathamizhan, R., V. T. Perarasu, and Balaji Dhandapani. "Advanced oxidation process for effluent treatment in textile, pharmaceutical, and tannery industries." In Photocatalytic Degradation of Dyes, 719–45. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-823876-9.00020-2.
Full textLuo, Jingpeng, Weiying Pang, Qingying Ye, and Dong Fu. "Fe-Cu Bimetallic Oxide Quantum Dots Coupled with g-C3N4 Nanosheets for Efficient Photo-Fenton Degradation of Phenol." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220343.
Full textGebregiorgis, Teklit. "Photocatalytic and Biological Oxidation Treatment of Real Textile Wastewater." In Molecular Biotechnology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.89587.
Full textDavis, A. P., and C. P. Huang. "REMOVAL OF PHENOLS FROM WATER BY A PHOTOCATALYTIC OXIDATION PROCESS." In Water Pollution Research and Control Brighton, 455–64. Elsevier, 1988. http://dx.doi.org/10.1016/b978-1-4832-8439-2.50047-x.
Full textSrivastava, Ruchi, and Irfan Rashid Sofi. "Impact of Synthetic Dyes on Human Health and Environment." In Impact of Textile Dyes on Public Health and the Environment, 146–61. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0311-9.ch007.
Full textConference papers on the topic "Photocatalytic oxidation process"
Yu, Huili, Kaili Zhang, and Carole Rossi. "Theoretical Investigation on Nano TiO2 Photocatalytic Oxidation of VOCs." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21406.
Full textLepeytre, C., C. Lavaud, and G. Serve. "Photocatalytic and Photochemical Degradation of Liquid Waste Containing EDTA." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59144.
Full textWang Liping, Lu Lei, Xue Chunyang, and Gao Naiyun. "Pretreatment of Micro-polluted Raw Water by Using TiO2/PP Photocatalytic Oxidation and Biofilms Combination Process." In 2011 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2011. http://dx.doi.org/10.1109/icmtma.2011.511.
Full textTota-Maharaj, Kiran, and Nichola Coleman. "Developing Novel Photocatalytic Cementitious Permeable Pavements for Depollution of Contaminants and Impurities in Urban Cities." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.053.
Full textElmakki, Tasneem, Fathima Sifani Zavahir, Mona Gulied, Norhan Ismail, Areeba Hameed, and Dong Suk Han. "Advanced Degradation of Organic Substance in Water Using No-Ferric Fenton Reaction on Titania Nanotube." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0028.
Full textVijayaraghavan, Sanjay, and D. Y. Goswami. "Photocatalytic Oxidation of Toluene in Water From an Algae Pond With High Dissolved Oxygen Content." In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1061.
Full textReports on the topic "Photocatalytic oxidation process"
Blake, D. M., E. Wolfrum, and J. Boulter. Photocatalytic oxidation and reduction chemistry and a new process for treatment of pink water and related contaminated water. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/395626.
Full text