Journal articles on the topic 'Photocatalytic driven antibacterial effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Photocatalytic driven antibacterial effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wong, Ming-Show, Man-Ting Sun, Der-Shan Sun, and Hsin-Hou Chang. "Visible-Light-Responsive Antibacterial Property of Boron-Doped Titania Films." Catalysts 10, no. 11 (November 19, 2020): 1349. http://dx.doi.org/10.3390/catal10111349.
Full textWafi, Abdul, Erzsébet Szabó-Bárdos, Ottó Horváth, Mihály Pósfai, Éva Makó, Tatjána Juzsakova, and Orsolya Fónagy. "The Photocatalytic and Antibacterial Performance of Nitrogen-Doped TiO2: Surface-Structure Dependence and Silver-Deposition Effect." Nanomaterials 10, no. 11 (November 15, 2020): 2261. http://dx.doi.org/10.3390/nano10112261.
Full textZhu, Hongqin, Ji Tan, Jiajun Qiu, Donghui Wang, Zhe Zhao, Zihan Lu, Gaoshan Huang, Xuanyong Liu, and Yongfeng Mei. "Gold Nanoparticles Decorated Titanium Oxide Nanotubes with Enhanced Antibacterial Activity Driven by Photocatalytic Memory Effect." Coatings 12, no. 9 (September 16, 2022): 1351. http://dx.doi.org/10.3390/coatings12091351.
Full textLee, Sher, and Chi-Jung Chang. "Recent Developments about Conductive Polymer Based Composite Photocatalysts." Polymers 11, no. 2 (January 24, 2019): 206. http://dx.doi.org/10.3390/polym11020206.
Full textMaria Magdalane, C., K. Kaviyarasu, A. Raja, M. V. Arularasu, Genene T. Mola, Abdulgalim B. Isaev, Naif Abdullah Al-Dhabi, et al. "Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: Investigation of cytotoxicity, antibacterial growth inhibition using catalyst." Journal of Photochemistry and Photobiology B: Biology 185 (August 2018): 275–82. http://dx.doi.org/10.1016/j.jphotobiol.2018.06.011.
Full textPranangrong, Duangdaw, Ratima Kraikruan, Tippabust Eksangsri, and Chaweewan Sapcharoenkun. "The Effect of Polymeric Surfactant on Adhesion and Uniformity of Ag-TiO<sub>2</sub> Coating on Air Filter with Self-Cleaning Capability." Materials Science Forum 1090 (May 31, 2023): 55–60. http://dx.doi.org/10.4028/p-o2ky4c.
Full textLi, Biyun, Xiaoxiao Gao, Jiangang Qu, Feng Xiong, Hongyun Xuan, Yan Jin, and Huihua Yuan. "Visible-Light-Driven Antimicrobial Activity and Mechanism of Polydopamine-Reduced Graphene Oxide/BiVO4 Composite." International Journal of Molecular Sciences 23, no. 14 (July 12, 2022): 7712. http://dx.doi.org/10.3390/ijms23147712.
Full textKumar, Kundan, Anshu Priya, Aditya Arun, Subrata Hait, and Anirban Chowdhury. "Antibacterial and natural room-light driven photocatalytic activities of CuO nanorods." Materials Chemistry and Physics 226 (March 2019): 106–12. http://dx.doi.org/10.1016/j.matchemphys.2019.01.020.
Full textLi, Yeping, Qian Wang, Liying Huang, Xiuquan Xu, Meng Xie, Hao Wang, Shuquan Huang, Fei Zhang, Zhengyun Zhao, and Juan Yang. "Enhanced LED-light-driven photocatalytic antibacterial by g-C3N4/BiOI composites." Journal of Materials Science: Materials in Electronics 30, no. 3 (December 17, 2018): 2783–94. http://dx.doi.org/10.1007/s10854-018-0554-3.
Full textLefatshe, Kebadiretse, Lemme P. Kebaabetswe, and Cosmas M. Muiva. "Visible-Light Driven Photocatalytic and Antibacterial Assessment of Ag/ZnO/Cellulose Nanocomposite." Advanced Science, Engineering and Medicine 12, no. 6 (June 1, 2020): 844–52. http://dx.doi.org/10.1166/asem.2020.2658.
Full textChen, Chuansheng, Shiyi Cao, Weiwei Yu, Xiaodi Xie, Qicheng Liu, Yuenhong Tsang, and Yi Xiao. "Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes." Vacuum 116 (June 2015): 48–53. http://dx.doi.org/10.1016/j.vacuum.2015.02.031.
Full textChelliah, Parvathiraja, Jeetendra Kumar Gupta, Saikh Mohammad Wabaidur, Masoom Raza Siddiqui, Siaw Foon Lee, and Wen-Cheng Lai. "UV-Light-Driven Photocatalytic Dye Degradation and Antibacterial Potentials of Biosynthesized SiO2 Nanoparticles." Water 15, no. 16 (August 18, 2023): 2973. http://dx.doi.org/10.3390/w15162973.
Full textKokilavani, S., Saleh A. Al-Farraj, Ajith M. Thomas, Hamed A. El-Serehy, Lija L. Raju, and S. Sudheer Khan. "Enhanced visible light driven photocatalytic and antibacterial activities of Ag2WO4 decorated ZnS nanocomposite." Ceramics International 47, no. 9 (May 2021): 12997–3006. http://dx.doi.org/10.1016/j.ceramint.2021.01.163.
Full textChoi, Jung-Yoon, Chooryung Judi Chung, Keun-Taek Oh, Yoon-Jeong Choi, and Kyung-Ho Kim. "Photocatalytic Antibacterial Effect of TiO2 Film of TiAg on Streptococcus mutans." Angle Orthodontist 79, no. 3 (May 1, 2009): 528–32. http://dx.doi.org/10.2319/012108-169.1.
Full textSyed, Asad, Lakshmi Sagar Reddy Yadav, Ali H. Bahkali, Abdallah M. Elgorban, Deshmukh Abdul Hakeem, and Nagaraju Ganganagappa. "Effect of CeO2-ZnO Nanocomposite for Photocatalytic and Antibacterial Activities." Crystals 10, no. 9 (September 16, 2020): 817. http://dx.doi.org/10.3390/cryst10090817.
Full textGhoderao, Karuna P., Shweta N. Jamble, and Rohidas B. Kale. "Hydrothermally synthesized Cd-doped ZnO nanostructures with efficient sunlight-driven photocatalytic and antibacterial activity." Journal of Materials Science: Materials in Electronics 30, no. 12 (May 13, 2019): 11208–19. http://dx.doi.org/10.1007/s10854-019-01466-y.
Full textXiang, Zhenbo, Yi Wang, Zhiqing Yang, and Dun Zhang. "Heterojunctions of β-AgVO3/BiVO4 composites for enhanced visible-light-driven photocatalytic antibacterial activity." Journal of Alloys and Compounds 776 (March 2019): 266–75. http://dx.doi.org/10.1016/j.jallcom.2018.10.287.
Full textRegiel-Futyra, Anna, Małgorzata Kus-Liśkiewicz, Szymon Wojtyła, Grażyna Stochel, and Wojciech Macyk. "The quenching effect of chitosan crosslinking on ZnO nanoparticles photocatalytic activity." RSC Advances 5, no. 97 (2015): 80089–97. http://dx.doi.org/10.1039/c5ra12667c.
Full textChoi, Jung-Yoon, Chooryung Judi Chung, Keun-Taek Oh, Yoon-Jeong Choi, and Kyung-Ho Kim. "Photocatalytic Antibacterial Effect of TiO2 Film of TiAg on Streptococcus mutans." Angle Orthodontist 79, no. 3 (2009): 528. http://dx.doi.org/10.2319/0003-3219(2009)079[0528:paeotf]2.0.co;2.
Full textFeng, Yibo, Hua Wang, Guanhua Lin, Peixin Cui, Hui Li, Zhiming Sun, Kaiwen Wang, et al. "Single Tungsten Atom-Modified Cotton Fabrics for Visible-Light-Driven Photocatalytic Degradation and Antibacterial Activity." ACS Applied Bio Materials 4, no. 5 (April 21, 2021): 4345–53. http://dx.doi.org/10.1021/acsabm.1c00124.
Full textDeng, Fang, Ping Wu, Guowen Qian, Yang Shuai, Lemin Zhang, Shuping Peng, Cijun Shuai, and Guoyong Wang. "Silver-decorated black phosphorus: a synergistic antibacterial strategy." Nanotechnology 33, no. 24 (March 25, 2022): 245708. http://dx.doi.org/10.1088/1361-6528/ac5aee.
Full textDOINA, TOMA, LAURA CHIRILA, POPESCU ALINA, CHIRILA CORINA, and Iordache OVIDIU. "Multifunctional finishing treatments applied on textiles for protection of emergency personnel." Industria Textila 69, no. 05 (November 1, 2018): 357–62. http://dx.doi.org/10.35530/it.069.05.1585.
Full textSoto-Garcia, Luis F., Ingrid D. Guerrero-Rodriguez, Luu Hoang, Samantha Lauren Laboy-Segarra, Ngan T. K. Phan, Enrique Villafuerte, Juhyun Lee, and Kytai T. Nguyen. "Photocatalytic and Photothermal Antimicrobial Mussel-Inspired Nanocomposites for Biomedical Applications." International Journal of Molecular Sciences 24, no. 17 (August 26, 2023): 13272. http://dx.doi.org/10.3390/ijms241713272.
Full textRaj, R. Bhaviya, M. Umadevi, V. Poornima Parvathi, and R. Parimaladevi. "Effect of potassium on structural, photocatalytic and antibacterial activities of ZnO nanoparticles." Advances in Natural Sciences: Nanoscience and Nanotechnology 7, no. 4 (October 14, 2016): 045008. http://dx.doi.org/10.1088/2043-6262/7/4/045008.
Full textSuketa, Naoki, Takashi Sawase, Hideki Kitaura, Mariko Naito, Koumei Baba, Koji Nakayama, Ann Wennerberg, and Mitsuru Atsuta. "An Antibacterial Surface on Dental Implants, Based on the Photocatalytic Bactericidal Effect." Clinical Implant Dentistry and Related Research 7, no. 2 (April 2005): 105–11. http://dx.doi.org/10.1111/j.1708-8208.2005.tb00053.x.
Full textSayadi, Mohammad Hossein, Najmeh Ahmadpour, and Shahin Homaeigohar. "Photocatalytic and Antibacterial Properties of Ag-CuFe2O4@WO3 Magnetic Nanocomposite." Nanomaterials 11, no. 2 (January 24, 2021): 298. http://dx.doi.org/10.3390/nano11020298.
Full textLiu, Ning, Jie Zhang, Yanhua Wang, Qingjun Zhu, Xuan Zhang, Jizhou Duan, and Baorong Hou. "Novel MOF-Based Photocatalyst AgBr/AgCl@ZIF-8 with Enhanced Photocatalytic Degradation and Antibacterial Properties." Nanomaterials 12, no. 11 (June 6, 2022): 1946. http://dx.doi.org/10.3390/nano12111946.
Full textFelice, Betiana, Vera Seitz, Maximilian Bach, Christin Rapp, and Erich Wintermantel. "Antimicrobial polymers: Antibacterial efficacy of silicone rubber–titanium dioxide composites." Journal of Composite Materials 51, no. 16 (September 14, 2016): 2253–62. http://dx.doi.org/10.1177/0021998316668984.
Full textArfa, Ume, Mubark Alshareef, Nimra Nadeem, Amjed Javid, Yasir Nawab, Khaled F. Alshammari, and Usman Zubair. "Sunlight-Driven Photocatalytic Active Fabrics through Immobilization of Functionalized Doped Titania Nanoparticles." Polymers 15, no. 13 (June 22, 2023): 2775. http://dx.doi.org/10.3390/polym15132775.
Full textErdural, Beril, Ufuk Bolukbasi, and Gurkan Karakas. "Photocatalytic antibacterial activity of TiO2–SiO2 thin films: The effect of composition on cell adhesion and antibacterial activity." Journal of Photochemistry and Photobiology A: Chemistry 283 (June 2014): 29–37. http://dx.doi.org/10.1016/j.jphotochem.2014.03.016.
Full textHu, Chen Yang, Xiao Bo Zhang, Xiao Yun Li, and Hui Chen. "Catalytic Membrane and their Photocatalytic Properties." Applied Mechanics and Materials 204-208 (October 2012): 4215–18. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4215.
Full textKokilavani, S., Asad Syed, Lija L. Raju, Sarah Al-Rashed, Abdallah M. Elgorban, Ajith M. Thomas, and S. Sudheer Khan. "Synthesis of novel heterostructured FeS2/Ag2MoO4 nanocomposite: Characterization, efficient antibacterial and enhanced visible light driven photocatalytic activity." Surfaces and Interfaces 23 (April 2021): 101003. http://dx.doi.org/10.1016/j.surfin.2021.101003.
Full textMurugesan, Pramila, Sheeba Narayanan, and Manickam Matheswaran. "Photocatalytic performance and antibacterial activity of visible light driven silver iodide anchored on Graphitic-C3N4 binary composite." Environmental Nanotechnology, Monitoring & Management 10 (December 2018): 253–63. http://dx.doi.org/10.1016/j.enmm.2018.07.011.
Full textZhang, Hui, Jiangying Zhu, Yanqiang Hu, Aonan Chen, Liang Zhou, Hui Gao, Yamei Liu, and Shengquan Liu. "Study on Photocatalytic Antibacterial and Sustained-Release Properties of Cellulose/TiO2/β-CD Composite Hydrogel." Journal of Nanomaterials 2019 (July 24, 2019): 1–12. http://dx.doi.org/10.1155/2019/2326042.
Full textVershney, Ritu, Komal Chelaramani, Arpan Bhardwaj, Nayma Siddiqui, and Suresh Kumar Verma. "Synthesis Photocatalytic and Antibacterial Activities of Nickle Doped Tio2 Nanoparticles." Oriental Journal of Chemistry 34, no. 6 (December 12, 2018): 3140–44. http://dx.doi.org/10.13005/ojc/340661.
Full textMariappan, A., P. Pandi, K. R. Beula Rani, Rajeswarapalanichamy, and K. Neyvasagam. "Study of the photocatalytic and antibacterial effect of Zn and Cu doped hydroxyapatite." Inorganic Chemistry Communications 136 (February 2022): 109128. http://dx.doi.org/10.1016/j.inoche.2021.109128.
Full textHarikishore, M., M. Sandhyarani, K. Venkateswarlu, T. A. Nellaippan, and N. Rameshbabu. "Effect of Ag Doping on Antibacterial and Photocatalytic Activity of Nanocrystalline TiO 2." Procedia Materials Science 6 (2014): 557–66. http://dx.doi.org/10.1016/j.mspro.2014.07.071.
Full textShiraishi, Koutaro, Hironobu Koseki, Toshiyuki Tsurumoto, Koumei Baba, Mariko Naito, Koji Nakayama, and Hiroyuki Shindo. "Antibacterial metal implant with a TiO2 -conferred photocatalytic bactericidal effect against Staphylococcus aureus." Surface and Interface Analysis 41, no. 1 (November 21, 2008): 17–22. http://dx.doi.org/10.1002/sia.2965.
Full textUllah, Z., M. T. Qureshi, K. Sultana, F. Ullah, A. Khalid, N. Masood, F. I. A. Abdella, and S. A. Elhag. "Al-ions effect on structural, optical, antibacterial, and photocatalytic activities of ZnO nanostructures." Digest Journal of Nanomaterials and Biostructures 18, no. 3 (July 2023): 995–1006. http://dx.doi.org/10.15251/djnb.2023.183.995.
Full textShen, Bowen, Yuxian Wang, Xinlong Wang, Fatima Ezzahra Amal, Liying Zhu, and Ling Jiang. "A Cruciform Petal-like (ZIF-8) with Bactericidal Activity against Foodborne Gram-Positive Bacteria for Antibacterial Food Packaging." International Journal of Molecular Sciences 23, no. 14 (July 6, 2022): 7510. http://dx.doi.org/10.3390/ijms23147510.
Full textUçar, Mustafa, Atilla Evcin, and Osman Çelen. "Development and characterisation of multifunctional surface coatings for photovoltaic panels." Emerging Materials Research 11, no. 1 (March 1, 2022): 19–32. http://dx.doi.org/10.1680/jemmr.21.00041.
Full textLi, Wan-Di, Jing Gao, and Lu Wang. "Enhancement of durable photocatalytic properties of cotton/polyester fabrics using TiO2/SiO2 via one step sonosynthesis." Journal of Industrial Textiles 46, no. 8 (February 16, 2016): 1633–55. http://dx.doi.org/10.1177/1528083716629138.
Full textCui, Xiaodan, Wangwang Xu, Zhiqiang Xie, James A. Dorman, Maria Teresa Gutierrez-Wing, and Ying Wang. "Effect of dopant concentration on visible light driven photocatalytic activity of Sn1−xAgxS2." Dalton Transactions 45, no. 41 (2016): 16290–97. http://dx.doi.org/10.1039/c6dt02812h.
Full textWang, Zhiqiang, Xiuzhen Huang, Sheng Jin, Hongwei Wang, Lin Yuan, and John L. Brash. "Rapid antibacterial effect of sunlight-exposed silicon nanowire arrays modified with Au/Ag alloy nanoparticles." Journal of Materials Chemistry B 7, no. 40 (2019): 6202–9. http://dx.doi.org/10.1039/c9tb01472a.
Full textZhang, Mingjing, Yuexing Chen, Bangjie Chen, Yunsong Zhang, Li Lin, Xiaowen Han, Ping Zou, Guangtu Wang, Jun Zeng, and Maojun Zhao. "Fabrication of a three-dimensional visible-light-driven Ag–AgBr/TiO2/graphene aerogel composite for enhanced photocatalytic destruction of organic dyes and bacteria." New Journal of Chemistry 43, no. 13 (2019): 5088–98. http://dx.doi.org/10.1039/c8nj06057f.
Full textShen, Shaohua, Liejin Guo, Xiaobo Chen, Feng Ren, and Samuel S. Mao. "Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS." International Journal of Hydrogen Energy 35, no. 13 (July 2010): 7110–15. http://dx.doi.org/10.1016/j.ijhydene.2010.02.013.
Full textWang, Yuan, Hua-Bin Fang, Yan-Zhen Zheng, Rongqin Ye, Xia Tao, and Jian-Feng Chen. "Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity." Nanoscale 7, no. 45 (2015): 19118–28. http://dx.doi.org/10.1039/c5nr06359k.
Full textShanmugam, Vignesh, and Kalyana Sundar Jeyaperumal. "Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity." Applied Surface Science 449 (August 2018): 617–30. http://dx.doi.org/10.1016/j.apsusc.2017.11.167.
Full textZgura, Irina, Nicoleta Preda, Monica Enculescu, Lucian Diamandescu, Catalin Negrila, Mihaela Bacalum, Camelia Ungureanu, and Marcela Elisabeta Barbinta-Patrascu. "Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders." Materials 13, no. 1 (January 2, 2020): 182. http://dx.doi.org/10.3390/ma13010182.
Full textHayashi, Kenichiro, Kosuke Nozaki, Zhenquan Tan, Kazuhisa Fujita, Reina Nemoto, Kimihiro Yamashita, Hiroyuki Miura, Keiji Itaka, and Satoshi Ohara. "Enhanced Antibacterial Property of Facet-Engineered TiO2 Nanosheet in Presence and Absence of Ultraviolet Irradiation." Materials 13, no. 1 (December 22, 2019): 78. http://dx.doi.org/10.3390/ma13010078.
Full text