To see the other types of publications on this topic, follow the link: Photoactivated.

Journal articles on the topic 'Photoactivated'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Photoactivated.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wei, Yaoming, Yinfa Yan, Dehua Pei, and Bing Gong. "A photoactivated prodrug." Bioorganic & Medicinal Chemistry Letters 8, no. 18 (September 1998): 2419–22. http://dx.doi.org/10.1016/s0960-894x(98)00437-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oshige, Eric S., and Paul B. Jones. "Photoactivated artificial metalloesterases." Journal of Photochemistry and Photobiology A: Chemistry 192, no. 2-3 (December 2007): 142–51. http://dx.doi.org/10.1016/j.jphotochem.2007.05.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Faci, S., C. Tripon-Canseliet, A. Benlarbi-Delaï, G. Alquié, S. Formont, and J. Chazelas. "Photoactivated microwave oscillator." Electronics Letters 44, no. 15 (2008): 915. http://dx.doi.org/10.1049/el:20080990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deviyanti, Sinta. "POTENSI ANTIMIKROBA PHOTO ACTIVATED DISINFECTION TERHADAP Enterococcus faecalis PADA PERAWATAN SALURAN AKAR GIGI." Cakradonya Dental Journal 11, no. 1 (May 9, 2019): 13–22. http://dx.doi.org/10.24815/cdj.v11i1.13623.

Full text
Abstract:
Disinfeksi sistem saluran akar gigi sangat penting dalam perawatan saluran akar gigi. Instrumenmekanik dan agen desinfeksi atau larutan irigasi seperti NaOCL tidak efektif mengurangi jumlahbakteri di dalam saluran akar yang terinfeksi karena anatomi akar gigi yang kompleks. Kegagalanperawatan endodontik sering meninggalkan bakteri di sistem saluran akar gigi. Enterococcus faecalismerupakan salah satu mikroorganisme terpenting yang bertanggungjawab pada kegagalan perawatansaluran akar gigi. Bakteri ini kebal terhadap agen antimikroba dan mampu berkoloni membentukbiofilm di saluran akar gigi. Saat ini perangkat baru seperti photoactivated disinfection telah dicobauntuk disinfeksi saluran akar gigi. Photoactivated disinfection merupakan strategi antimikroba yangmenggunakan energi laser berkekuatan rendah untuk mengaktivasi suatu pewarna tidak toksik yangdiaktivasi sinar (photosensitizer). Energi yang dipindahkan dari photosensitizer teraktivasi ke oksigenyang tersedia, akan membentuk oksigen singlet sebagai spesies oksigen toksik. Spesies oksigen yangsangat reaktif secara kimia ini dapat merusak membran dan DNA bakteri patogen. Beberapapenelitian menunjukkan bahwa photoactivated disinfection dapat efektif mengurangi E.faecalis didalam saluran akar selama prosedur antimikroba bila digunakan bersama dengan prosedur disinfeksikonvensional untuk sterilisasi saluran akar. Photoactivated disinfection merupakan pendukung untukprotokol standar disinfeksi saluran akar gigi.Kata kunci: photoactivated disinfection, Enterococcus faecalis, perawatan saluran akar.
APA, Harvard, Vancouver, ISO, and other styles
5

Nagpal, Rajni, Shipra Singh, Payal Singh, Tushar Sharnam, and Naveen Manuja. "Photoactivated Disinfection in Endodontics." Indian Journal of Contemporary Dentistry 3, no. 1 (2015): 29. http://dx.doi.org/10.5958/2320-5962.2015.00007.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

de Vekki, D. A. "Hydrosilylation on photoactivated catalysts." Russian Journal of General Chemistry 81, no. 7 (July 2011): 1480–92. http://dx.doi.org/10.1134/s1070363211070139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wright, Taylor, Tanja Tomkovic, Savvas G. Hatzikiriakos, and Michael O. Wolf. "Photoactivated Healable Vitrimeric Copolymers." Macromolecules 52, no. 1 (December 17, 2018): 36–42. http://dx.doi.org/10.1021/acs.macromol.8b01898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Agostini, Alessandro, Félix Sancenón, Ramón Martínez-Máñez, María D. Marcos, Juan Soto, and Pedro Amorós. "A Photoactivated Molecular Gate." Chemistry - A European Journal 18, no. 39 (August 21, 2012): 12218–21. http://dx.doi.org/10.1002/chem.201201127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bonnet, Sylvestre. "Why develop photoactivated chemotherapy?" Dalton Transactions 47, no. 31 (2018): 10330–43. http://dx.doi.org/10.1039/c8dt01585f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Falk, Benjamin, Michael R. Zonca, and James V. Crivello. "Photoactivated Cationic Frontal Polymerization." Macromolecular Symposia 226, no. 1 (May 2005): 97–108. http://dx.doi.org/10.1002/masy.200550810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Feruszová, Jana, Petronela Imreová, Kristína Bodnárová, Andrea Ševčovičová, Stanislav Kyzek, Ivan Chalupa, Eliška Gálová, and Eva Miadoková. "Photoactivated hypericin is not genotoxic." General physiology and biophysics 35, no. 02 (2016): 223–30. http://dx.doi.org/10.4149/gpb_2015045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Fei, and Douglas C. Neckers. "Photoactivated hydrosilylation reaction of alkynes." Journal of Organometallic Chemistry 665, no. 1-2 (January 2003): 1–6. http://dx.doi.org/10.1016/s0022-328x(02)02042-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bennett, Doyle E., and David F. O'Brien. "Photoactivated Enhancement of Liposome Fusion." Biochemistry 34, no. 9 (March 1995): 3102–13. http://dx.doi.org/10.1021/bi00009a042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Yanmei, Jing Mu, and Bengang Xing. "Photoactivated drug delivery and bioimaging." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 9, no. 2 (April 20, 2016): e1408. http://dx.doi.org/10.1002/wnan.1408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Manzi, Susan. "An Unusual Photoactivated Skin Eruption." Archives of Dermatology 125, no. 3 (March 1, 1989): 419. http://dx.doi.org/10.1001/archderm.1989.01670150109020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Beck, David B., and Roberto Bonasio. "Photoactivated In Vivo Proximity Labeling." Current Protocols in Chemical Biology 9, no. 2 (January 2017): 128–46. http://dx.doi.org/10.1002/cpch.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tian, Yongqing, Xiaoyi Wei, and Hanhong Xu. "Photoactivated Insecticidal Thiophene Derivatives fromXanthopappussubacaulis." Journal of Natural Products 69, no. 8 (August 2006): 1241–44. http://dx.doi.org/10.1021/np060209b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Fei, and Douglas C. Neckers. "Photoactivated Isomerization of Linear Olefins†,‡." Journal of Organic Chemistry 68, no. 2 (January 2003): 634–36. http://dx.doi.org/10.1021/jo026176w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pope, R. Marshall, and Steven W. Buckner. "Photoactivated gas-phase ligand switching." Organometallics 11, no. 5 (May 1992): 1959–62. http://dx.doi.org/10.1021/om00041a031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Crudo, J. L., M. Viaggi, and S. G. de Castiglia. "Labeling of photoactivated IgG with99mTc." Journal of Radioanalytical and Nuclear Chemistry 238, no. 1-2 (December 1998): 183–85. http://dx.doi.org/10.1007/bf02385378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Imran, Muhammad, Wagma Ayub, Ian S. Butler, and Zia-ur-Rehman. "Photoactivated platinum-based anticancer drugs." Coordination Chemistry Reviews 376 (December 2018): 405–29. http://dx.doi.org/10.1016/j.ccr.2018.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Siewert, Bianka. "Does the chemistry of fungal pigments demand the existence of photoactivated defense strategies in basidiomycetes?" Photochemical & Photobiological Sciences 20, no. 4 (March 18, 2021): 475–88. http://dx.doi.org/10.1007/s43630-021-00034-w.

Full text
Abstract:
AbstractThe well-known photosensitizers hypericin, harmane, and emodin are typical pigments of certain mushroom species—is this a coincidence or an indication towards a photoactivated defense mechanism in the phylum Basidiomycota? This perspective article explores this hypothesis by cross-linking the chemistry of fungal pigments with structural requirements from known photosensitizers and insights from photoactivated strategies in the kingdom Plantae. Thereby, light is shed on a yet unexplored playground dealing with ecological questions, photopharmaceutical opportunities, and biotechnological potentials.
APA, Harvard, Vancouver, ISO, and other styles
23

Cefaly, Daniela Francisca Gigo, Linda Wang, Liliam Lucia Carrara Paes de Mello, Janaína Lima dos Santos, Jean Rodrigo dos Santos, and José Roberto Pereira Lauris. "Water sorption of resin-modified glass-ionomer cements photoactivated with LED." Brazilian Oral Research 20, no. 4 (December 2006): 342–46. http://dx.doi.org/10.1590/s1806-83242006000400011.

Full text
Abstract:
The Light Emitting Diodes (LED) technology has been used to photoactivate composite resins and there is a great number of published studies in this area. However, there are no studies regarding resin-modified glass-ionomer cements (RMGIC), which also need photoactivation. Therefore, the aim of this study was to evaluate water sorption of two RMGIC photoactivated with LED and to compare this property to that obtained with a halogen light curing unit. A resin composite was used as control. Five specimens of 15.0 mm in diameter x 1.0 mm in height were prepared for each combination of material (Fuji II LC Improved, Vitremer, and Filtek Z250) and curing unit (Radii and Optilight Plus) and transferred to desiccators until a constant mass was obtained. Then the specimens were immersed into deionized water for 7 days, weighed and reconditioned to a constant mass in desiccators. Water sorption was calculated based on weight and volume of specimens. The data were analyzed by two-way ANOVA and Tukey test (p < 0.05). Specimens photocured with LED presented significantly more water sorption than those photocured with halogen light. The RMGIC absorbed statistically significant more water than the resin composite. The type of light curing unit affected water sorption characteristics of the RMGIC.
APA, Harvard, Vancouver, ISO, and other styles
24

Boyd, Simon, Kenneth P. Ghiggino, and W. David McFadyen. "Photochemistry of Anthracene-Appended Cobalt(III) Cyclam Complexes." Australian Journal of Chemistry 61, no. 8 (2008): 585. http://dx.doi.org/10.1071/ch08189.

Full text
Abstract:
The photochemistry of two anthracene-appended cobalt(iii) cyclam complexes is explored with a view to demonstrate a photoactivated ligand release process. The ligand exchange processes that occur in the complexes cis-[CoL(NO2)(ONO)]+ and trans-[CoL(NO2)(ONO)]+ in which L = 6-(anthracen-9-ylmethyl)-1,4,8,11-tetraazacyclotetradecane were monitored upon illumination of the anthracenyl chromophore at 360 nm in the presence of a large excess of thiocyanate. The trans-[CoL(NO2)(ONO)]+ complex underwent a ligand exchange reaction in the absence of light and displayed an enhancement of the reaction upon illumination. In contrast the cis-[CoL(NO2)(ONO)]+ complex was stable in the dark but displayed a significant quantum yield of photoactivated ligand release (Φ = 0.19). It is proposed that in cis-[CoL(NO2)(ONO)]+ the photoexcited anthracenyl chromophore undergoes efficient energy transfer to the cobalt(iii) cyclam before ligand exchange. Complexes based on the anthracenylcyclam–cobalt(iii) framework may be potentially useful candidates as photoactivated ligand release systems.
APA, Harvard, Vancouver, ISO, and other styles
25

Dall'Magro, Eduardo, Américo Bortolazzo Correr, Ana Rosa Costa, Gisele Maria Correr, Rafael Leonardo Xediek Consani, Lourenço Correr-Sobrinho, and Mário Alexandre Coelho Sinhoreti. "Effect of different photoactivation techniques on the bond strength of a dental composite." Brazilian Dental Journal 21, no. 3 (2010): 220–24. http://dx.doi.org/10.1590/s0103-64402010000300008.

Full text
Abstract:
Using the push-out test, this study evaluated the bond strength of the composite resin Z250 (3M/ESPE) photoactivated with the XL2500 (3M/ESPE) quartz-tungsten-halogen light-curing unit with different curing protocols: soft-start (150 mW/cm2 for 2 s (S2), 3 s (S3), 5 s (S5), 10 s (S10) or 15 s (S15), followed by 700 mW/cm2 for 15 s; pulse-delay (150 mW/cm2 for 2 s (P2), 3 s (P3), 5 s (P5), 10 s (P10) or 15 s (P15), with a 1-min delay, followed by 700 mW/cm2 for 15 s. After storage at 37oC ± 1 for 24 h ± 1, the specimens were ground, polished and subjected to a push-out test in a universal test machine (Instron) with a cell load of 500 N at a crosshead speed of 0.5 mm/min. The data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. There were no statistically significant differences (p>0.05) among the groups photoactivated using the soft-start mode. For the pulse-delay mode, P5 promoted the highest bond strength (p<0.05). Groups photoactivated with the pulse-delay mode (except for P2 and P15) presented significantly higher bond strength than those photoactivated with the soft-start. It may be concluded that the influence of initial exposure time was curing method-dependent, with the best results obtained using the pulse-delay method with 5 s in the first photoactivation cycle.
APA, Harvard, Vancouver, ISO, and other styles
26

Grishacheva, T. G. "Influence of photoactivated coproporphirin on microcirculation." Regional blood circulation and microcirculation 17, no. 4 (February 19, 2019): 75–80. http://dx.doi.org/10.24884/1682-6655-2018-17-4-75-80.

Full text
Abstract:
The aim –to investigate the effect of photoactivated coproporphyrin III (KP III) on microcirculation in the rat mesenteric vascular bed. Material and methods. The study was performed on 20 male rats, divided into 4 groups: 1) control; 2) KP III; 3) laser irradiation; 4) laser irradiation on combined with prior administration of the KP III.The objectof the study was venules (20–40 µm) of the mesentery of the small intestine. The study of blood flow velocity in the venules was performed using the method of intravital biomicroscopy. The velocity parameters were registered using a high-speed video camera Basler acA2000 (Germany). Coproporphyrin III (Elast, Russia) at a dose of 10 mg/kg was injected into the tail vein 3 hours before laser irradiation. Irradiation was performed using a Lakhta Milon semiconductor laser apparatus (Qualitek, Russia) (λ=635 nm, 0.1 W/cm2 ; 300 s; 30 J/cm2 ).Results.Administration of KP III without subsequent irradiation did not affect the blood flow velocity during the entire observation period. Laser irradiation of venules without prior administration of KP III led to an increase in blood flow velocity by 39.1 % (p<0.05). After laser irradiation and administration of KPIII, there was a gradual decrease in flow velocity after the photoactivation process.Conclusions. We studied the effect of photoactivated KP III on microcirculation in the mesentery of the small intestine of rats. Changes in the blood flow velocity in the venules of the mesentery affected by KP III and laser irradiation develop mainly in the post-radiation period and could be associated with endothelial dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
27

Cameron, Randy E., and Andrew B. Bocarsly. "Photoactivated oxidation by alcohols by oxygen." Journal of the American Chemical Society 107, no. 21 (October 1985): 6116–17. http://dx.doi.org/10.1021/ja00307a054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Telegina, T. A., M. P. Kolesnikov, and Yu L. Vechtomova. "Photoactivated matrices in prebiotic evolution processes." High Energy Chemistry 44, no. 3 (May 2010): 228–33. http://dx.doi.org/10.1134/s0018143910030136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mazzaglia, A., M. T. Sciortino, N. Kandoth, and S. Sortino. "Cyclodextrin-based nanoconstructs for photoactivated therapies." Journal of Drug Delivery Science and Technology 22, no. 3 (2012): 235–42. http://dx.doi.org/10.1016/s1773-2247(12)50034-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Valdez, Tulio, and Kourosh Parham. "Do Topical Photoactivated Antimicrobials Cause Ototoxicity?" Otolaryngology–Head and Neck Surgery 143, no. 2_suppl (August 2010): P91—P92. http://dx.doi.org/10.1016/j.otohns.2010.06.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Palacci, Jérémie, Stefano Sacanna, Adrian Vatchinsky, Paul M. Chaikin, and David J. Pine. "Photoactivated Colloidal Dockers for Cargo Transportation." Journal of the American Chemical Society 135, no. 43 (October 21, 2013): 15978–81. http://dx.doi.org/10.1021/ja406090s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Woo-Garcia, R. M., L. García-González, A. L. Herrera-May, C. Zuñiga-Islas, W. Calleja- Arriaga, J. Molina-Reyes, M. Pacio-Castillo, and F. López-Huerta. "Surface Evaluation of Photoactivated TiO2 Films." Microscopy and Microanalysis 26, S1 (March 2020): 163–64. http://dx.doi.org/10.1017/s1431927620001038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gomelsky, Mark. "Photoactivated cells link diagnosis and therapy." Science Translational Medicine 9, no. 387 (April 26, 2017): eaan3936. http://dx.doi.org/10.1126/scitranslmed.aan3936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mackay, F. S., J. A. Woods, P. Heringova, J. Kasparkova, A. M. Pizarro, S. A. Moggach, S. Parsons, V. Brabec, and P. J. Sadler. "A potent cytotoxic photoactivated platinum complex." Proceedings of the National Academy of Sciences 104, no. 52 (December 19, 2007): 20743–48. http://dx.doi.org/10.1073/pnas.0707742105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jain, Piyush K., Dipu Karunakaran, and Simon H. Friedman. "Construction of a Photoactivated Insulin Depot." Angewandte Chemie International Edition 52, no. 5 (December 3, 2012): 1404–9. http://dx.doi.org/10.1002/anie.201207264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vekki, D. A. "ChemInform Abstract: Hydrosilylation on Photoactivated Catalysts." ChemInform 42, no. 51 (November 24, 2011): no. http://dx.doi.org/10.1002/chin.201151216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Shao, Jingxin, Shoupeng Cao, David S. Williams, Loai K. E. A. Abdelmohsen, and Jan C. M. Hest. "Photoactivated Polymersome Nanomotors: Traversing Biological Barriers." Angewandte Chemie International Edition 59, no. 39 (July 27, 2020): 16918–25. http://dx.doi.org/10.1002/anie.202003748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jain, Piyush K., Dipu Karunakaran, and Simon H. Friedman. "Construction of a Photoactivated Insulin Depot." Angewandte Chemie 125, no. 5 (December 3, 2012): 1444–49. http://dx.doi.org/10.1002/ange.201207264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Critchley, Kevin, Jeyaratnam P. Jeyadevan, Hitoshi Fukushima, Masaya Ishida, Tatsuya Shimoda, Richard J. Bushby, and Stephen D. Evans. "A Mild Photoactivated Hydrophilic/Hydrophobic Switch." Langmuir 21, no. 10 (May 2005): 4554–61. http://dx.doi.org/10.1021/la046851s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Peyser, L. A. "Photoactivated Fluorescence from Individual Silver Nanoclusters." Science 291, no. 5501 (January 5, 2001): 103–6. http://dx.doi.org/10.1126/science.291.5501.103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fry, Bryan E., and D. C. Neckers. "Rapid Photoactivated Hydrosilation Polymerization of Vinyldimethylsilane." Macromolecules 29, no. 16 (January 1996): 5306–12. http://dx.doi.org/10.1021/ma960194w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sortino, Salvatore. "Photoactivated nanomaterials for biomedical release applications." J. Mater. Chem. 22, no. 2 (2012): 301–18. http://dx.doi.org/10.1039/c1jm13288a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bourgeois, Dominique, Aline Regis-Faro, and Virgile Adam. "Photoactivated structural dynamics of fluorescent proteins." Biochemical Society Transactions 40, no. 3 (May 22, 2012): 531–38. http://dx.doi.org/10.1042/bst20120002.

Full text
Abstract:
Proteins of the GFP (green fluorescent protein) family have revolutionized life sciences because they allow the tagging of biological samples in a non-invasive genetically encoded way. ‘Phototransformable’ fluorescent proteins, in particular, have recently attracted widespread interest, as their fluorescence state can be finely tuned by actinic light, a property central to the development of super-resolution microscopy. Beyond microscopy applications, phototransformable fluorescent proteins are also exquisite tools to investigate fundamental protein dynamics. Using light to trigger processes such as photoactivation, photoconversion, photoswitching, blinking and photobleaching allows the exploration of the conformational landscape in multiple directions. In the present paper, we review how structural dynamics of phototransformable fluorescent proteins can be monitored by combining X-ray crystallography, in crystallo optical spectroscopy and simulation tools such as quantum chemistry/molecular mechanics hybrid approaches. Besides their usefulness to rationally engineer better performing fluorescent proteins for nanoscopy and other biotechnological applications, these investigations provide fundamental insights into protein dynamics.
APA, Harvard, Vancouver, ISO, and other styles
44

Hegemann, Peter. "Photoactivated cyclases: In memoriam Masakatsu Watanabe." Photochemical & Photobiological Sciences 14, no. 10 (2015): 1781–86. http://dx.doi.org/10.1039/c5pp00233h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Matera, Carlo, Alexandre M. J. Gomila, Núria Camarero, Michela Libergoli, Concepció Soler, and Pau Gorostiza. "Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy." Journal of the American Chemical Society 140, no. 46 (October 10, 2018): 15764–73. http://dx.doi.org/10.1021/jacs.8b08249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Berthelot, Thomas, Xuan Tuan Le, Pascale Jégou, Pascal Viel, Bruno Boizot, Cécile Baudin, and Serge Palacin. "Photoactivated surface grafting from PVDF surfaces." Applied Surface Science 257, no. 22 (September 2011): 9473–79. http://dx.doi.org/10.1016/j.apsusc.2011.06.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Leung, Ralph L., Scott R. Adishian, and P. L. Fan. "Postirradiation comparison of photoactivated composite resins." Journal of Prosthetic Dentistry 54, no. 5 (November 1985): 645–49. http://dx.doi.org/10.1016/0022-3913(85)90240-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shao, Jingxin, Shoupeng Cao, David S. Williams, Loai K. E. A. Abdelmohsen, and Jan C. M. Hest. "Photoactivated Polymersome Nanomotors: Traversing Biological Barriers." Angewandte Chemie 132, no. 39 (July 27, 2020): 17066–73. http://dx.doi.org/10.1002/ange.202003748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hochstrate, P., and K. Hamdorf. "Microvillar components of light adaptation in blowflies." Journal of General Physiology 95, no. 5 (May 1, 1990): 891–910. http://dx.doi.org/10.1085/jgp.95.5.891.

Full text
Abstract:
The process of light adaptation in blowfly photoreceptors was analyzed using intracellular recording techniques and double and triple flash stimuli. Adapting flashes of increasing intensity caused a progressive reduction in the excitability of the photoreceptors, which became temporarily suppressed when 3 x 10(6) quanta were absorbed by the cell. This suppression was confirmed by subsequently applying an intense test flash that photoactivated a considerable fraction of the 10(8) visual pigment molecules in the cell. The period of temporary desensitization is referred to as the refractory period. The stimulus intensity to render the receptor cell refractory was found to be independent of the extracellular calcium concentration over a range of 10(-4) and 10(-2) M. During the refractory period (30-40 ms after the adapting flash) the cell appears to be "protected" against further light adaptation since light absorption during this period did not affect the recovery of the cell's excitability. Calculations showed that the number of quantum absorptions necessary to induce receptor refractoriness is just sufficient to photoactivate every microvillus of the rhabdomere. This coincidence led to the hypothesis that the refractoriness of the receptor cells is due to the refractoriness of the individual microvilli. The sensitivity of the receptor cells after relatively weak adapting flashes was reduced considerably more than could be accounted for by the microvilli becoming refractory. A quantitative analysis of these results suggests that a photoactivated microvillus induces a local adaptation over a relatively small area of the rhabdomere around it, which includes several tens of microvilli. After light adaptation with an intense flash, photoactivation of every microvillus by the absorption of a few quanta produced only a small receptor response whereas photoactivation of every rhodopsin molecule in every microvillus produced the maximum response. The excitatory efficiency of the microvilli therefore increases with the number of quanta that are absorbed simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
50

Wu, Na, Jian-Jun Cao, Xiao-Wen Wu, Cai-Ping Tan, Liang-Nian Ji, and Zong-Wan Mao. "Iridium(iii) complexes with five-membered heterocyclic ligands for combined photodynamic therapy and photoactivated chemotherapy." Dalton Trans. 46, no. 39 (2017): 13482–91. http://dx.doi.org/10.1039/c7dt02477k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography