Academic literature on the topic 'Phosphorus and plants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phosphorus and plants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Phosphorus and plants"
Tang, Zhi Ru, Yue Wen, and Qi Zhou. "Research on the Phosphorus Removal Mechanisms and Approaches in Various Horizontal Subsurface Flow Constructed Wetlands." Advanced Materials Research 573-574 (October 2012): 599–604. http://dx.doi.org/10.4028/www.scientific.net/amr.573-574.599.
Full textNorman, D. J., J. Chen, J. M. F. Yuen, A. Mangravita-Novo, D. Byrne, and L. Walsh. "Control of Bacterial Wilt of Geranium with Phosphorous Acid." Plant Disease 90, no. 6 (June 2006): 798–802. http://dx.doi.org/10.1094/pd-90-0798.
Full textWieczorek, Dorota, Beata Żyszka-Haberecht, Anna Kafka, and Jacek Lipok. "Phosphonates as Unique Components of Plant Seeds—A Promising Approach to Use Phosphorus Profiles in Plant Chemotaxonomy." International Journal of Molecular Sciences 22, no. 21 (October 25, 2021): 11501. http://dx.doi.org/10.3390/ijms222111501.
Full textBhodiwal, Shweta, and Tansukh Barupal. "Phosphate solubilizing microbes: an incredible role for plant supplements." MOJ Ecology & Environmental Sciences 7, no. 5 (December 21, 2022): 170–72. http://dx.doi.org/10.15406/mojes.2022.07.00263.
Full textFöhse, Doris, N. Claassen, and A. Jungk. "Phosphorus efficiency of plants." Plant and Soil 110, no. 1 (August 1988): 101–9. http://dx.doi.org/10.1007/bf02143545.
Full textFöhse, Doris, N. Claassen, and A. Jungk. "Phosphorus efficiency of plants." Plant and Soil 132, no. 2 (April 1991): 261–72. http://dx.doi.org/10.1007/bf00010407.
Full textBroschat, Timothy K. "Effects of Phosphorous and Phosphoric Acids on Growth and Phosphorus Concentrations in Container-grown Tropical Ornamental Plants." HortTechnology 16, no. 1 (January 2006): 105–8. http://dx.doi.org/10.21273/horttech.16.1.0105.
Full textSmith, FW, WA Jackson, and PJV Berg. "Internal Phosphorus Flows During Development of Phosphorus Stress in Stylosanthes hamata." Functional Plant Biology 17, no. 4 (1990): 451. http://dx.doi.org/10.1071/pp9900451.
Full textGeorge, Timothy S., Philippe Hinsinger, and Benjamin L. Turner. "Phosphorus in soils and plants – facing phosphorus scarcity." Plant and Soil 401, no. 1-2 (March 3, 2016): 1–6. http://dx.doi.org/10.1007/s11104-016-2846-9.
Full textGourley, C. J. P., D. L. Allan, and M. P. Russelle. "Defining phosphorus efficiency in plants." Plant and Soil 155-156, no. 1 (October 1993): 289–92. http://dx.doi.org/10.1007/bf00025039.
Full textDissertations / Theses on the topic "Phosphorus and plants"
Lung, Shiu-cheung. "Assimilation of phytate-phosphorus by plants." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B35710986.
Full textLung, Shiu-cheung, and 龍兆章. "Assimilation of phytate-phosphorus by plants." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35710986.
Full textEbuele, Victor Pghogho. "Phosphorus speciation in soil and plants." Thesis, Bangor University, 2016. https://research.bangor.ac.uk/portal/en/theses/phosphorus-speciation-in-soil-and-plants(c9a2b08e-cca7-48ad-ac49-79b772d17602).html.
Full textNing, Jianchang. "Mycorrhizal roles in broomsedge plants under phosphorus limitation and aluminum toxicity." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1685.
Full textTitle from document title page. Document formatted into pages; contains vii, 146 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 126-145).
Dong, Bei. "A phosphorus mutant of Arabidopsis thaliana." Title page, table of contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phd682.pdf.
Full textHoffman, Victor, and Anton Marmsjö. "Combustion of sludge in Fortum’s plants with possible phosphorus recycling." Thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146974.
Full textHanteringen av avfall är en stor utmaning i alla samhällen. I Sverige har lagstiftningen de senaste decennierna utvecklats i takt med ökad oro över miljöbelastningen från ineffektiv avfallshantering. I första hand syftar lagändringarna till att främja avfallsminimering och bättre avfallsutnyttjande. Slam är en typ av avfall från olika industriprocesser och har dessvärre begränsat värde för återanvändning och återvinning, men slamförbränning för energiutvinning verkar lovande. Även den i många fall höga fosforhalten i slam ger en potential att utvinna fosfor ur förbränningsaskorna. Kraft- och värmeindustrin har visat stort intresse för slamförbränning. Fortum har olika slamtyper att tillgå och många olika alternativ gällande var och hur slammet ska förbrännas. Det finns också problem, men även förbränningstekniska fördelar, kopplat till slamförbränning. Tillsammans gör dessa faktorer satsningen mångfacetterad och därför inte helt självklar. Detta examensarbete är en förstudie som syftar till att bedöma möjligheten att förbränna slam i Fortums befintliga eller framtida anläggningar, tillsammans med eventuell återvinning av fosfor från förbränningsaskorna. I studien undersöktes slamförbränning, antingen monoförbränning eller förbränning tillsammans med andra bränslen. Scenarierna som utvärderats innefattar förbränning av 70000 ton rötslam, 50000 ton fiberslam och 26400 ton rötrest vilka är relevanta mängder för denna studie. Samförbränning innebär att dessa blandas och eldas tillsammans med basbränslena i Fortums rosterpannor och fluidiserade bäddar i kraftvärmeverken i Brista och Högdalen. Slamblandningen ger upphov till nya egenskaper hos det inmatade bränslet, till exempel ett lägre värmevärde, vilka jämförs mot pannornas kapacitet att hantera dessa. Monoförbränning jämfördes med samförbränning för att bedöma dess ekonomiska konkurrenskraft. Fosforhalten i askan från blandningarna bestämdes även för att bedöma fosforutvinningspotentialen. Dessutom har lämpliga förbehandlingsmetoder för slam undersökts. Resultaten visar att samförbränning av 70000 ton rötslam var möjlig i panna P6 i Högdalen och B2 i Brista. Dessa gav en ekonomisk vinst med en internränta på 96,3 % respektive 96,4 %. Det var möjligt att samförbränna 50000 ton fiberslam i panna B1 och B2 i Brista samt panna P6 även om ekonomiska vinster bara visades i B1, där internräntan blev 87,5 %. Samförbränning av 26400 ton rötrest var möjligt i alla pannor förutom P3 förutsatt att pannorna P1 och P2 i Högdalen kan förbränna slammet i tandem. Förbränning av rötrest gav en ekonomisk vinst i dessa pannor med internräntor mellan 25,7 % för P1 och P2 tillsammans och 102,6 % för B1. Även om monoförbränning kan vara en praktisk lösning är det inte ett ekonomiskt försvarbart alternativ under rådande ekonomiska förhållanden. I studien gavs det även indikationer på att uppkomsten NOx och SOx i rågaserna ökade vid samförbränning med slam, samt att även rökgasvolymflöde och mängden vattenånga i rökgaserna ökade. Fossila CO2 utsläpp minskade för de avfallseldade pannorna vid samförbränning. Rötslam och rötrest gav en ökning av mängden aska i alla pannor, medan fiberslam endast ökade denna i B1. Alla slamtyper var fördelaktiga att förbränna för att minska risken för korrosion och agglomerering men rötslam var anmärkningsvärt bättre i det avseendet jämfört med rötrest och fiberslam. Fosforhalten i samförbränningsaskorna bedömdes vara för låg för lönsam fosforutvinning, men var lovande vid rötslamsförbränning i panna B1. Koncentrationen var tillräckligt hög vid monoförbränning av rötslam och rötrest. Det är dock oklart vad den totala miljöpåverkan blir vilket skulle behövas utredas vidare.
Barca, Cristian. "Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants." Thesis, Nantes, Ecole des Mines, 2012. http://www.theses.fr/2012EMNA0045/document.
Full textThis thesis aimed at developing the use of electric arc furnace steel slag (EAF-slag) and basic oxygen furnace steel slag (BOF-slag) in filters designed to upgrade phosphorus (P) removal in small wastewater treatment plants. An integrated approach was followed, with investigation at different scales: (i) Batch experiments were performed to establish an overview of the P removal capacities of steel slag produced in Europe, and then to select the most suitable samples for P removal; (ii)Continuous flow column experiments were performed to investigate the effect of various parameters including slag size and composition, and column design on treatment and hydraulic performances of lab-scale slag filters; (iii)Finally, field experiments were performed to investigate hydraulic and treatment performances of demonstration scale slag filters designed to remove P from the effluent of a constructed wetland. The experimental results indicated that the major mechanism of P removal was related toCaO-slag dissolution followed by precipitation of Caphosphate and recrystallisation into hydroxyapatite (HAP).Over 100 weeks of continuous feeding of a synthetic Psolution (mean inlet total P 10.2 mg P/L), columns filled with small-size slag (6-12 mm BOF-slag; 5-16 mm EAFslag)removed >98% of inlet total P, whereas columnsfilled with big-size slag (20-50 mm BOF-slag and 20-40mm EAF-slag) removed 56 and 86% of inlet total P,respectively. Most probably, the smaller was the size ofslag, the greater was the specific surface for CaO-slagdissolution and adsorption of Ca phosphate precipitates.Field experiments confirmed that EAF-slag and BOF-slagare efficient substrate for P removal from the effluent of aconstructed wetland (mean inlet total P 8.3 mg P/L). Overa period of 85 weeks of operation, EAF-slag removed 36%of inlet total P, whereas BOF-slag removed 59% of inlettotal P. P removal efficiencies increased with increasing temperature and void hydraulic retention time (HRTv),most probably because the increase in temperature and HRTv affected the rate of CaO dissolution and Caphosphate precipitation. However, it was found that longHRTv (>3 days) may produce high pH of the effluents(>9), as the result of excessive CaO-slag dissolution. However, the results of field experiments demonstrated that at shorter HRTv (1-2 days), slag filters produced pH that were elevated only during the first 5 weeks of operation, and then stabilized below a pH of 9. Finally, a dimensioning equation based on the experimental results was proposed
Erickson, Heather E. "Nitrogen and phosphorus availability, ecosystem processes and plant community dynamics in boreal wetland meadows /." Thesis, Connect to this title online; UW restricted, 1994. http://hdl.handle.net/1773/5590.
Full textMackowiak, Cheryl L. "The Efficacy of Plant Residue Degradation Products on Phosphorus, Iron, Iodine, and Fluorine Bioavailability to Plants." DigitalCommons@USU, 2001. https://digitalcommons.usu.edu/etd/6758.
Full textKalifa, Ali. "Salt stress, and phosphorus absorption by potato plants cv. 'Russet Burbank'." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29727.pdf.
Full textBooks on the topic "Phosphorus and plants"
P, Hammond John, and SpringerLink (Online service), eds. The Ecophysiology of Plant-Phosphorus Interactions. Dordrecht: Springer Science + Business Media B.V, 2008.
Find full textTandon, H. L. S. Phosphorus research and agricultural production in India. New Delhi, India: Fertiliser Development and Consultation Organisation, 1987.
Find full textH, Lambers, and Poot P, eds. Structure and functioning of cluster roots and plant responses to phosphate deficiency. Dordrecht: Kluwer Academic Publishers, 2003.
Find full textDowning, Troy. Nitrogen, phosphorus, and potassium uptake in perennial grasses fertilized with dairy manure. [Tillamook, Or.]: Oregon State University, Extension Service, 2002.
Find full textChapman, David T. Evaluation of estimates of phosphorus concentrations and loadings from Ontario municipal wastewater treatment plants. [Toronto]: Ontario Environment, 1990.
Find full textSchjørring, Jan K. Planters proton-balance: Indflydelsen af ionoptagelse, kvælstofassimilation og fosformangel på netto-fluxen af protoner mellem rødder og rodmedium, pH i rhizosfæren og udnyttelsen af jord som fosforkilde = Proton balance of plants : influence of ion uptake, nitrogen assimilation, and phosphorus deficiency on the net flux of protons between roots and root medium, rhizosphere pH, and acquisition of phosphorus from soil. København: Afdelingen for planternes ernæring, den Kgl. Veterinær- og landbohøjskole, 1985.
Find full textChapman, D. T. Evaluation of estimates of phosphorus concentrations and loadings from Ontario municipal wastewater treatment plants: Report. [Toronto]: Environment Ontario, Wastewater Technology Centre, 1990.
Find full textSims, J. L. Final report for memorandum of agreement no. 58-43YK-7-0028 titled "Effects of phosphorus and potassium on tobacco carbohydrate partitioning". Washington, D.C.?: USDA, ARS, 1989.
Find full textSidhu, S. S. Air and vegetation monitoring in the vicinity of a phosphorus plant: 1981-1983 results. St. John's, Nfld: Newfoundland Forest Research Centre, 1985.
Find full textLtd, Canviro Consultants. Phosphorus removal efficiency upgrading at municipal wastewater treatment plants in the Great Lakes Basin: Technical report. [Toronto]: Queen's Printer, 1988.
Find full textBook chapters on the topic "Phosphorus and plants"
de Mello Prado, Renato. "Phosphorus." In Mineral nutrition of tropical plants, 113–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71262-4_6.
Full textThiébaut, Gabrielle. "Phosphorus and aquatic plants." In Plant Ecophysiology, 31–49. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8435-5_3.
Full textGourley, C. J. P., D. L. Allan, and M. P. Russelle. "Defining phosphorus efficiency in plants." In Plant Nutrition — from Genetic Engineering to Field Practice, 363–66. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1880-4_73.
Full textWhite, Philip J., and John P. Hammond. "Phosphorus nutrition of terrestrial plants." In Plant Ecophysiology, 51–81. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8435-5_4.
Full textHenze, Mogens. "Plants for Biological Phosphorus Removal." In Wastewater Treatment, 273–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22605-6_8.
Full textHenze, Mogens. "Plants for Biological Phosphorus Removal." In Wastewater Treatment, 285–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04806-1_8.
Full textBarber, Stanley A. "Soil-Plant Interactions in the Phosphorus Nutrition of Plants." In The Role of Phosphorus in Agriculture, 591–615. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1980.roleofphosphorus.c22.
Full textSiebers, Meike, Peter Dörmann, and Georg Hölzl. "Membrane remodelling in phosphorus-deficient plants." In Annual Plant Reviews Volume 48, 237–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781118958841.ch9.
Full textHammond, John P., and Philip J. White. "Diagnosing phosphorus deficiency in crop plants." In Plant Ecophysiology, 225–46. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8435-5_10.
Full textPrasad, Rajendra, Samendra Prasad, and Rattan Lal. "Phosphorus in Soil and Plants in Relation to Human Nutrition and Health." In Soil Phosphorus, 65–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372327-5.
Full textConference papers on the topic "Phosphorus and plants"
Eremin, D. I. "Features of phosphorus uptake by maize in cold Western soilsSiberia." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-164.
Full textZaytsev, P. A., A. A. Ustimenko, A. A. Kublanovskaya, S. G. Vasilieva, O. I. Baulina, and A. E. Solovchenko. "The components selection for the bioinspired microalgae-cyanobacterial communities." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.286.
Full textFu, Xiaoyun. "Phosphorus removal from wastewater by five aquatic plants." In 2015 3rd International Conference on Advances in Energy and Environmental Science. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaees-15.2015.186.
Full textMindubaev, A. Z., E. V. Babynin, E. K. Badeeva, and Y. A. Akosah. "Strain Aspergillus niger AM1 – a living organism resistant to white phosphorus." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.172.
Full textLuca, Laurentiu, Alina Pricopie, Marian Barbu, George Ifrim, and Sergiu Caraman. "Control Strategies of Phosphorus Removal in Wastewater Treatment Plants." In 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2019. http://dx.doi.org/10.1109/icstcc.2019.8886023.
Full textBakaeva, M. D., S. P. Chetverikov, D. V. Chetverikova, and A. A. Kendzhieva. "Promising microorganisms for coping herbicide stress in plants." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.032.
Full textTomić, Dalibor, Vladeta Stevović, Dragan Đurović, Milomirka Madić, Miloš Marjanović, and Nenad Pavlović. "ALTERNATIVNI NAČINI SNABDEVANJA VIŠEGODIŠNJIH KRMNIH LEGUMINOZA FOSFOROM." In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.033t.
Full textŠarko, Julita, and Aušra Mažeikienė. "Investigation of Sorbents for Phosphorus Removal." In 11th International Conference “Environmental Engineering”. VGTU Technika, 2020. http://dx.doi.org/10.3846/enviro.2020.620.
Full textVoropaeva, O. V., G. G. Borisova, M. G. Maleva, O. V. Sedyaeva, and K. A. Panikovskaya. "Silicate bacteria increase the availability of phosphorus and potassium compounds and improve the growth of Brassica juncea (L.) Czern. in model systems." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-106.
Full textKuleshova, L. A., A. S. Kasakova, and I. S. Tatyanchenko. "INFLUENCE OF PRECURSORS ON THE CONTENT OF MINERAL PHOSPHORUS FRACTIONS IN THE SOILS OF RICE FIELDS IN THE ROSTOV REGION." In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS Volume 2. DSTU-Print, 2020. http://dx.doi.org/10.23947/interagro.2020.2.704-708.
Full textReports on the topic "Phosphorus and plants"
Raghothama, Kashchandra G., Avner Silber, and Avraham Levy. Biotechnology approaches to enhance phosphorus acquisition of tomato plants. United States Department of Agriculture, January 2006. http://dx.doi.org/10.32747/2006.7586546.bard.
Full textSchuster, Gadi, and David Stern. Integration of phosphorus and chloroplast mRNA metabolism through regulated ribonucleases. United States Department of Agriculture, August 2008. http://dx.doi.org/10.32747/2008.7695859.bard.
Full textHarman, Gary E., and Ilan Chet. Enhancing Crop Yield through Colonization of the Rhizosphere with Beneficial Microbes. United States Department of Agriculture, December 2001. http://dx.doi.org/10.32747/2001.7580684.bard.
Full textEshel, Amram, Jonathan P. Lynch, and Kathleen M. Brown. Physiological Regulation of Root System Architecture: The Role of Ethylene and Phosphorus. United States Department of Agriculture, December 2001. http://dx.doi.org/10.32747/2001.7585195.bard.
Full textLitaor, Iggy, James Ippolito, Iris Zohar, and Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600037.bard.
Full textPalmborg, Cecilia. Fertilization with digestate and digestate products – availability and demonstration experiments within the project Botnia nutrient recycling. Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 2022. http://dx.doi.org/10.54612/a.25rctaeopn.
Full textGranot, David, Richard Amasino, and Avner Silber. Mutual effects of hexose phosphorylation enzymes and phosphorous on plant development. United States Department of Agriculture, January 2006. http://dx.doi.org/10.32747/2006.7587223.bard.
Full textСавосько, Василь Миколайович, Юлія Віліївна Бєлик, Юрій Васильович Лихолат, Герман Хайльмейер, Іван Панасович Григорюк, Ніна Олександрівна Хромих, and Тетяна Юріївна Лихолат. The Total Content of Macronutrients and Heavy Metals in the Soil on Devastated Lands at Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Geology-dnu-dp.ua, 2021. http://dx.doi.org/10.31812/123456789/4286.
Full textCytryn, Eddie, Mark R. Liles, and Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Full textBonville, L. J., G. W. Scheffler, and M. J. Smith. Progress and prospects for phosphoric acid fuel cell power plants. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460155.
Full text