Academic literature on the topic 'Phospholipase D'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phospholipase D.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phospholipase D"

1

McDermott, Mark, Michael J. O. Wakelam, and Andrew J. Morris. "Phospholipase D." Biochemistry and Cell Biology 82, no. 1 (February 1, 2004): 225–53. http://dx.doi.org/10.1139/o03-079.

Full text
Abstract:
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.Key words: phospholipase D, phosphatidic acid, GTP-binding proteins, membrane transport, cytoskeletal regulation.
APA, Harvard, Vancouver, ISO, and other styles
2

Dhand, Rajiv, Jared Young, Andelle Teng, Subbiah Krishnasamy, and Nicholas J. Gross. "Is dipalmitoylphosphatidylcholine a substrate for convertase?" American Journal of Physiology-Lung Cellular and Molecular Physiology 278, no. 1 (January 1, 2000): L19—L24. http://dx.doi.org/10.1152/ajplung.2000.278.1.l19.

Full text
Abstract:
Convertase has homology with carboxylesterases, but its substrate(s) is not known. Accordingly, we determined whether dipalmitoylphosphatidylcholine (DPPC), the major phospholipid in surfactant, was a substrate for convertase. We measured [3H]choline release during cycling of the heavy subtype containing [3H]choline-labeled DPPC with convertase, phospholipases A2, B, C, and D, liver esterase, and elastase. Cycling with liver esterase or peanut or cabbage phospholipase D produced the characteristic profile of heavy and light peaks observed on cycling with convertase. In contrast, phospholipases A2, B, and C and yeast phospholipase D produced a broad band of radioactivity across the gradient without distinct peaks. [3H]choline was released when natural surfactant containing [3H]choline-labeled DPPC was cycled with yeast phospholipase D but not with convertase or peanut and cabbage phospholipases D. Similarly, yeast phospholipase D hydrolyzed [3H]choline from [3H]choline-labeled DPPC after incubation in vitro, whereas convertase, liver esterase, or peanut and cabbage phospholipases D did not. Thus convertase, liver esterase, and plant phospholipases D did not hydrolyze choline from DPPC either on cycling or during incubation with enzyme in vitro. In conclusion, conversion of heavy to light subtype of surfactant by convertase may require a phospholipase D type hydrolysis of phospholipids, but the substrate in this reaction is not DPPC.
APA, Harvard, Vancouver, ISO, and other styles
3

Bollag, Wendy B. "Role of phospholipases in adrenal steroidogenesis." Journal of Endocrinology 229, no. 1 (April 2016): R29—R41. http://dx.doi.org/10.1530/joe-16-0007.

Full text
Abstract:
Phospholipases are lipid-metabolizing enzymes that hydrolyze phospholipids. In some cases, their activity results in remodeling of lipids and/or allows the synthesis of other lipids. In other cases, however, and of interest to the topic of adrenal steroidogenesis, phospholipases produce second messengers that modify the function of a cell. In this review, the enzymatic reactions, products, and effectors of three phospholipases, phospholipase C, phospholipase D, and phospholipase A2, are discussed. Although much data have been obtained concerning the role of phospholipases C and D in regulating adrenal steroid hormone production, there are still many gaps in our knowledge. Furthermore, little is known about the involvement of phospholipase A2, perhaps, in part, because this enzyme comprises a large family of related enzymes that are differentially regulated and with different functions. This review presents the evidence supporting the role of each of these phospholipases in steroidogenesis in the adrenal cortex.
APA, Harvard, Vancouver, ISO, and other styles
4

EXTON, JOHN H. "Phospholipase D." Annals of the New York Academy of Sciences 905, no. 1 (January 25, 2006): 61–68. http://dx.doi.org/10.1111/j.1749-6632.2000.tb06538.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Exton, John H. "Phospholipase D." Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1436, no. 1-2 (December 1998): 105–15. http://dx.doi.org/10.1016/s0005-2760(98)00124-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gomez-Cambronero, Julian, and Paul Keire. "Phospholipase D." Cellular Signalling 10, no. 6 (June 1998): 387–97. http://dx.doi.org/10.1016/s0898-6568(97)00197-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wakelam, Michael J. O., Matthew N. Hodgkin, Ashley Martin, and Khalid Saqib. "Phospholipase D." Seminars in Cell & Developmental Biology 8, no. 3 (June 1997): 305–10. http://dx.doi.org/10.1006/scdb.1997.0152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Inamori, K., N. Sagawa, M. Hasegawa, H. Itoh, J. Yano, and T. Mori. "Activation of phospholipase D in cultured human amnion cells." Reproduction, Fertility and Development 7, no. 6 (1995): 1591. http://dx.doi.org/10.1071/rd9951591.

Full text
Abstract:
The regulation of phospholipase D (PLD) activity in the human amniotic membrane was examined using primary cultures of amnion cells. Cultured amnion cells were labelled with [3H]oleic acid, and PLD activity was determined as the amount of [3H]phosphatidylethanol (PEt) produced during incubation in the presence of 0.1% ethanol. PLD activity in cultured amnion cells was activated by addition of arginine vasopressin and oxytocin. PLD activity was also stimulated by treatment was arachidonic acid, the product of phospholipase A2 (PLA2), and phospholipase C (PLC). These results indicate that PLD in amnion cells is activated by substances present in amniotic fluid, and that cross-talk between phospholipases A2, C and D may occur in amnion cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Min, Do Sik. "The Functional Role of Phospholipase D Isozymes in Apoptosis." Journal of Life Science 24, no. 12 (December 30, 2014): 1378–82. http://dx.doi.org/10.5352/jls.2014.24.12.1378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alvarez-Breckenridge, Christopher A., Kristin A. Waite, and Charis Eng. "PTEN regulates phospholipase D and phospholipase C." Human Molecular Genetics 16, no. 10 (April 3, 2007): 1157–63. http://dx.doi.org/10.1093/hmg/ddm063.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Phospholipase D"

1

Brown, Shea Austin. "N-Acylethanolamines and Plant Phospholipase D." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc279270/.

Full text
Abstract:
Recently, three distinct isoforms of phospholipase D (PLD) were identified in Arabidopsis thaliana. PLD α represents the well-known form found in plants, while PLD β and γ have been only recently discovered (Pappan et al., 1997b; Qin et al., 1997). These isoforms differ in substrate selectivity and cofactors required for activity. Here, I report that PLD β and γ isoforms were active toward N-acylphosphatidylethanolamine (NAPE), but PLD α was not. The ability of PLD β and γ to hydrolyze NAPE marks a key difference from PLD α. N-acylethanolamines (NAE), the hydrolytic products of NAPE by PLD β and γ, inhibited PLD α from castor bean and cabbage. Inhibition of PLD α by NAE was dose-dependent and inversely proportional to acyl chain length and degree of unsaturation. Enzyme kinetic analysis suggested non-competitive inhibition of PLD α by NAE 14:0. In addition, a 1.2-kb tobacco (Nicotiana tabacum L.) cDNA fragment was isolated that possessed a 74% amino acid identity to Arabidopsis PLD β indicating that this isoform is expressed in tobacco cells. Collectively, these results provide evidence for NAE producing PLD activities and suggest a possible regulatory role for NAE with respect to PLD α.
APA, Harvard, Vancouver, ISO, and other styles
2

Hodson, Jane E. "Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3341/.

Full text
Abstract:
Transgenic tobacco plants were developed containing a partial PLD clone in antisense orientation. The PLD isoform targeted by the insertion was identified. A PLD clone was isolated from a cDNA library using the partial PLD as a probe: Nt10B1 shares 92% identity with PLDβ1 from tomato but lacks the C2 domain. PCR analysis confirmed insertion of the antisense fragment into the plants: three introns distinguished the endogenous gene from the transgene. PLD activity was assayed in leaf homogenates in PLDβ/g conditions. When phosphatidylcholine was utilized as a substrate, no significant difference in transphosphatidylation activity was observed. However, there was a reduction in NAPE hydrolysis in extracts of two transgenic plants. In one of these, a reduction in elicitor- induced PAL expression was also observed.
APA, Harvard, Vancouver, ISO, and other styles
3

Mebarek, Azzam Saida. "La Phospholipase D, une voie de signalisation lipidique impliquée dans de multiples fonctions cellulaires : morphologie, prolifération, différenciation." Lyon, INSA, 2006. http://theses.insa-lyon.fr/publication/2006ISAL0003/these.pdf.

Full text
Abstract:
La phospholipase D (PLD), qui hydrolyse la phosphatidylcholine des membranes cellulaires et donne naissance à un médiateur phospholipidique, l'acide phosphatidique, joue un rôle central dans diverses fonctions cellulaires. Nous avons tout d'abord mis en évidence l'implication des céramides dans la différenciation des myoblastes de rat L6. Ces cellules sont capables de se différencier in vitro en myotubes polynucléés exprimant divers marqueurs du tissu musculaire, en présence de vasopressine. Cette hormone induit une régulation biphasique des taux cellulaires de céramides, avec une décroissance dans les premières heures, suivie d'une augmentation jusqu'au 8e jour, attribuable à l'activation de la voie de biosynthèse de novo. Les céramides ainsi formés ont un effet régulateur négatif sur la différenciation, au moins en partie à cause du contrôle négatif qu'ils exercent sur l'expression de l'isoforme PLD1, dont nous avions démontré le caractère indispensable à la myogénèse. Nous avons de plus observé que les céramides inhibent le réorganisation PLD1- dépendante du cytosquelette d'actine, une des premières étapes du processus myogénique. La régulation de la PLD par les céramides semble constituer une cible pharmacologique intéressante pour des actions visant à favoriser la régénération musculaire dans diverses situations pathologiques. Par ailleurs, nous avons montré que la PLD intervient dans le contrôle de la perméabilité paracellulaire d'une monocouche de cellules endothéliales HUV-EC-C aux macromolécules, grâce à ses effets sur le cytosquelette d'actine. Les lipoprotéines de faible densité (LDL), natives ou oxydées, mises en contact avec la monocouche, sont capables de stimuler l'activité PLD des cellules et la perméabilité aux macromolécules. Elles provoquent en parallèle un remodelage PLD-dépendant du cytosquelette avec la formation de fibres de stress, et un changement de morphologie cellulaire. Les LDL stimulent donc leur propre passage transendothélial, via leur capacité à réguler la PLD. Un défaut de régulation de la PLD pourrait contribuer à une accumulation subendothéliale anormale des LDL, et, étant donné le rôle proathérogène de ces molécules, à l'accélération du processus athéroscléreux. Des travaux antérieurs avaient établi la présence de l'isoforme PLD1 au niveau des radeaux lipidiques membranaires de lymphocytes périphériques humains, et suggéré un lien entre la délocalisation de l'enzyme, son activation, et une inhibition de la réponse aux mitogènes. Nous avons confirmé que la perturbation des radeaux, par des agents agissant spécifiquement sur les lipides de ce compartiment, est associée à une activation de la PLD et à une inhibition de la prolifération lymphocytaire. Par des expériences de surexpression, nous avons montré que l'isoforme PLD1, mas pas l'isoforme PLD2, est spécifiquement responsable d'un contrôle négatif de l'activation lymphocytaire. La mise en évidence de la régulation de PLD1 par inclusion / exclusion du compartiment radeaux lipidiques, et la démonstration de son implication dans le contrôle de la réponse lymphocytaire, devraient permettre de mieux comprendre les mécanismes moléculaires impliqués dans diverses pathologies de l'immunité
Phospholipase D (PLD) hydrolyses phosphatidylcholine of cell membranes in response to a variety of agonists, to generate phosphatidic acid, a second messenger implicated in cell functions such as cytoskeletal reorganization. In L6 skeletal myoblasts induced to differentiate, a short-lived lowering of ceramide levels was followed by a long-lasting elevation due to de novo synthesis. Ceramide mediates a negative control of myogenic differentiation, at least in part through down-regulation of PLD1 isoform expression and inhibition of PLD1-dependent formation of stress fibers. Moreover, we show that PLD is involved in paracellular permeability of endothelial cells through actin cytoskeleton reorganization, and morphological changes. In addition, we show that disruption of membrane lipid rafts by agents specifically active on the lipids of this compartment, induces an activation of PLD and generates anti-proliferative signals in lymphocytes
APA, Harvard, Vancouver, ISO, and other styles
4

Rahier-Corticchiato, Renaud. "Caractérisation biochimique des phospholipases D et de leurs domaines fonctionnels : nouvelle méthode de mesure de l’activité phospholipase D." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1292/document.

Full text
Abstract:
La phospholipase D (PLD) hydrolyse les phospholipides membranaires en libérant leur tête polaire afin de générer l'acide phosphatidique (PA), impliqué dans la signalisation cellulaire. Pour comprendre les propriétés biochimiques des PLDs, les travaux présentés ont été réalisés autour de deux axes. Le premier axe concerne l'expression recombinante et la purification de la PLDa d'Arabidopsis thaliana (AtPLDa) dans la levure Pichia pastoris. La détermination de la séquence N-terminale a révélé que l'AtPLDa est amputée de ses 35 premiers résidus, suggérant ainsi la participation d'un mécanisme de maturation. Cependant, la région N-terminale des PLDs de plantes est homologue au domaine C2, impliqué dans leur interaction Ca2+-dépendante avec la membrane. Afin d'évaluer l'impact d'un tel clivage, les domaines C2 de l'AtPLDa mais également de l'AtPLDß, à titre de comparaison, ont été étudiés sous leur forme entière ou mature. Ainsi, la caractérisation de leur affinité pour les phospholipides, associée à leur modélisation tridimensionnelle, ont permis de démontrer que les différences de régulation par le Ca2+, observées entre les formes entières et mature, provenait de la présence d'une hélice a amphipathique, retirée lors du processus de maturation. Le second axe concerne le développement d'une nouvelle méthode de mesure des activités PLD via le dosage de manière direct, spécifique et continu du PA grâce à la propriété d'amplification de fluorescence par chélation de la 8-hydroxyquinoléine, en présence de Ca2+. Ainsi, ce test apparait adapté pour le suivi de l'inhibition des PLDs et pour l'étude de leur spécificité de substrat, en utilisant des phospholipides naturels avec différentes tête polaires, et à l'échelle d'une microplaque
Phospholipase D (PLD) hydrolyses membrane phospholipids, leading to the formation of free polar headgroup and phosphatidic acid releasing, involved in cell signaling. To understand the biochemical properties of PLDs, this work has been made around two axes. The one first concerns the recombinant expression and purification of the PLDa of Arabidopsis thaliana (AtPLDa) in the yeast Pichia pastoris. The N-terminal sequence of the recombinant AtPLDa has been determined and found to lack its first 35 amino acids, suggesting the involvement of a maturing mechanism. However, plant PLDs exhibit a C2-lipid binding domain at their N-terminal region, which is involved in their Ca2+-dependent membrane targeting. Thus, to assess the impact of such a cleavage, whole and mature-like C2 domains of AtPLDa, as well as of AtPLDß, for the sake of comparison were studied. Thus, the characterization of their affinity for phospholipids, combined with their three-dimensional modeling have demonstrated that the differences observed in their regulation by Ca2+, observed between whole and mature-like forms, originated from the presence of a N-terminus amphipathic a helix, removed during the maturation process. The second axis concerns the development of a novel PLD assay that measure PA in a direct, specific and continuous manner, using the chelation enhanced fluorescence property of 8-hydroxyquinoline in the presence of Ca2+. Thus, this assay appears suitable for monitoring both the inhibition of PLDs as well as their substrate specificity, using natural phospholipids with different polar headgroups, and at a microplate scale
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Liang. "Regulation of phospholipase D in submandibular glands." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/NQ53062.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Jung Hoon. "Suppression of phospholipase D[Alpha] in soybean." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McKinnon, Murray. "Studies on mammalian phosphatidylcholine specific phospholipase D." Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skafi, Najwa. "Role of Phospholipase D in Vascular Calcification." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1339/document.

Full text
Abstract:
La calcification vasculaire est l’accumulation de cristaux de calcium dans les vaisseaux sanguins à travers un processus pathologique qui ressemble à la formation de l’os ou du cartilage. Elle apparaît notamment chez les patients diabétiques ou atteints d’une insuffisance rénale chronique. La conséquence principale de la calcification vasculaire est la perte de l’élasticité qui est indispensable pour la fonction des larges artères, elle est de plus associée à la mortalité des patients hémodialysés. Les traitements contre la calcification vasculaire sont généralement limités à ceux qui corrigent les facteurs causatifs des problèmes de santé mais aucune intervention efficace, spécifique et ciblée n’est disponible. Par conséquence, une compréhension profonde des mécanismes moléculaires impliqués dans la calcification vasculaire est nécessaire dans le but de trouver de nouvelles cibles thérapeutiques. La phospholipase D catalyse l’hydrolyse des phospholipides en acide phosphatidique et une tête polaire, elle est aussi impliquée dans différentes fonctions cellulaires et maladies. Il a été démontré qu’elle peut être activée par des facteurs impliqués dans l’ostéogenèse et par d’autres impliqués dans la calcification vasculaire. Ainsi, nous avons étudié le rôle de la phospholipase D dans la calcification vasculaire dans 3 modèles différents. Le premier est un modèle in-vitro de cellules musculaires lisses murines (lignée cellulaire MOVAS), elles sont cultivées en présence d’acide ascorbique et de β-glycérophosphate. Le deuxième est un modèle ex-vivo d’explants d’aortes cultivés en présence de fortes concentrations de phosphate et le troisième est un modèle in-vivo d’insuffisance rénale chronique produite chez des rats. Dans ce dernier modèle, la calcification vasculaire est induite par un régime riche en phosphore et en calcium et par des injections de vitamine D active. La calcification dans ces trois modèles a été suivie par l’analyse de la minéralisation en dosant les dépôts de calcium, de l’activité phosphatase alcaline, et de l’expression de différents marqueurs ostéo-chondrocytaires. Une augmentation de l’expression génique de Pld1 a été observée dans les trois modèles, en particulier au cours des premières étapes de la calcification, et a été accompagnée d'une activité accrue de la phospholipase D dans les modèles in vitro et ex-vivo. L’inhibition de l’activité phospholipase D dans ces deux modèles ou de la phospholipase D1 dans le modèle MOVAS a bloqué complètement la calcification. Par contre, l’inhibition spécifique de la phospholipase D2 n’a pas montré des effets significatifs. Deux voies par lesquelles la phospholipase D peut être activée ont été testées, la voie de la protéine kinase C et la voie de la sphingosine-1-phosphate. Ces deux voies métaboliques se sont révélées être impliquées dans le processus de calcification mais pas forcément dans l’activation de la phospholipase D au cours de ce processus. Des résultats préliminaires ont montré que la phospholipase D pourrait agir après activation de la sphingosine kinase 2 dont l’activité s’est avérée nécessaire pour la calcification dans le modèle MOVAS. Des études supplémentaires sont nécessaires pour comprendre par quels mécanismes la phospholipase D est activée et comment elle agit. La phospholipase D pourrait être une nouvelle cible thérapeutique pour le traitement de la calcification vasculaire vu que son inhibition ne semble pas avoir des effets secondaires chez les patients
Vascular calcification is the accumulation of calcium phosphate crystals in blood vessels via a pathological process that resembles physiological bone or cartilage formation. Calcification in the medial layer is mainly seen in diabetic and chronic kidney disease patients. Its main consequence is the loss of elasticity which is indispensable for the function of large arteries. Accordingly, vascular medial calcification was significantly associated with mortality in hemodialysis patients. Vascular calcification treatments are limited to those that correct its causative health problems, but no efficient, specific and targeted interventions are available. Therefore, a deep understanding of its molecular mechanisms is needed to find novel therapeutic targets. Phospholipase D catalyses the hydrolysis of phospholipids into phosphatidic acid and a head group. It is implicated in different cellular functions and diseases. It was found to be activated by factors involved in osteogenesis and others involved in vascular calcification. Thus, we investigated its role in vascular calcification in 3 models: an in-vitro model of murine smooth muscle cell line MOVAS cultured with ascorbic acid and β-glycerophosphate, an ex-vivo model of rat aortas cultured in high phosphate medium, and an in-vivo model of adenine-induced kidney disease in rats in which vascular calcification is induced by further administration of high phosphorus/calcium diet and active vitamin D injections. Calcification was detected in these models using different approaches including alkaline phosphatase activity, calcium dosage, and/or evaluation of osteo-chondrocytic markers expression. Pld1 expression was seen upregulated in all the three models, especially during early stages of calcification, and was accompanied with increased phospholipase D activity in the in-vitro and ex-vivo model. The inhibition of total phospholipase D activity in these two models, or that of phospholipase D1 in case of MOVAS model, abolished calcification. Phospholipase D2-specific inhibition did not induce significant effects. Two pathways by which phospholipase D can be activated were tested, protein kinase C and sphingosine 1-phosphate pathways, but they were found to be involved in calcification but not necessary for phospholipase D activation during this process. Alternatively, the preliminary results showed that PLD may be acting by activation of sphingosine kinase 2 whose activity was found necessary for calcification in the MOVAS model. Further investigations are needed to understand the mechanisms by which phospholipase D is activated and by which it is acting. Phospholipase D could be a novel target for vascular calcification especially that its inhibition in patients did not induce adverse health effects
APA, Harvard, Vancouver, ISO, and other styles
9

Arhab, Yani. "Caractérisation structurale et fonctionnelle des phospholipases D." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1225/document.

Full text
Abstract:
Les phospholipases D (PLD, EC 3.1.4.4) sont des enzymes ubiquitaires retrouvées aussi bien chez les procaryotes (bactéries) que chez les eucaryotes (plantes, animaux et champignons). Les PLD catalysent l'hydrolyse des glycérophospholipides au niveau distal de la liaison phosphodiester pour former de l'acide phosphatidique, un important messager cellulaire impliqué dans de nombreuses voies telles que la prolifération cellulaire, la formation et le trafic vésiculaire, mais aussi la transcription et la survie cellulaire. Les PLD appartiennent à une superfamille de protéines (superfamille des PLD) qui ont en commun un site catalytique HXKX4D, X étant un acide aminé quelconque, contenant les résidus H (Histidyl), K (Lysyl) et D (Aspartyl). Ce site est nommé séquence consensus "HKD" et est dupliqué dans la plupart des membres de la superfamille des PLD. L'étude des PLD de plante est le moyen le plus sûr d'étudier cette famille d'enzyme car ce sont les seules PLD eucaryotiques purifiées à homogénéité et en grande quantité à ce jour. Ces travaux proposent une caractérisation fonctionnelle des résidus conservés au sein des PLD végétales menant à une caractérisation structurale avec la cristallisation de cette protéine. Dans un second temps l'activité de l'enzyme est modulée avec l'étude du domaine minimum, de la maturation post-traductionnelle de l'enzyme et le recherche d'un nouvel inhibiteur. Enfin, nous proposons le clonage d'une nouvelle PLD et la mise au point d'un système de détection in vivo de l'activité PLD
Phospholipases D (PLD, EC 3.1.4.4) are ubiquitary enzymes found in prokaryotes (bacteria) as well as in eukaryotes (plant, animals and fungi). PLD catalyzes the hydrolysis of the distal phosphoester bound of phospholipids thus forming phosphatidic acid, an important cell signaling messenger implicated in numerous pathways such as cell proliferation, vesicular formation and trafficking but also transcription and cell survival. PLDs belong to a superfamily of protein which share a common catalytic site called “HKD” for HXKX4D, X is a random amino acid, containing H (Histidyl), K (lysyl) and D (aspartyl) residues. This consensus sequence is duplicated in most of the PLD superfamily members. The study of plant PLD is the best way to understand this family of proteins as they are the sole eukaryotic PLDs to be purified to homogeneity so far. This work provides a functional characterization of the most conserved residues in plant PLDs leading to a structural characterization with the crystallization of this enzyme. A second part of this work proposes the modulation of the enzyme hydrolysis activity by studying the minimal domain necessary for the activity and post-translational maturation undergone by plant PLDs. Also, we look for a new specific inhibitory molecule. Finally, we propose the cloning of a new plant PLD and the development of a new way to detect in vivo PLD activity
APA, Harvard, Vancouver, ISO, and other styles
10

Heung, Yen Ming Mary. "Molecular selectivity of phospholipase D in granulocyte function." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241935.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Phospholipase D"

1

Clark, Joanna Mary. The regulation of human phospholipase D: Studies with recombinant phospholipase D1b and myeloid leukaemic cell lines. Birmingham: University of Birmingham, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, Fraser David. The role and regulation of phospholipase D in haematopoietic cells. Birmingham: University of Birmingham, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Phospholipase D"

1

Exton, John H. "Phospholipase D." In Frontiers in Bioactive Lipids, 265–77. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5875-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gomez-Cambronero, Julian, and Karen M. Henkels. "Phospholipase D." In Encyclopedia of Signaling Molecules, 3999–4010. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Foster, David A., and Deepak Menon. "Phospholipase D." In Encyclopedia of Cancer, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_4540-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lackner, K. J., and D. Peetz. "Phospholipase D." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49054-9_2426-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Exton, John H. "Phospholipase D." In Lipases and Phospholipases in Drug Development, 55–78. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527601910.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lackner, K. J., and D. Peetz. "Phospholipase D." In Springer Reference Medizin, 1880. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Donato, Dominique M., Steven K. Hanks, Kenneth A. Jacobson, M. P. Suresh Jayasekara, Zhan-Guo Gao, Francesca Deflorian, John Papaconstantinou, et al. "Phospholipase D." In Encyclopedia of Signaling Molecules, 1409–19. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Foster, David A., and Deepak Menon. "Phospholipase D." In Encyclopedia of Cancer, 3544–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_4540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schomburg, Dietmar, and Margit Salzmann. "Phospholipase D." In Enzyme Handbook 3, 549–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76463-9_116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Wenhua, Xiaobo Wan, Yueyun Hong, Weiqi Li, and Xuemin Wang. "Plant Phospholipase D." In Lipid Signaling in Plants, 39–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03873-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Phospholipase D"

1

Zhou, Mingjie, Cailan Zhang, and Richard P. Haugland. "Choline oxidase: a useful tool for high-throughput assays of acetylcholinesterase, phospholipase D, phosphatidylcholine-specific phospholipase C, and sphingomyelinase." In BiOS 2000 The International Symposium on Biomedical Optics, edited by Patrick A. Limbach, John C. Owicki, Ramesh Raghavachari, and Weihong Tan. SPIE, 2000. http://dx.doi.org/10.1117/12.380507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Z., and X. Chen. "BS3.2 - Polydiacetylene-based sensors for the activity assay of phospholipase D." In 17th International Meeting on Chemical Sensors - IMCS 2018. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2018. http://dx.doi.org/10.5162/imcs2018/bs3.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mao, Xiangzhao. "Efficient Expression of Phospholipase D and Its Application in Enzymatic Modification of Phospholipids." In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lapetina, Eduardo G. "THE ROLE OF INOSITIDES, PHOSPHOLIPASE C AND G-PROTEINS IN RECEPTOR TRANSDUCTION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644775.

Full text
Abstract:
It is now widely recognized that the activation of phospholipase C by specific agonists leads to the formation of two second messengers: (1) inositol trisphosphate, which releases Ca2+ from the endoplasmic reticulum to the cytosol and (2) 1,2- diacylglycerol, which stimulates protein kinase C. In the past few years, GTP-binding proteins have been associated with the regulation of phospholipase C. However, the identity of the GTP-binding protein involved and the type of association with phospholipase C is not yet known. It is now recognized that there are two types of phospholipase C enzymes: (a) a soluble enzyme that has been characterized in several tissues and does not preferentially hydrolyze polyphospholinositides and (b) membrane-bound enzymes that are coupled to the receptors, specifically hydrolyzing polyphosphoinositides and activated by membrane guanine nucleotide-binding proteins. Recent reports have tried to assess the involvement of GTP-binding proteins in the agonist-induced stimulation of phospholipase C, and various related aspects have been reported. These are concerned with: (a) detection of various GTP-binding proteins in platelets, (b) the effects of known inhibitors of GTP-binding proteins such as GDPgS or pertussis toxin on the agonist-induced stimulation of phospholipase C, (c) the direct effects of stimulators of GTP-binding proteins such as GTP, GTP-analogs and fluoride on phospholipase C activity, (d) the possible association of GTP-binding proteins to cytosolic phospholipase C that would then lead to degradation of the membrane-bound inositides and (e) cytosolic phospholipase C response to the activation of cell surface receptors. The emerging information has had contradictory conclusions. (1) Pretreatment of saponin-permeabilized platelets with pertussis toxin has been shown to enhance and to inhibit the thrombin-induced activation of phospholipase C. Therefore, it is not clear if a G protein that is affected by pertussis toxin in a manner similar to Gi or Go plays a central role in activation of phospholipase C. (2) Studies on the effect of GDPβ;S are also conflicting indicating that there may be GTP-independent and/or -dependent pathways for the activation of phosphoinositide hydrolysis. (3) A cytosolic phospholipase C is activated by GTP, and it has been advanced that this activity might trigger the hydrolysis of membrane-bound inositides. A cytosolic GTP-binding protein might be involved in this action, and it is speculated that an α-subunit might be released to the cytoplasm by a receptor-coupled mechanism to activate phospholipase C. However, no direct evidence exists to support this conclusion. Moreover, the exact contribution of phospholipase C from the membranes or the cytosol to inositide hydrolysis in response to cellular agonists and the relationship of those activites to membrane-bound or soluble GTP-binding proteins are unknown. Our results indicate that the stimulation of phospholipase C in platelets by GDPβS and thrombin are affected differently by GDPβS. GDPgSinhibits the formation of inositol phosphates produced by GTPγS but not that induced by thrombin. Thrombin, therefore, can directly stimulate phospholipase C without the involvement of a “stimulatory” GTP-binding protein, such as Gs, for the agonist stimulation of adenylate cyclase. However, an “inhibitory” GTP-binding protein might have some influence on thrombin-stimulated phospholipase C, since in the presence of GDPγS thrombin produces a more profound stimulation of phospholipase C.This “inhibitory” GTP-binding protein might be ADP-ribosylated by pertussis toxin because pertussis toxin can also enhance thrombin action on phospholipase C activity. Therefore, phospholipase C that responds to thrombin could be different from the one that responds to GTPγS. Cytosolic phospholipase C can be activated by GTP or GTP analogs, and the one that responds to thrombin should be coupled to the receptors present in the plasma membrane. The initial action of thrombin is to directly activate the plasma membrane-bound phospholipase C and the mechanism of this activation is probably related to the proteolytic action of thrombin or the activation of platelet proteases by thrombin. In agreement with this, trypsin can also directly activate platelet phospholipase C and, subsequently, GTPyS produces further activation of phospholipase C. If these two mechanisms are operative in platelets, the inhibition of cytosolic phospholipase C by GDPβS would allow a larger fraction of inositides for degradation of the thrombin-stimulated phospholipase C, as our results show.
APA, Harvard, Vancouver, ISO, and other styles
5

Krishnamachary, Balaji, Mayur Gadiya, Noriko Mori, Yelena Mironchik, Kristine Glunde, and Zaver M. Bhujwalla. "Abstract 46: Interdependence of choline kinase and phospholipase D in human breast cancer cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wan, Sibao, Mengyun Li, Fangwei Ma, Jie Yuan, Zhanmin Liu, Weiwei Zheng, and Jicheng Zhan. "Genome-wide identification of phospholipase D (PLD) gene family and their responses to low-temperature stress in peach." In INTERNATIONAL SYMPOSIUM ON THE FRONTIERS OF BIOTECHNOLOGY AND BIOENGINEERING (FBB 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5110805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Itagaki, Y., A. Suzuki, and K. Higashio. "TISSUE PLASMINOGEN ACTIVATOR (T-PA) PRODUCTION BY HUMAN EMBRYONIC FIBROBLASTS, IMR-90, STIMULATED BY PROTEOSE PEPTONE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644392.

Full text
Abstract:
In order to study the mechanisms by which t-PA production by IMR-90 cells are induced, lactalbumin hydrolysates, yeast extracts, and peptones were tested for their ability to induce t-PA production by IMR-90 cells. IMR-90 cells were grown to confluency in Dulbecco's modified Eagle's medium(DMEM) supplemented with 10% fetal calf serum at 37°C in 5% CO2 in air. And the cells were maintained in serum free medium containing 1% of each additive. The plasminogen activator activity was determined by fibrin plate method, using urokinase or t-PA from WHO as a standard. It was found that proteose peptone (Difco) and neopeptone (Difco) strongly induced the t-PA production by IMR-90 cells. The t-PA production in DMEM containing 1% proteose peptone reached approx. 200IU/ml after incubation at 37°C for 6 days and was from twenty to fifty times higher than that in DMEM only (control medium). The t-PA production by IMR-90 cells stimulated by proteose peptone was strongly inhibited by RNA synthesis inhibitor(actinomycin D) or prorein synthesis inhibitor (cycloheximide). Hence, t-PA production by IMR-90 cells stimulated by proteose peptone was mediated by de novo synthesis. Chelating reagent (EGTA), Ca2+ entry blocker (verapamil), inhibitor of phospholipase A2 (quinacrine) and inhibitor of lipoxygenase (NDGA) strongly inhibited the t-PA production by IMR-90 cells stimulated by proteose peptone. Inhibitor of cyclooxygenase (indomethacin) was inert. On the contrary, activators of phospholipase A2(Ca2+,melittin) and hydroxy-unsaturated fatty acid (5-HETE) derived from arachidonic acid by lipoxygenase strongly enhanced t-PA production by IMR-90 cells stimulated by proteose peptone. These results suggest that the t-PA production by IMR-90 cells stimulated by proteose peptone is mediated by arachidonate cascade involving the following pathway; (1) proteose peptone stimulates the membrane of IMR-90, (2) this stimulus causes Ca2+ influx, (3) Ca2+ ion activates phopholipase A2, (4) activated phospholipase A2 liberates arachidonic acid from phospholipids in ceil membrane and (5) lipoxygenase converts arachidonic acid into the hydroxy-unsaturated fatty acid.
APA, Harvard, Vancouver, ISO, and other styles
8

Culler, Mitchell, Eric Decker, and Ipek Bayram. "Enzymatic modification of lecithin for improved antioxidant activity in combination with tocopherol in emulsions and bulk oil." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/dsey3101.

Full text
Abstract:
Industry attempts to meet consumers' clean label demands by removing synthetic antioxidants (e.g. EDTA) frequently result in deleterious effects on oil quality, causing the formation of toxic oxidation derivatives as well as off-flavors and aromas. Thus, there is an urgent need for novel and natural antioxidant systems. For example, after becoming oxidized, α-tocopherol can be recharged to its active form by phosphatidylethanolamine (PE) for increased efficacy. Unfortunately, plant-based lecithin is mostly phosphatidylcholine (PC), which lacks the amine group necessary to recharge tocopherol. Purified phospholipids are typically too expensive for food products, however enzymatic conversion of PC to PE is more cost effective.The aims of the present study are 1) to determine the optimal reaction conditions for converting high PC lecithin into modified high PE lecithin (MHPEL) and 2) to validate the MHPEL's synergism with tocopherol in delaying lipid oxidation in model emulsion systems at pH 7, and 4, and in bulk oil. High PC lecithin was incubated with phospholipase D from Streptomyces chromofuscus and ethanolamine at varied pH, temperature, and time and then analyzed for compositional changes by HPLC. To assess shelf life, aliquots of 1% o/w emulsions buffered to pH 7 and 4 as well as bulk oil were prepared and stored at 32 and 55°C, respectively. Treatment groups included control, MHPEL, purified PE standard, tocopherol, tocopherol + MHPEL, and tocopherol + purified PE standard. Lipid hydroperoxide formation was measured spectrophotometrically, and hexanal formation was measured using GC headspace analysis. Maximum conversion occurred at pH 9 and 37°C, reaching >73% PE after 4 hours. The combination of MHPEL and tocopherol increased shelf-life by 75% compared to tocopherol alone in o/w emulsions at pH 7, 50% in o/w emulsions at pH 4, and 100% in bulk oil. This approach represents an exciting and clean-label antioxidant system with commercialization potential.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography