Journal articles on the topic 'Phosphenes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Phosphenes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Et.al, Manami, K. "Investigation of Electrical Interference towards Phosphene-Based Walking Support System." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (April 10, 2021): 2178–83. http://dx.doi.org/10.17762/turcomat.v12i3.1164.
Full textKvašňák, E., M. Orendáčová, and J. Vránová. "Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS." Physiological Research 71, no. 4 (August 31, 2022): 561–71. http://dx.doi.org/10.33549/physiolres.934887.
Full textNiketeghad, Soroush, Abirami Muralidharan, Uday Patel, Jessy D. Dorn, Laura Bonelli, Robert J. Greenberg, and Nader Pouratian. "Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject." Journal of Neurosurgery 132, no. 6 (June 2020): 2000–2007. http://dx.doi.org/10.3171/2019.3.jns182774.
Full textIndahlastari, Aprinda, Aditya K. Kasinadhuni, Christopher Saar, Kevin Castellano, Bakir Mousa, Munish Chauhan, Thomas H. Mareci, and Rosalind J. Sadleir. "Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects." Neural Plasticity 2018 (December 6, 2018): 1–10. http://dx.doi.org/10.1155/2018/8525706.
Full textCsászár, Noémi, Felix Scholkmann, Vahid Salari, Henrik Szőke, and István Bókkon. "Phosphene perception is due to the ultra-weak photon emission produced in various parts of the visual system: glutamate in the focus." Reviews in the Neurosciences 27, no. 3 (April 1, 2016): 291–99. http://dx.doi.org/10.1515/revneuro-2015-0039.
Full textGebrehiwot, Adonay N., Tatsuya Kato, and Kimitaka Nakazawa. "Inducing lateralized phosphenes over the occipital lobe using transcranial magnetic stimulation to navigate a virtual environment." PLOS ONE 16, no. 4 (April 14, 2021): e0249996. http://dx.doi.org/10.1371/journal.pone.0249996.
Full textKanamaru, Manami, Phan Xuan Tan, and Eiji Kamioka. "Simulation-Based Designing of Suitable Stimulation Factors for Presenting Two Phosphenes Simultaneously to Lower Side of Field of View." Bioengineering 9, no. 12 (December 2, 2022): 752. http://dx.doi.org/10.3390/bioengineering9120752.
Full textNiketeghad, Soroush, Abirami Muralidharan, Uday Patel, Jessy Dorn, Robert Greenberg, and Nader Pouratian. "150 Effect of Stimulation Parameters on Visual Percepts Elicited by Stimulation of a Visual Cortical Prosthesis for the Blind." Neurosurgery 64, CN_suppl_1 (August 24, 2017): 236. http://dx.doi.org/10.1093/neuros/nyx417.150.
Full textKanamaru, Manami, Phan Xuan Tan, and Eiji Kamioka. "Design of Electrode Placement for Presenting Phosphenes in the Lower Visual Field Based on Electric Field Simulation." Applied Sciences 11, no. 22 (November 19, 2021): 10972. http://dx.doi.org/10.3390/app112210972.
Full textChen, Xing, Feng Wang, Eduardo Fernandez, and Pieter R. Roelfsema. "Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex." Science 370, no. 6521 (December 3, 2020): 1191–96. http://dx.doi.org/10.1126/science.abd7435.
Full textTehovnik, E. J., W. M. Slocum, C. E. Carvey, and P. H. Schiller. "Phosphene Induction and the Generation of Saccadic Eye Movements by Striate Cortex." Journal of Neurophysiology 93, no. 1 (January 2005): 1–19. http://dx.doi.org/10.1152/jn.00736.2004.
Full textAurora, SK, KMA Welch, and F. Al-Sayed. "The Threshold for Phosphenes is Lower in Migraine." Cephalalgia 23, no. 4 (May 2003): 258–63. http://dx.doi.org/10.1046/j.1468-2982.2003.00471.x.
Full textKar, Kohitij, and Bart Krekelberg. "Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin." Journal of Neurophysiology 108, no. 8 (October 15, 2012): 2173–78. http://dx.doi.org/10.1152/jn.00505.2012.
Full textAvraham, David, and Yitzhak Yitzhaky. "Effects of Depth-Based Object Isolation in Simulated Retinal Prosthetic Vision." Symmetry 13, no. 10 (September 22, 2021): 1763. http://dx.doi.org/10.3390/sym13101763.
Full textNissi, Janita, and Ilkka Laakso. "Magneto- and electrophosphene thresholds in the retina: a dosimetry modeling study." Physics in Medicine & Biology 67, no. 1 (January 7, 2022): 015001. http://dx.doi.org/10.1088/1361-6560/ac46df.
Full textKaido, Takanobu, Tohru Hoshida, Toshiaki Taoka, and Toshisuke Sakaki. "Retinotopy with coordinates of lateral occipital cortex in humans." Journal of Neurosurgery 101, no. 1 (July 2004): 114–18. http://dx.doi.org/10.3171/jns.2004.101.1.0114.
Full textBohotin, V., A. Fumai, M. Vandenheede, C. Bohotin, and J. Schoenen. "Excitability of Visual V1-V2 and Motor Cortices To Single Transcranial Magnetic Stimuli in Migraine: A Reappraisal Using A Figure-Of-Eight Coil." Cephalalgia 23, no. 4 (May 2003): 264–70. http://dx.doi.org/10.1046/j.1468-2982.2003.00475.x.
Full textSarıhan, Işık. "Double Vision, Phosphenes and Afterimages." European journal of analytic philosophy 16, no. 1 (May 21, 2020): 5–32. http://dx.doi.org/10.31820/ejap.16.1.1.
Full textKhan, E., F. Maréchal, R. Dendale, C. Mabit, V. Calugaru, L. Desjardin, and L. Narici. "Anomalous phosphenes in ocular protontherapy." Advances in Space Research 45, no. 7 (April 2010): 846–49. http://dx.doi.org/10.1016/j.asr.2009.11.021.
Full textThariat, Juliette, Cecilia Leal, Alessander d'Ascoli, Pauline Jardel, Jean Pierre Caujolle, Joel Herault, Stephanie Baillif, Celia Maschi, and Giorgia Loreti. "Phosphenes in patients receiving radiotherapy." Lancet Oncology 17, no. 7 (July 2016): 869–71. http://dx.doi.org/10.1016/s1470-2045(16)30034-1.
Full textConvento, Silvia, Chiara Galantini, Nadia Bolognini, and Giuseppe Vallar. "Neuromodulation of crossmodal influences on visual cortex excitability." Seeing and Perceiving 25 (2012): 149. http://dx.doi.org/10.1163/187847612x647810.
Full textMathis, Thibaud, Stephane Vignot, Cecila Leal, Jean-Pierre Caujolle, Celia Maschi, Martine Mauget-Faÿsse, Laurent Kodjikian, Stéphanie Baillif, Joel Herault, and Juliette Thariat. "Mechanisms of phosphenes in irradiated patients." Oncotarget 8, no. 38 (June 28, 2017): 64579–90. http://dx.doi.org/10.18632/oncotarget.18719.
Full textDrover, Jonathan D., and G. Bard Ermentrout. "Phase Boundaries as Electrically Induced Phosphenes." SIAM Journal on Applied Dynamical Systems 5, no. 4 (January 2006): 529–51. http://dx.doi.org/10.1137/050646469.
Full textOswalt, Denise, William Bosking, Ping Sun, Sameer A. Sheth, Soroush Niketeghad, Michelle Armenta Salas, Uday Patel, et al. "Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects." Brain Stimulation 14, no. 5 (September 2021): 1356–72. http://dx.doi.org/10.1016/j.brs.2021.08.024.
Full textFan, Jin, Jing Wang, Qiushi Ren, Yanyu Lu, Ying Zhao, Xinyu Chai, Chunaqing Zhou, and Chen Tao. "Estimating the Position of Simulated Phosphenes Using a Tactile Guide." Seeing and Perceiving 24, no. 2 (2011): 125–40. http://dx.doi.org/10.1163/187847511x570088.
Full textBhatt, NikunjK, Aniruddha Phadke, SourabhD Patwardhan, and NidhiS Patwardhan. "Ivabradine-induced photosensitivity and phosphenes: Case report." Indian Journal of Ophthalmology - Case Reports 2, no. 1 (2022): 179. http://dx.doi.org/10.4103/ijo.ijo_1606_21.
Full textThariat, J. O., G. Loreti, C. Maschi, J. P. Caujolle, and J. Herault. "Phosphenes Under Proton therapy for Eye Tumors." International Journal of Radiation Oncology*Biology*Physics 93, no. 3 (November 2015): E79. http://dx.doi.org/10.1016/j.ijrobp.2015.07.744.
Full textDagnino, Bruno, Marie-Alice Gariel-Mathis, and Pieter R. Roelfsema. "Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1." Journal of Neurophysiology 113, no. 3 (February 1, 2015): 730–39. http://dx.doi.org/10.1152/jn.00645.2014.
Full textSilvanto, Juha, Nilli Lavie, and Vincent Walsh. "Stimulation of the Human Frontal Eye Fields Modulates Sensitivity of Extrastriate Visual Cortex." Journal of Neurophysiology 96, no. 2 (August 2006): 941–45. http://dx.doi.org/10.1152/jn.00015.2006.
Full textFu, Xingyang, Xinyao Li, and Jiaxi Xu. "Synthesis of β-Phosphinolactams from Phosphenes and Imines." Organic Letters 23, no. 22 (October 28, 2021): 8733–37. http://dx.doi.org/10.1021/acs.orglett.1c03182.
Full textHodgson. "Shamanism, Phosphenes, and Early Art: An Alternative Synthesis." Current Anthropology 41, no. 5 (2000): 866. http://dx.doi.org/10.2307/3596749.
Full textCervetto, L., G. C. Demontis, and C. Gargini. "Cellular mechanisms underlying the pharmacological induction of phosphenes." British Journal of Pharmacology 150, no. 4 (February 2007): 383–90. http://dx.doi.org/10.1038/sj.bjp.0706998.
Full textChen, Spencer C., Gregg J. Suaning, John W. Morley, and Nigel H. Lovell. "Simulating prosthetic vision: I. Visual models of phosphenes." Vision Research 49, no. 12 (June 2009): 1493–506. http://dx.doi.org/10.1016/j.visres.2009.02.003.
Full textWu, D. A., Y. Kamitani, F. Maeda, and S. Shimojo. "Interaction of TMS-induced phosphenes and visual stimuli." Journal of Vision 1, no. 3 (March 14, 2010): 198. http://dx.doi.org/10.1167/1.3.198.
Full textMeador, K. J., P. G. Ray, and D. W. Loring. "Physiology of perception: parameters of TMS-induced phosphenes." Electroencephalography and Clinical Neurophysiology 102, no. 1 (January 1997): P12. http://dx.doi.org/10.1016/s0013-4694(97)86260-8.
Full textHodgson, Derek. "Shamanism, Phosphenes, and Early Art: An Alternative Synthesis." Current Anthropology 41, no. 5 (December 2000): 866–73. http://dx.doi.org/10.1086/317415.
Full textGrüsser, Otto-Joachim. "Migraine phosphenes and the retino-cortical magnification factor." Vision Research 35, no. 8 (April 1995): 1125–34. http://dx.doi.org/10.1016/0042-6989(94)00187-q.
Full textTaylor, John-Paul, Michael Firbank, Nicola Barnett, Sarah Pearce, Anthea Livingstone, Urs Mosimann, Janet Eyre, Ian G. McKeith, and John T. O'Brien. "Visual hallucinations in dementia with Lewy bodies: transcranial magnetic stimulation study." British Journal of Psychiatry 199, no. 6 (December 2011): 492–500. http://dx.doi.org/10.1192/bjp.bp.110.090373.
Full textSilva, Andrew E., Katelyn Tsang, Syeda Javeria Hasan, and Benjamin Thompson. "Precise oculocentric mapping of transcranial magnetic stimulation-evoked phosphenes." NeuroReport 32, no. 11 (June 22, 2021): 913–17. http://dx.doi.org/10.1097/wnr.0000000000001683.
Full textCowey, Alan, and Vincent Walsh. "Magnetically induced phosphenes in sighted, blind and blindsighted observers." NeuroReport 11, no. 14 (September 2000): 3269–73. http://dx.doi.org/10.1097/00001756-200009280-00044.
Full textPeer, J., and A. Kendl. "Transcranial stimulability of phosphenes by long lightning electromagnetic pulses." Physics Letters A 374, no. 29 (June 2010): 2932–35. http://dx.doi.org/10.1016/j.physleta.2010.05.023.
Full textBagattini, Chiara, Chiara Mazzi, and Silvia Savazzi. "Waves of awareness for occipital and parietal phosphenes perception." Neuropsychologia 70 (April 2015): 114–25. http://dx.doi.org/10.1016/j.neuropsychologia.2015.02.021.
Full textSchutter, Dennis J. L. G., and Ruud Hortensius. "Retinal origin of phosphenes to transcranial alternating current stimulation." Clinical Neurophysiology 121, no. 7 (July 2010): 1080–84. http://dx.doi.org/10.1016/j.clinph.2009.10.038.
Full textWang, Jing, Rongfeng Zhao, Peitong Li, Zhiqiang Fang, Qianqian Li, Yanling Han, Ruyan Zhou, and Yun Zhang. "Clinical Progress and Optimization of Information Processing in Artificial Visual Prostheses." Sensors 22, no. 17 (August 30, 2022): 6544. http://dx.doi.org/10.3390/s22176544.
Full textSinclair, Nicholas C., Mohit N. Shivdasani, Thushara Perera, Lisa N. Gillespie, Hugh J. McDermott, Lauren N. Ayton, and Peter J. Blamey. "The Appearance of Phosphenes Elicited Using a Suprachoroidal Retinal Prosthesis." Investigative Opthalmology & Visual Science 57, no. 11 (September 21, 2016): 4948. http://dx.doi.org/10.1167/iovs.15-18991.
Full textKastner, S., I. Demmer, and U. Ziemann. "P424 Transient scotomas and phosphenes induced by transcranial magnetic stimulation." Electroencephalography and Clinical Neurophysiology 99, no. 4 (October 1996): 374. http://dx.doi.org/10.1016/0013-4694(96)88599-3.
Full textKim, Ivana K. "Melanocytoma of the Optic Nerve Associated With Sound-Induced Phosphenes." Archives of Ophthalmology 124, no. 2 (February 1, 2006): 273. http://dx.doi.org/10.1001/archopht.124.2.273.
Full textKapócs, Gábor, Felix Scholkmann, Vahid Salari, Noémi Császár, Henrik Szőke, and István Bókkon. "Possible role of biochemiluminescent photons for lysergic acid diethylamide (LSD)-induced phosphenes and visual hallucinations." Reviews in the Neurosciences 28, no. 1 (January 1, 2017): 77–86. http://dx.doi.org/10.1515/revneuro-2016-0047.
Full textSparing, Roland, Manuel Dafotakis, Dorothee Buelte, Ingo G. Meister, and Johannes Noth. "Excitability of human motor and visual cortex before, during, and after hyperventilation." Journal of Applied Physiology 102, no. 1 (January 2007): 406–11. http://dx.doi.org/10.1152/japplphysiol.00770.2006.
Full textEvans, Ian D., Stephen Palmisano, and Rodney J. Croft. "Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation." Bioelectromagnetics 42, no. 2 (January 13, 2021): 146–58. http://dx.doi.org/10.1002/bem.22317.
Full text